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A. Perturbation series, time ordering

In the interaction representation, operators become a formal ”time” dependence

O(τ) = eτ(H0−µN)Oe−τ(H0−µN (1)

and the evaluation of the partition function at imaginary time β = 1/kBT is pushed into a matrix A(τ) defined via

e−τ(H−µN) = e−τ(H0−µN)A(τ)

eτ(H−µN) = A−1(τ)eτ(H0−µN) (2)

which plays the role of the S-matrix. We can obtain an explicit representation of A differentiating the first equation
with respect to τ leading to

dA(τ)

dτ
= −V (τ)A(τ) (3)

The formal solution of this differential equation satisfying the initial value A(τ = 0) = 1 has the form

A(τ) = 1−
∫ τ

0

dτ1V (τ1) +

∫ τ

0

dτ1V (τ1)

∫ τ1

0

dτ2V (τ2)−
∫ τ

0

dτ1V (τ1)

∫ τ1

0

dτ2V (τ2)

∫ τ2

0

dτ3V (τ3) + . . . (4)

= 1 +

∞∑
n=1

(−1)n
∫ τ

0

dτ1V (τ1)

∫ τ1

0

dτ2V (τ2) · · ·
∫ τn−1

0

dτnV (τn) (5)

We can verify this solution by direct differentiation. Note that the integration which goes up to τ must always be on
the most left place, since V is an operator. In order to formally sum up all the terms of the series one is tempted to
use the symmetry of the integrands with respect to the τi’s and use the symmetrized expression, e.g. in the nth order
term∫ τ

0

dτ1V (τ1)

∫ τ1

0

dτ2V (τ2) · · ·
∫ τn−1

0

dτnV (τn) =
1

n!

∫ τ

0

dτ1V (τ1)

∫ τ

0

dτ2V (τ2) · · ·
∫ τ

0

dτnV (τn) (Not True!) (6)

Such a symmetrization is valid for usual functions, however, it is in general not true for operators since V (τ) does not
necessarily commute with V (τ ′ 6= τ). Introducing the ”time-ordering” operator Tτ defined by

Tτ [V (τ)V (τ ′)] =

{
V (τ)V (τ ′)for τ > τ ′

±V (τ ′)V (τ)for τ < τ ′
(7)

where the ± sign has to be used for bosonic/fermionic operators V . Note that our interaction operator is in general
a bosonic operator, since the Hamiltonian is invariant against any permutations of particle labels. The generalization
for fermionic operators is convienient in later calculations involving intermediate steps; as long as V is bosonic, this
definition does not affect any final results.

Extending the time-ordering operator to general products, we can now correct Eq. (6) formally to∫ τ

0

dτ1V (τ1)

∫ τ1

0

dτ2V (τ2) · · ·
∫ τn−1

0

dτnV (τn) = Tτ

[
1

n!

∫ τ

0

dτ1V (τ1)

∫ τ

0

dτ2V (τ2) · · ·
∫ τ

0

dτnV (τn)

]
(8)

and thus resum the series to obtain the formally exact expression

A(τ) = Tτ exp

{
−
∫ τ

0

V (τ ′) dτ ′
}

(9)
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where Tτ now takes care to arrange the operators from the left to the right in order of decreasing τ .
The partition function then writes

Z = Tr

{
e−β(H0−µN)Tτ exp

[
−
∫ β

0

V (τ ′) dτ ′

]}
(10)

Expanding the exponential on the rhs we obtain the perturbation series in power of V

Z

Z0
=

∞∑
n=0

(−1)n

n!

∫ β

0

dτ1

∫ β

0

dτ2· · ·
∫ β

0

dτn 〈Tτ [V (τ1)V (τ2) . . . V (τn)]〉0 (11)

where 〈. . . 〉0 is the average corresponding to the reference

B. Wick’s..

Let us illustrate now how to perform the first terms in the perturbation expansion specializing to the usual trans-
lational invariant Hamiltonian

H0 − µN =

∫
drΨ†

[
− ~2

2m
∇2 − µ

]
Ψ(r) (12)

and

V =
1

2

∫
dr

∫
dr′Ψ†(r)Ψ†(r′)v(|r− r′|)Ψ(r′)Ψ(r) (13)

in second quantized form, where Ψ†(r) and Ψ(r) are creation and annihilation operators of the bosonic/fermionic field
at r. When the imaginary time variable is not explicitly indicated, we refer to a fixed time, e.g. τ = 0. The (anti-)
commutation for bosonic (fermionic) fields write

[Ψ(r),Ψ†(r′)]∓ = δ(r− r′) (14)

Let us now introduce the following extension of the interaction representation of the operators given in Eq. (1) to
field operators using the convention that

Ψ(rτ) ≡ eτ(H0−µN)Ψ(r)r−τ(H0−µN) (15)

Ψ†(rτ) ≡ eτ(H0−µN)Ψ†(r)r−τ(H0−µN) (16)

so that Ψ†(rτ) is not the hermitian operator of Ψ(rτ) (however, the analytic continuations of the operators, Ψ(rt)
and Ψ†(rt), to “real time” t, τ → it, are hermitian). We further extend our time-ordering introduced above for the
interaction operator for the field operators

Tτ
[
Ψ(r, τ)Ψ†(r′τ ′)

