

(Random) phase retrieval: theory, algorithms, applications

Jonathan Dong

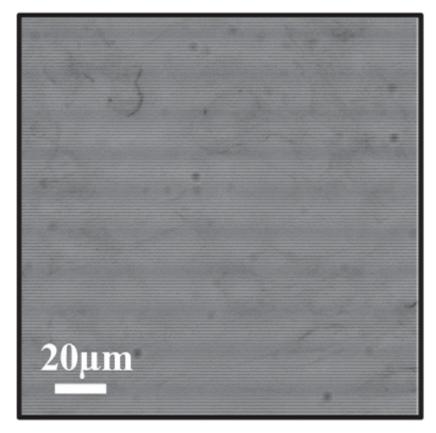
Biomedical Imaging Group, EPFL, Lausanne jonathan.dong@epfl.ch

October 2024

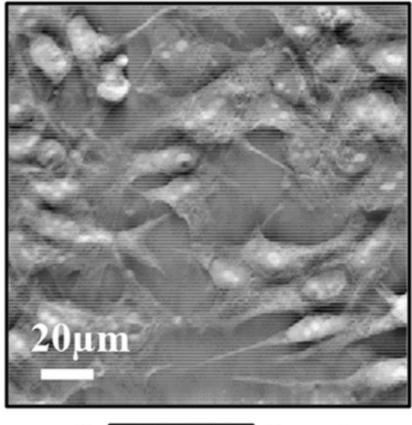
PHYS-715, EPFL

Phase imaging

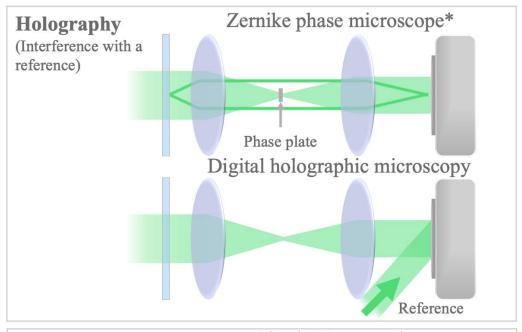
Amplitude

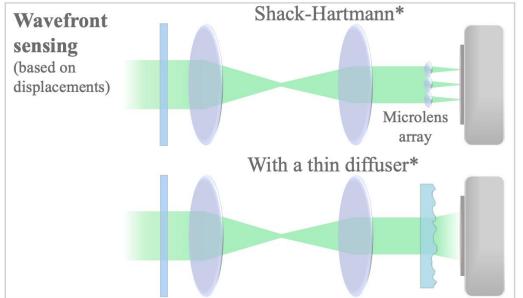


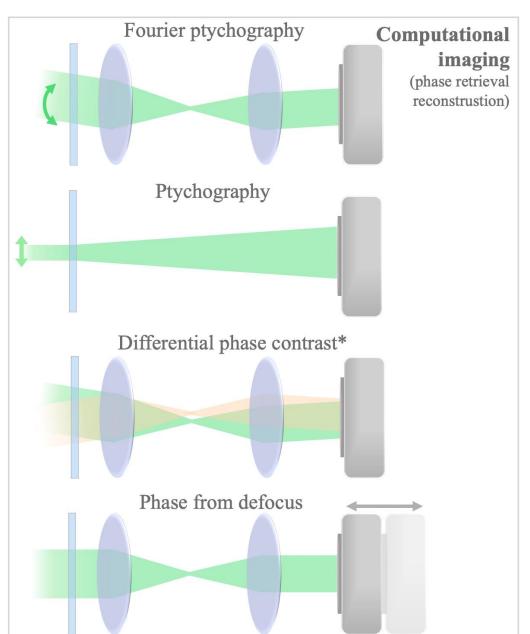
Phase



Optical phase imaging







The Biomedical Imaging Group (BIG)

Image reconstruction Advanced algorithms Machine learning for imaging Collaboration with imaging groups

Image analysis Digital histopathology Localization microscopy Tools for biologists / doctors

