
Chapitre 1

Introduction

Let us first define frustrated magnetism. By magnetism we mean the
properties of Mott insulators (also known as magnetic insulators), systems
that have a charge gap and local moments coupled by exchange interactions
much smaller than the charge gap so that an accurate description can be
achieved with a purely magnetic model. In this lecture, we will be dealing
mostly with two models of magnetism : the Ising model

H = �(i,j)Jij‡i‡j , ‡i, ‡j = ±1 or ↑, ↓ (1.1)

and the Heisenberg model

H = �(i,j)Jij
�Si ⋅ �Sj (1.2)

where the spins �Si are unit vectors in the classical case, and components of
a quantum spin in the quantum case : [S–

i
, S—

i
] = i‘–—“S“

i
, and �S2

i
= S(S+1).

In both cases, i and j are sites of a periodic lattice, and Jij is assumed to
depend only on their relative position. In the absence of strong anisotropies
originating from spin-orbit coupling, the Heisenberg model is always a good
starting point. If however an on-site anisotropy forces the spins to align along
a certain direction (which can be di�erent at each site), a good e�ective
description can be achieved by keeping only the states with projection +S
and −S along that direction, resulting in an e�ective Ising model. Other
situations where e.g. the spins have to be perpendicular a certain direction
(XY symmetry) or where anisotropic interactions such as Dzyaloshinskii-
Moriya interactions of the form �Dij ⋅ �Si × �Sj are present will be discussed
whenever appropriate, but they are not the main focus of these lectures.
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Figure 1.1 – Three-sbulattice order of the classical Heisenberg antiferro-
magnet on the triangular lattice. On each triangle, the sum of the spins
must be equal to zero. Once the spins have been fixed on one triangle, the
orientation of all the other spins follows from applying the rule of zero total
spin on each triangle. This ground state is unique up to a global rotation of
all spins.

For magnetic systems, the word frustration has been introduced in the
context of spin glasses to describe the impossibility to satisfy simultaneously
all exchange processes. In these lectures, we are primarily interested in
disorder-free systems for which frustration is in fact better described as
geometrical frustration, a concept that has received the following general
definition : one speaks of geometrical frustration when a local condition is
unable to lead to a simple pattern for an extended system. Typical examples
are paving problems, where some figures such as triangles in 2D lead to re-
gular, packed pavings while others such as pentagons are unable to lead to
a compact, periodic structure.

In the context of magnetism, geometrical frustration can only occur if
at least some exchange interactions are antiferromagnetic (i.e. favouring an-
tiparallel alignment of spins) since, if all interactions are ferromagnetic, the
configuration with all spins parallel is clearly the ground state. But even
when antiferromagnetic bonds are present, geometrical frustration is not
necessarily realized. Indeed, for bipartite lattices such as the square lattice
(i.e. lattices that can be divided into two sublattices such that each spin of
one sublattice is only coupled to spins of the other sublattice), the energy is
simply minimized by by the configuration (called the Néel state) in which
the spins of one sublattice are parallel to each other and antiparallel to all
spins of the other sublattice. In fact, a necessary condition is to have loops
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of odd length. But this is by far not su�cient. Consider for instance the
classical antiferromagnetic Heisenberg model on the triangular lattice :

E = J ��i,j� �Si. �Sj , J > 0 (1.3)

where the spins �Si are vectors of length 1, and where the sum runs over all
pairs of nearest neighbours. The total energy is half the sum of the energy
of all elementary triangles (half to avoid double counting), and the energy
of one triangle is given by

Et = �S1. �S2 + �S2. �S3 + �S3. �S1 = J

2
[( �S1 + �S2 + �S3)2 − �S2

1 − �S2

2 − �S2

3]
or, since spins are vectors of length 1,

Et = J

2
[( �S1 + �S2 + �S3)2 − 3].