]
=

{
Ψ(r, τ)Ψ†(r′τ ′)for τ > τ ′

±Ψ†(r′, τ ′)Ψ(rτ)for τ < τ ′
(17)

where now the negative sign for fermionic fields will come into play.
Our reference Hamiltonian, H0, is in general chosen such that it can be solved exactly, e.g. we can diagonalize

Eq. (12) in Fourier space with the mode decomposition of the field opertor

Ψ(r) =
1

V 1/2

∑
k

eik·rak (18)

where ak is the annihilation of a particle of wave vector k (momentum up to ~) and similar

Ψ†(r) =
1

V 1/2

∑
k

e−ik·ra†k (19)

for the field creation operator.
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Plugging into Eq. (12) we get

H0 − µN =
∑
k

εka
†
kak (20)

with εk = ~2k2/2m− µ and the (anti-)commutation relations, Eq. (14), imply

[ak, a
†
k′ ]∓ = δk,k′ (21)

We can now work out the imaginary time dependence of the field operators using

aq(τ) = eτH0aqe
−τH0 (22)

= eεqτa
†
qaqaqe

−εqτa†qaq (23)

where we have used the commutation of operators with different momenta, e.q. exp[
∑

k εkτa
†
kak] =

∏
k exp[εkτa

†
kak]

Differentiation with respect to τ gives

d

dτ
aq(τ) = eεqτa

†
qaqεq[a

†
qaq, aq]−e

−εqτa†qaq = εqaq(τ) (24)

(For fermions, one has to use that aqaq = a†qa
†
q = 0 due to the anticommuation (Pauli principle: maximal one fermion

per state!). We can now integrate together with aq(0) ≡ aq to give

aq(τ) = e−εqτaq (25)

and similar

a†q(τ) = eεqτa†q (26)

Note that we have managed to replace a time-dependence involving an operator in the exponantial to an exponential
containing only numbers.

Since any second quatized operator can be expressed in terms of field operators, using the eigen-mode decompositions
in terms of aks, we can thus simplify the time dependence of the interaction operator in general expressions as Eq. (5)
using

akl
(τl) . . . a

†
km

(τm) · · · a†kn
(τn) · · · = e−τlεkl

+τmεkm+τnεknakl
· · · a†km

· · · a†kn
· · · (27)

Note that the non-interacting reference Hamiltonian will not contain any time-dependence as

eτ(H0−µ)a†kake
−τ(H0−µ) = a†k(τ)ak(τ) = a†kak (28)

The calculation of the partition function then necessitates that we have to calculate the expectation value of such
a generic expression with respect to the non-interacting system, e.g.

〈akl
· · · a†km

· · · a†kn
· · · 〉0 =

1

Z0
Tr
[
e−β(H0−µN)akl

· · · a†km
· · · a†kn

· · ·
]

(29)

Such expressions can now be evaluated as H0 − µN is diagonal in k and nk = a†kak simply counts the number of

particles in mode k without changing them. Therefore, every time we create (annihilate) a particle, e.g. a†k, we also
have to destroy (create) it again.

Explicitly, let us note that the partition function of the non-interacting system, Z0, factorizes, Z =
∏

q zq, with

zBq = Tre−βεqa
†
qaq =

∞∑
n=0

e−βnεq =
1

1− eβεq
(30)

for bosons, and

zFq = Tre−βεqa
†
qaq = 1 + e−βnεq (31)

for fermions.
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We then have

〈a†kaq〉0 = δk,q〈nq〉 (32)

= −δk,q −
∂ log zq
∂(βεq)

(33)

= δk,q
1

eβε ∓ 1
(34)

which is our well known Bose/Fermi distribution of the mean number of particles in mode k. It is straighforward to
extend to the other ordering 〈aqa†q〉0 = 1± 〈a†qaq〉0.

Expressions involving three aks identically vanish, so lets look at four,

〈a†ka
†
qaqak〉0 = 〈a†kaka

†
qaq〉0 = 〈a†kak〉0〈q

†aq〉0 (35)

where we assumed k 6= q for the moment. Different orders can be again treated straighforwardly using the commu-
tation relations.

Let us discuss k = q, commuting one term, this can be worked out explicitly using

〈a†kaka
†
kak〉0 =

∂2 log zk
∂(βεq)2

(36)

We can see explicitly, that as long as we have no Bose-Einstein condensations, such a term remain of order or the
mean occupation, 〈n2q〉0 ∼ 〈nq〉0 ∼ O(1). However, the expansion of Ψ(r) in terms of ak contains a factor V −1/2 in
front of the summation over all k, so that all our expression, taking care of all summations and volume factors, terms
involving double occupations (or higher) will be suppressed increasing with system size (usually by V −1 or higher.
Excluding phenomena like BEC or BCS pairing, we can thus neglect all complications arising from such terms.

The general structure should then be clear

〈a†k · · · a
†
q · · · ak · · · aq · · · 〉0 = s〈a†kak〉0 · · · 〈a

†
qaq〉0 · · · (37)

where s denots a possible sign since we have to commute the operators, say aq until reaching a†q.
We now have (almost) Wick’s theorem. We simply need to extend these considerations for the time-ordering. We

have already taken care of the exponential factors involving τ , however the time ordering will affect the order of the
creation and annilihation operators involved, in particular we may have aq anywhere on the left of a†q, which we then
commute just to the point where it is just on the left.