Daniel Sage

Phase retrieval

Phase retrieval

Find
$$\mathbf{x}^*$$
 in $\mathbf{y} = |\mathbf{A}\mathbf{x}^*|^2$

Find
$$x^*$$
 in $y = |Ax^*|^2$

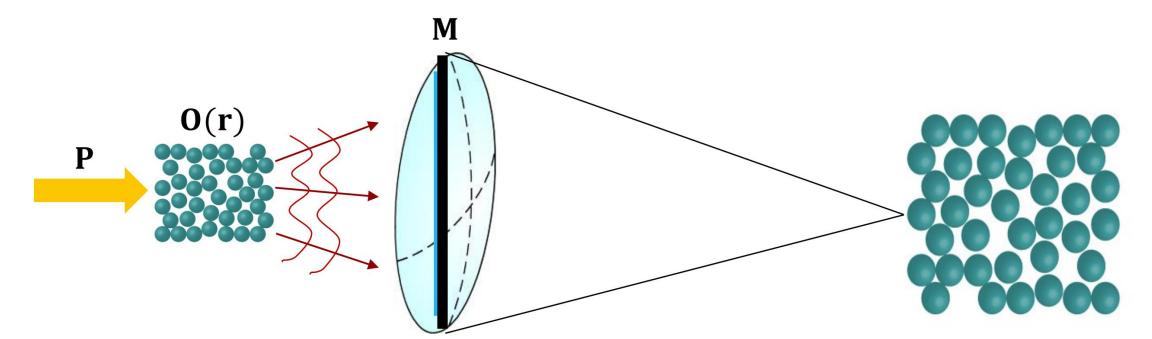
And in the previous episode...

Imaging as an inverse problem

Physical model of interaction between incoming wave and object

Diversity - Can be used to encode more information, e.g. rotation, scanning, energy

- r (dimensionality) can be 2D, 3D, time, spectra
- Captures local anisotropy
- **M** (modulation and measurement) images, diffraction, fluorescence, photo-electrons



Inverse problem framework

Find
$$\mathbf{x}^*$$
 in $\mathbf{y} = A\{\mathbf{x}^*\}$

- x^* : image to recover, parameters to estimate
- A: physical model
- y: measurements

Inverse problem framework

Find
$$\mathbf{x}^*$$
 in $\mathbf{y} = A\{\mathbf{x}^*\}$

Optimization approach:

$$\hat{x} = \operatorname{argmin}_{x} l(y, x)$$

- We often split the loss l into l(y,x)=f(y,x)+g(x):
 - Data fidelity, e.g. L2: $f(y,x) = ||y A\{x\}||_2^2$
 - Regularization, e.g. L1: $g(x) = ||x||_1$

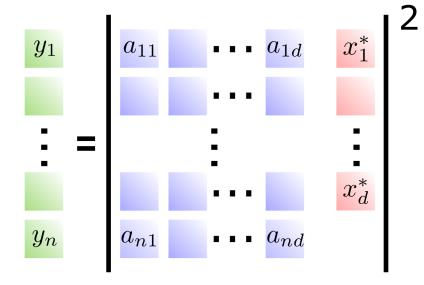
Linear systems

Find
$$x^*$$
 in $y = Ax^*$ with a linear operator A

- If A is invertible, $\hat{x} = A^{\dagger}y$
- If A is not invertible, add prior on x:
 - Sparsity with L1: $g(x) = ||x||_1$
 - Total variation: $g(x) = \|\nabla x\|_1$
 - Deep learning regularization

Content

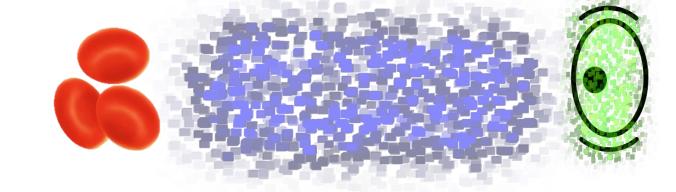
Find
$$x^*$$
 in $y = |Ax^*|^2$



- General inverse problem framework
- Phase retrieval (PR) applications
- PR algorithms
- PR theory: random model
- Machine learning

Phase retrieval

Find
$$\mathbf{x}^*$$
 in $\mathbf{y} = |\mathbf{A}\mathbf{x}^*|^2$



unknown object

 $\mathbf{x}^* \in \mathbb{C}^d$

imaging system

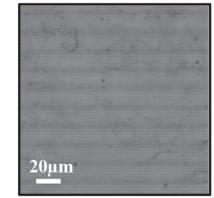
 $\begin{matrix} A \\ \in \mathbb{C}^{n \times d} \end{matrix}$