This energy is minimal if �S1 + �S2 + �S3 = 0, which implies that the spins
are coplanar at angles 120 degrees of each other (see figure). So the ground
state of a triangle is unique up to a global rotation of the spins. Now, once
the spins have been chosen on one triangle, the orientation of all other
spins is determined by applying the triangular rule on adjacent triangles
starting from the reference triangle. In other words, there is a single regular
arrangement that satisfies the minimal condition on all triangles, namely
a three-sublattice order in which the spins of the various sublattices are
coplanar and point at 120 degrees from each other. This is a simple, regular
pattern, and the Heisenberg model on the triangular lattice does not exhibit
geometrical frustration according to the above definition.

In fact, in the context of classical antiferromagnets, it is usually possible
to minimize the energy with a regular pattern. Geometrical frustration does
not refer to the impossibility of minimizing the energy with a simple pat-
tern. It refers to the fact that there is not a unique way to minimize the
energy, but that there are other ways with less simple (often non periodic)
structures to reach the ground state energy. As an example, let us consider
the antiferromagnetic Ising model on the triangular lattice :

E = J ��i,j�‡i‡j , J > 0 (1.4)

where ‡i = ±1. For Ising spins, the best one can do on a triangle is to satisfy
two bonds, and all configurations with one spin in one direction and the other
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Figure 1.2 – Example of a family of ground states of the Ising antiferroma-
gnet on the triangular lattice. The ground states must satisfy the rule that,
on each triangle, the three spins cannot have the same orientation. Seeing
the triangular lattice as a centered honeycomb lattice, one can generate an
infinite number of ground states by imposing antiferromagnetic order on
the honeycomb lattice. Then the local rule will be satisfied whatever the
orientation of the spins sittings at the center of the hexagon, resulting in a
macroscopic degeneracy and a residual entropy.

two in the other direction (i.e. all configurations which are not ferromagnetic)
minimize the energy of a triangle. On an infinite system, this condition
can be satisfied in an infinite number of ways. This is most easily seen
by looking at the triangular lattice as a centered honeycomb lattice, i.e. a
honeycomb lattice with extra spins inside the hexagons. Let us then consider
configurations in which the honeycomb lattice is in antiferromagnetic state
(this is possible since the honeycomb lattice is bipartite). Then the energy
is minimized for any orientation of the remaining spins since each triangle
contains two neighboring spins of the honeycomb lattice and thus cannot be
in a ferromagnetic state. The number of such states grows with the number
of sites of the triangular lattice as

� = 2N�3
since one third of the spins sit at the center of a hexagon, leading to a
residual entropy per site

s = S

N
= ln �

N
= 1

3
ln 2 � 0.2310

This is actually just a lower bound. As we shall see in the next chapter,
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Figure 1.3 – Classical J1 - J2 antiferromagnet on the square lattice. For
J2�J1 > 1�2, the energy is minimized when the two J2 sublattices have anti-
ferromagnetic order. The energy is then independent of J1, resulting in an
infinite degeneracy controlled by the angle ◊ between the sublattices.

the actual entropy can be calculated exactly, and it is significantly larger :
there are many other states that minimize the energy. Note that most of
these configurations are not periodic. So this is an example of geometrical
frustration where a simple rule (only two parallel spins per triangle) does not
lead to a simple pattern. This example is quite generic : antiferromagnetic
Ising models on non-bipartite lattices exhibit geometrical frustration.

For the Heisenberg model, the example of the triangular lattice shows
that this is clearly not the case. In fact, even in the presence of long-range
interactions which induce odd loops, we will see that the ground state energy
can be reached for a helical structure if the spins are located at the sites of
a Bravais lattice. In general, this ground state is unique up to the choice
of the pitch vector among a finite set, and it has a finite and small dege-
neracy. There are noticeable exceptions that we will discuss later on if the
number of pitch vectors is infinite, or if helical configurations can be com-
bined to generate new ground states. For instance, the Heisenberg model
with antiferromagnetic interactions between first neigbhours (J1) and se-
cond neighbours (J2) has an infinite family of ground states for J2�J1 > 1�2 :
In that parameter range, the energy is minimized by antiferromagnetic order
on each of the J2 sublattices, and for such configurations J1 bonds do not
contribute to the energy because of the antiferromagnetic order of the four
nearest neighbours of any given spin, leading to a degeneracy defined by the
angle ◊ between the direction of the spins on the two sub-lattices. This will
be discussed in more detail in the next chapter.
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Figure 1.4 – Examples of families of ground states of the Heisenberg anti-
ferromagnet on the kagome lattice. As for the triangular lattice, the energy
is minimized as soon as the sum of the spins on each triangle vanishes. Ho-
wever, since the triangles only share corners, fixing the spins on one triangle
is not su�cient to fix the orientation of the other spins. Left : Ground states
where the spins between a set of non overlapping hexagons are all pallalel
to a common direction. The energy will be minimized if all hexagons have
the same configuration as the central one, but any configuration where the
spins of each hexagon are rotated by an arbitrary angle around that of the
spins sitting in between will also minimize the energy. Right : Ground state
where all up (resp. down) triangles have the same order. From this state,
one can generate an infinite number of ground states by rotating the spins
of any straight line along the common direction of the spins adjacent to it.