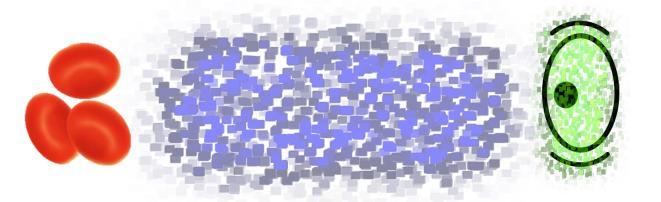
measurements

$$\mathbf{y} = |\mathbf{A}\mathbf{x}^*|^2 \\ \in \mathbb{R}^n$$

Intensity measurement

Phase retrieval applications





Quantitative Phase Imaging

Phase

unknown object

 $\in \mathbb{C}^d$

imaging system

 $\in \mathbb{C}^{n \times d}$

measurements

$$\mathbf{y} = |\mathbf{A}\mathbf{x}^*|^2$$

$$\in \mathbb{R}^n$$

Label-free

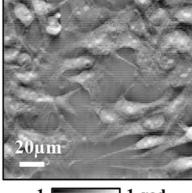
Less invasive

No bleaching

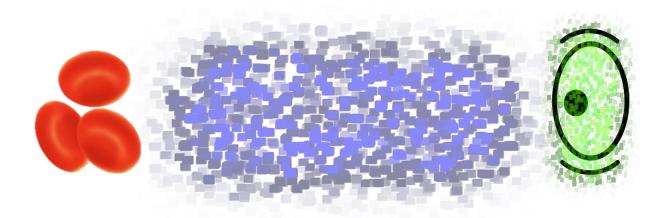
Observations over several days

Fast

Videos of samples



Phase retrieval applications



Quantitative Phase Imaging

unknown object

x*

 $\in \mathbb{C}^d$

imaging system

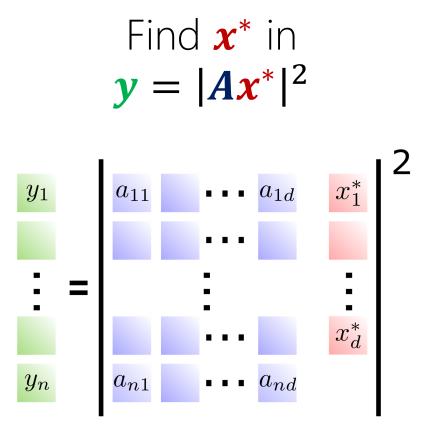
 $\begin{matrix} A \\ \in \mathbb{C}^{n \times d} \end{matrix}$

measurements

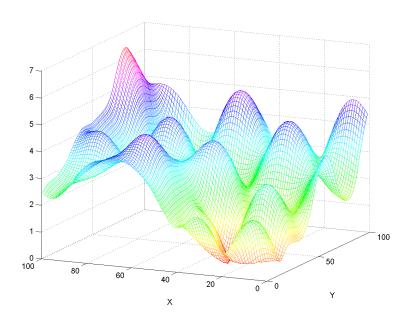
$$\mathbf{y} = |\mathbf{A}\mathbf{x}^*|^2$$
$$\in \mathbb{R}^n$$

Disclaimer: They mainly use holographic approaches for 3D measurements 14

Phase retrieval

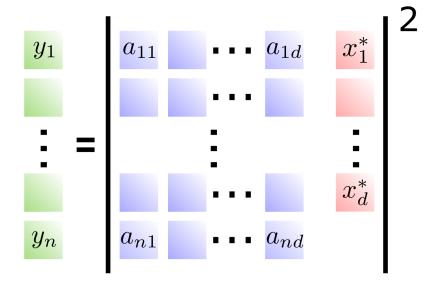


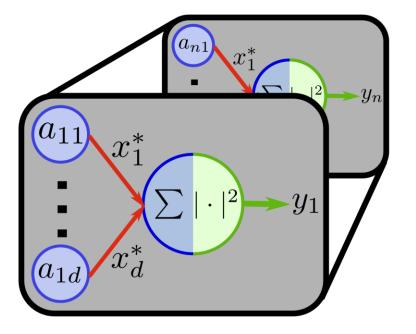
Non-linear equation



Phase retrieval and machine learning

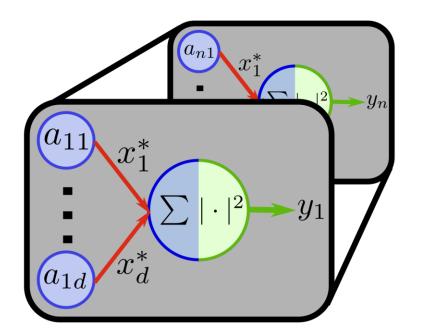
Find
$$\mathbf{x}^*$$
 in $\mathbf{y} = |\mathbf{A}\mathbf{x}^*|^2$



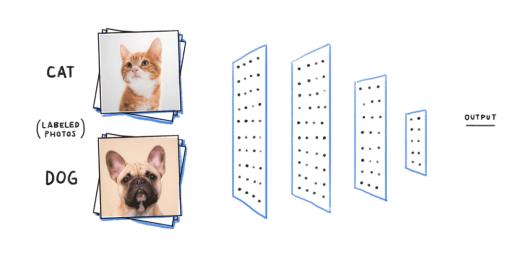


Machine learning

Single-layer neural network

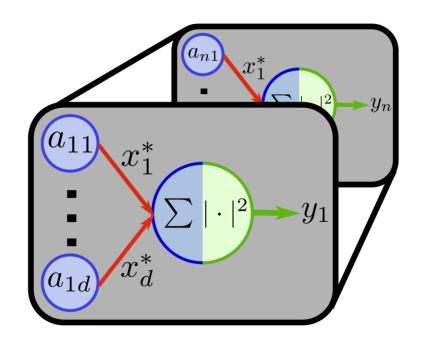


Deep neural network



Machine learning

Single-layer neural network



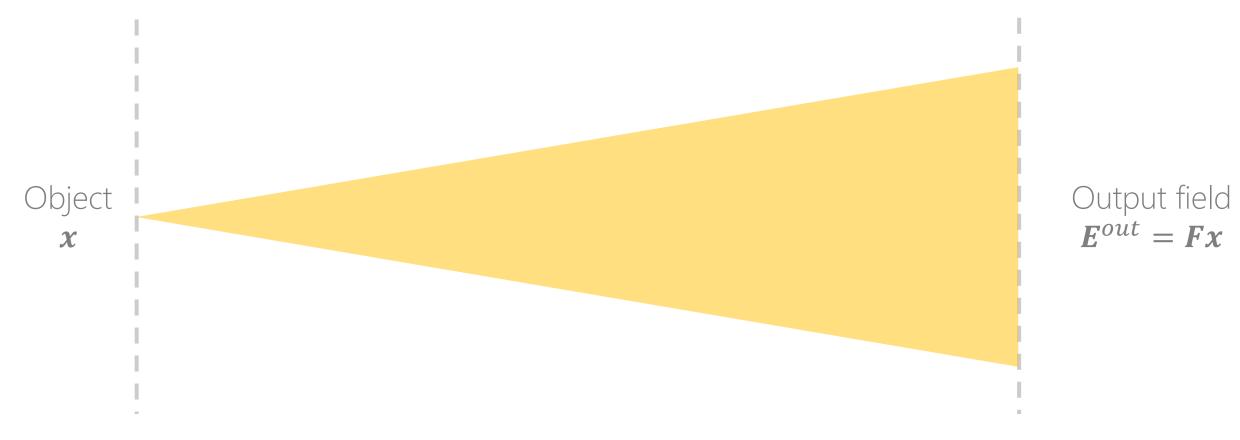
Phase retrieval = Training a 1-layer neural network

When is it solvable?

What algorithm to use?

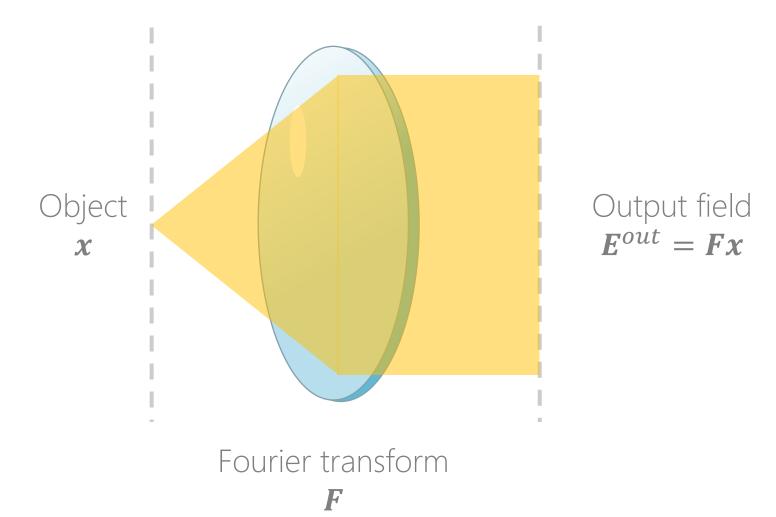
Is the solution unique?