However, for the Heisenberg model, geometrical frustration has far more
dramatic consequences on non-Bravais lattices such as the kagome lattice in
2D or the pyrochlore lattice in 3D. In these cases, the ground state manifold
has a dimension that diverges as the system size goes to infinity, and the
majority of ground states are non-periodic.

1. Kagome : This is a lattice of corner sharing triangles. As for the
triangular lattice the energy can be minimized independently on each
triangle, but this time choosing the ground state on one triangle
does not fix the spin configuration on the rest of the lattice because
triangles are not sharing edges. To convince oneself that there is an
infinite family of ground states, consider for instance a subset of non
overlapping hexagons, and align all spins between the hexagons in
the same direction. Then any of the two alternating arrangements
of spins on each hexagon built out of the other two directions will
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Figure 1.5 – Example of a family of groundstates on the checkerboard lat-
tice. Starting from the antiferromagnetic configuration on the underlying
square lattice, any configuration in which colored plaquettes have antiferro-
magnetic order of arbitrary direction will minimize the energy.

minimize the energy, leading to an infinite number of ground states.
In fact, there are even more states because one can rotate the spins of
each hexagon around the direction of the spins between the hexagons
by an angle that takes a di�erent value each hexagon, leading to
non-coplanar groundstates. Alternatively, consider the configuration
where all triangles are equivalent. Between two lines of spins pointing
in the same direction, the spins can be rotated around the direction
of those spins by an arbitrary angle.

2. Checkerboard lattice : This can be seen as a lattice of corner sharing
"flattened" tetrahedra. As the triangle, the tetrahedron is a complete
graph where each spin is coupled to all others, and up to a constant
the energy is proportional to the square of the total spin, so that
the energy is minimized as soon as, on each tetrahedron, ∑i

�Si = �0.
This condition is satisfied by antiferromagnetic configuration on the
square lattice. However, one can again easily convince oneself that
this is not the only possibility. Consider for instance a set of non
overlapping empty plaquettes. Then, as for the kagome case, any
antiferromagnetic state on each of these plaquettes will still satisfy
the condition of zero total spin on the tetrahedra, leading again to
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Figure 1.6 – Pyrochlore lattice, a lattice of corner sharing tetrahedra. As
for the checkerboard lattice, the ground state of the antiferromagnetic Hei-
senberg model on this lattice is highly frustrated.

an infinite family of non-coplanar groundstates.
3. Pyrochlore : This is a three-dimensional lattice of corner sharing

tetrahedra, and one can again generate many non-periodic ground
states by adopting di�erent antiferromagnetic configurations on a set
of loops of length 6 such that each tetrahedron belongs to 2 loops.

The scope of these lectures is to investigate the physical consequences
of this degeneracy. For Ising spins, this can lead to all types of zero tempe-
rature behaviors : long-range order, algebraic order, dipolar correlations or
complete disorder. For Heisenberg models, fluctuations (thermal or quan-
tum) play a major role. They can order the system by picking one ordered
state out of the ground state manifold, but they can also destroy any kind
of magnetic long-range order. This opens the way to new types of ground
states such as spin nematics (where the order parameter is not a local spin
but a more complicated object built out of several spins), valence-bond crys-
tals (completely non-magnetic states with a broken translational symmetry),
or topological spin liquids with all symmetries (spin rotation and spatial)
preserved and fractional excitations.
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