Fourier in optics

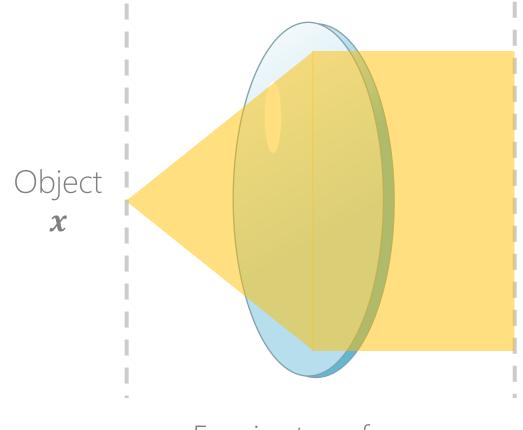


Far-field propagation Fourier transform **F**

Fourier in optics

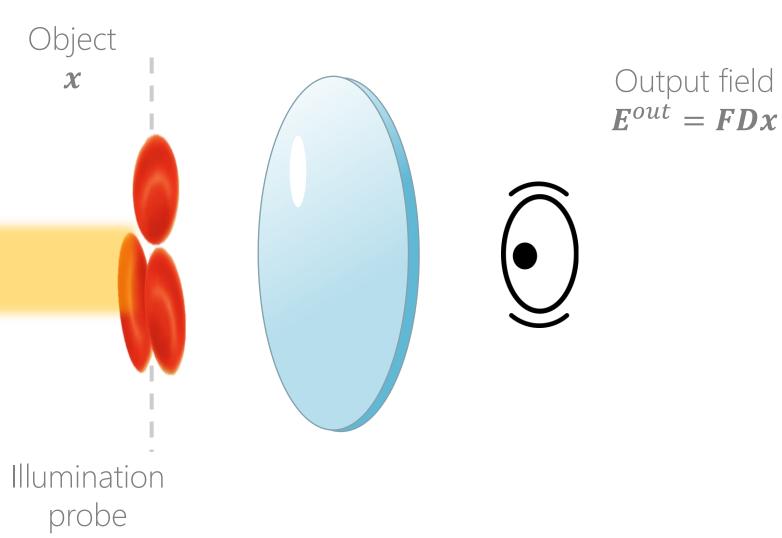


Fourier in optics

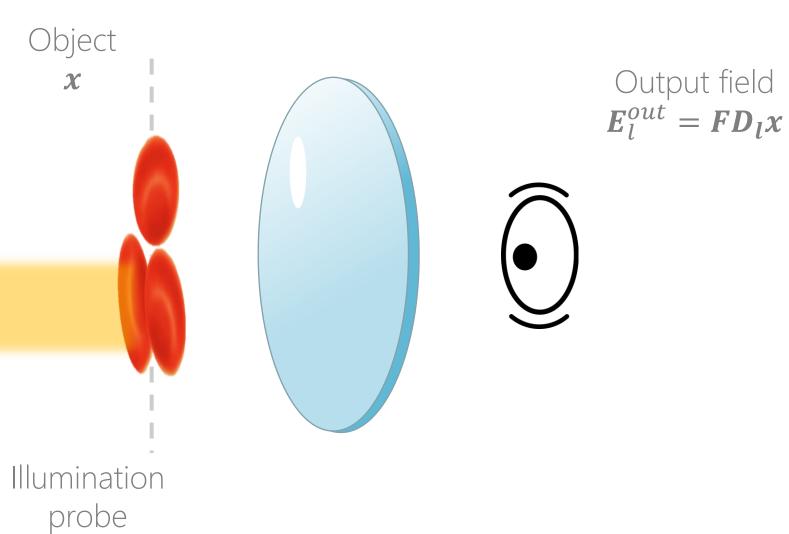


- Output $E^{out} = Fx$ $y = |Fx|^2$
- Applications
 - Crystallography
 - Adaptive optics
 - PSF engineering
 - Complex media imaging
 - Non-line of sight imaging

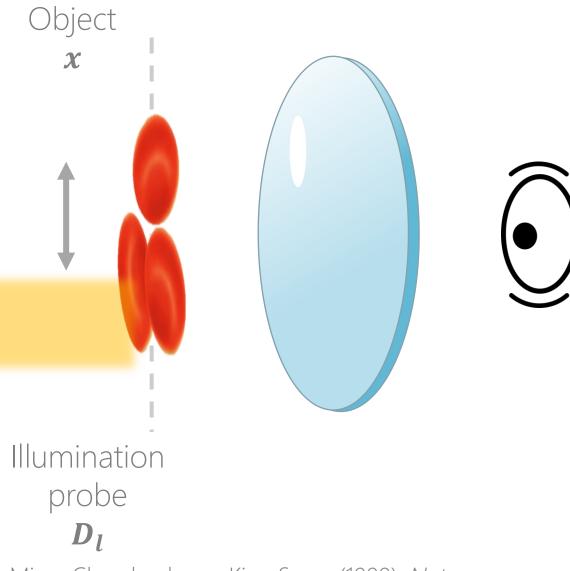
Coded-illumination: ptychography



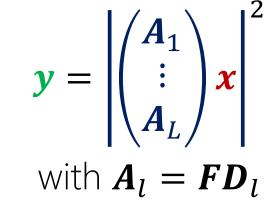
Coded-illumination: ptychography

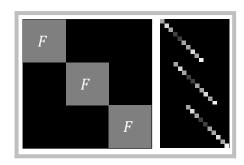


Coded-illumination: ptychography

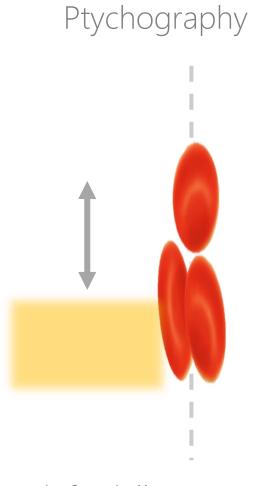


Output field $E_l^{out} = FD_lx$

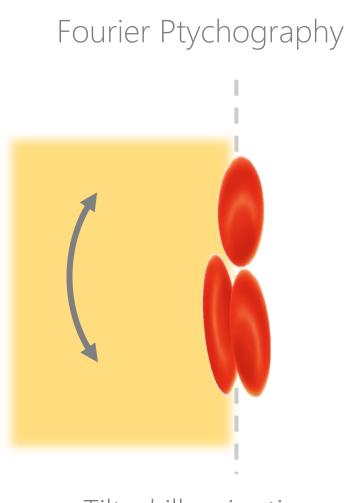




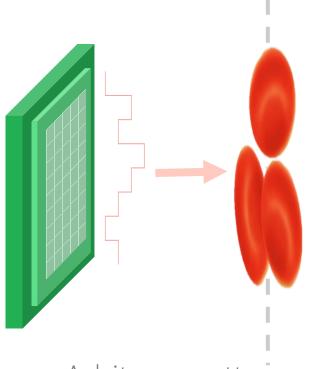
Coded-illumination experiments



Shifted illumination



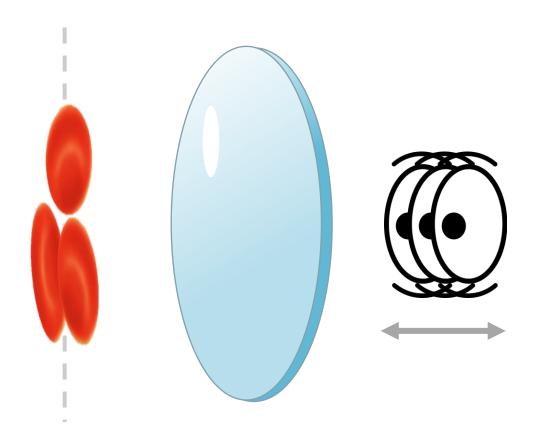
Tilted illumination



Arbitrary pattern (Spatial Light Modulator, mask, grating)

Zheng, Horstmeyer, Yang (2013). Nature Photonics

Coded detection

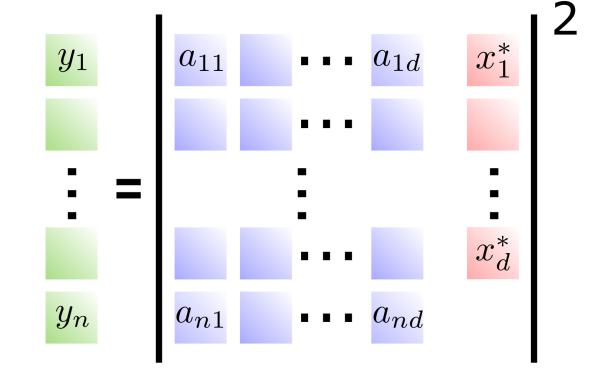


- Applications:
 - Astronomy
 - Non-invasive bioimaging
- ⇒ Modulate on the detection side

• Model $A_l = FD_lF^H$ with defocus phase in Fourier space $D_l = \mathrm{Diag}\left(e^{iz_l\sqrt{1-u^2}}\right)$

The random model

- A is an i.i.d. random matrix
- $a_{ij} \sim \mathcal{N}\left(0, \frac{1}{d}\right)$
- Canonical setting for theory
- Applications:
 - Compressed sensing
 - Imaging in complex media

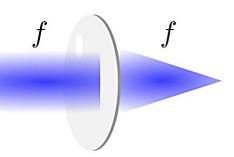


Unifying framework $y = |Ax|^2$

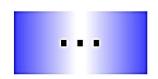
Fourier phase retrieval

$$A = F$$

by a lens



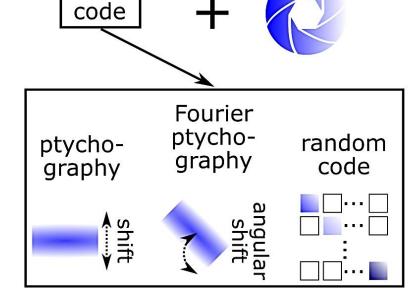
by free-space propagation



Coded illumination

$$\mathbf{A}_l = \mathbf{F} \mathbf{D}_l$$

imaging system

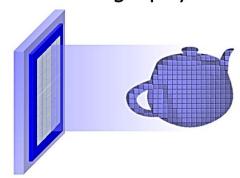


Coded detection

$$\mathbf{A}_l = \mathbf{F} \mathbf{D}_l \mathbf{F}^{\mathrm{H}}$$

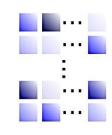
phase diversity

computer-generated holography



Random

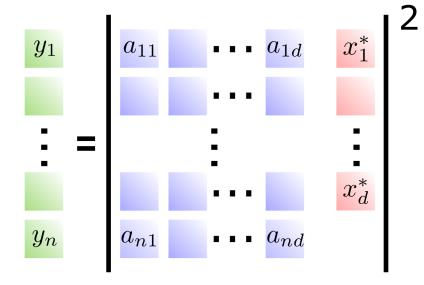
by random projections



by propagation through complex media

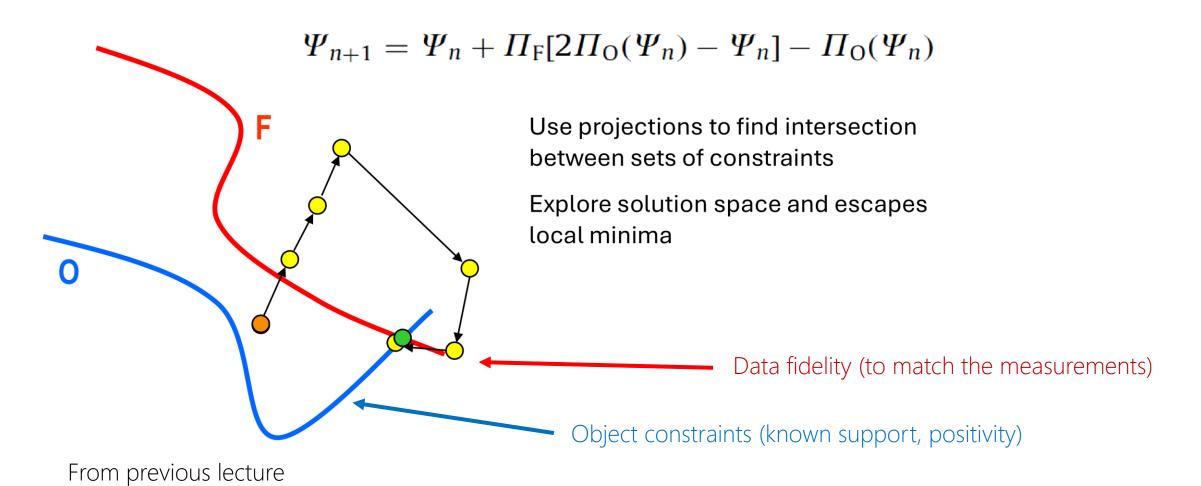
Content

Find
$$x^*$$
 in $y = |Ax^*|^2$



- General inverse problem framework
- Phase retrieval (PR) applications
- PR algorithms
- PR theory: random model
- Machine learning

Projection-based algorithms



Gradient descent

Find
$$x^*$$
 in $y = |Ax^*|^2$

- Optimization approach: $\hat{x} = \operatorname{argmin}_{x} f(y, x) + g(x)$
- Gradient descent to solve non-linear optimization problem

- Includes regularization
- Many variants / acceleration strategies
- Lacks theoretical guarantees (in general)

Convex relaxation

- Example: Phaselift (Candès '11)
- Trick:

$$y_i = |a_i^H x|^2$$

$$= (a_i^H x)(x^H a_i)$$

$$= a_i^H X a_i \text{ with } X = x x^H$$

Convex relaxation

- Example: Phaselift (Candès '11)
- Trick:

$$y_i = a_i^H X a_i$$
 with $X = x x^H$

• Optimization:

$$\hat{X} = \operatorname{argmin}_{X \operatorname{rank} 1} \sum_{i} ||y_i - a_i^H X a_i||^2$$

Convex relaxation

- Example: Phaselift (Candès '11)
- Trick:

$$y_i = a_i^H X a_i$$
 with $X = x x^H$

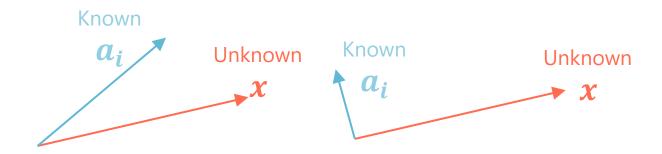
Optimization with convex relaxation:

$$\widehat{X} = \operatorname{argmin}_{X} \sum_{i} \|y_{i} - a_{i}^{H} X a_{i}\|^{2} + \lambda \operatorname{Tr}(X)$$

- Can avoid local minima
- Memory intensive (quadratic vs linear)

Spectral methods

• Intuition based on $y_i = \left| a_i^H x \right|^2$

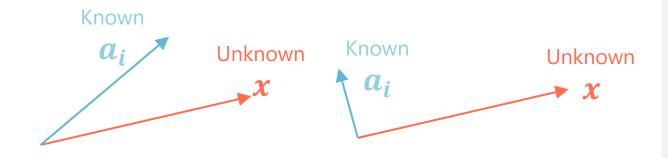


 a_i and xcorrelated \Rightarrow high intensity y_i

 a_i and xuncorrelated \Rightarrow low intensity y_i

Spectral methods

• Intuition based on $y_i = \left| a_i^H x \right|^2$



 a_i and xcorrelated \Rightarrow high intensity y_i

 a_i and xuncorrelated \Rightarrow low intensity y_i

Spectral method

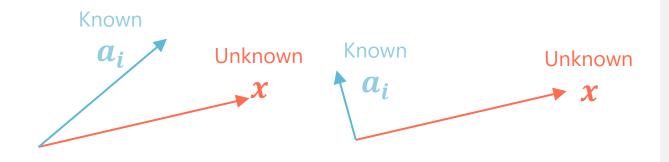
"Construct a matrix giving more weight to a_i correlated with the unknown x"

Returns the leading eigenvector of the weighted covariance matrix:

$$Z = \sum_{i} y_{i} a_{i} a_{i}^{H}$$

Spectral methods

• Intuition based on $y_i = \left| a_i^H x \right|^2$



 a_i and xcorrelated \Rightarrow high intensity y_i

 a_i and xuncorrelated \Rightarrow low intensity y_i

Spectral method

"Construct a matrix giving more weight to a_i correlated with the unknown x"

Returns the leading eigenvector of the weighted covariance matrix:

$$\mathbf{Z} = \sum_{i} \mathcal{T}(y_i) \mathbf{s}_i \mathbf{s}_i^{\dagger}$$

for $\mathcal T$ an increasing preprocessing function

Spectral methods

• Intuition based on $y_i = \left|a_i^H x\right|^2$

$$\mathcal{T}_0(y) = y$$

$$\mathcal{T}_1(y) = (y > T)$$

$$T_{\text{optim}}(y) = 1 - \frac{1}{y}$$

E. Candes, et al, IEEE Trans. on Information Theory (2015)

S. Marchesini, et al, Applied and Comput Harmonic Analysis (2016)

W. Luo, et al, IEEE Trans on Signal Processing (2019)

Spectral method

"Construct a matrix giving more weight to a_i correlated with the unknown x"

Returns the leading eigenvector of the weighted covariance matrix:

$$Z = \sum_{i} \mathcal{T}(y_i) s_i s_i^{\dagger}$$

for $\mathcal T$ an increasing preprocessing function

Algorithm taxonomy

Alternating projections

Gradient-based optimization

Convex relaxation

Bayesian AMP Spectral methods

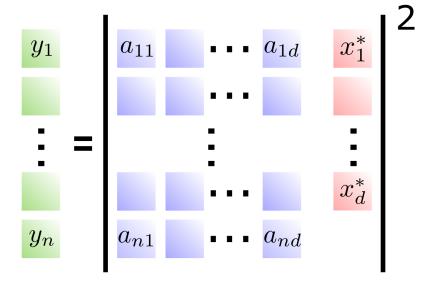
Fienup '82 Maiden '09 Fienup '93 Yeh, Dong '15 Chen '18 Candès '11 Waldspurger '12 Goldstein '16 Rangan '10 Metzler '17 Barbier '17 Maillard '20 Candès '15 Lu '17 Mondelli '18 Luo '18

Algorithms comparison

	Name	Computational speed	Performance	Designed for the random setting
\iff	Alternating projections	***	***	
***	Gradient-based optimization	***	***	
-4	Convex relaxation	***	***	
Eth.	Approximate Message Passing	***	***	Yes
\bigcirc	Spectral methods	***	***	Yes

Content

Find
$$\mathbf{x}^*$$
 in $\mathbf{y} = |\mathbf{A}\mathbf{x}^*|^2$



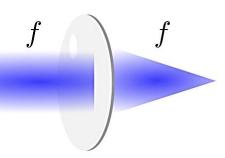
- General inverse problem framework
- Phase retrieval (PR) applications
- PR algorithms
- PR theory: random model
- Machine learning

Unifying framework $y = |Ax|^2$

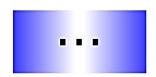
Fourier phase retrieval

$$\mathbf{A} = \mathbf{F}$$

by a lens



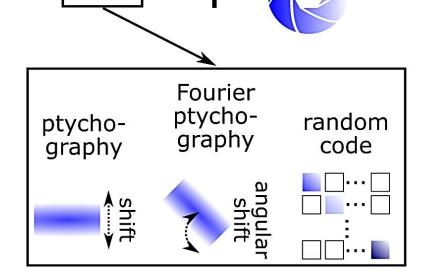
by free-space propagation



Coded illumination

$$\mathbf{A}_l = \mathbf{F} \mathbf{D}_l$$

imaging system



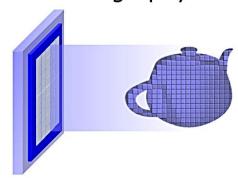
code

Coded detection

$$\mathbf{A}_l = \mathbf{F} \mathbf{D}_l \mathbf{F}^{\mathrm{H}}$$

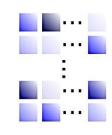
phase diversity

computer-generated holography



Random

by random projections



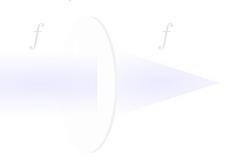
by propagation through complex media

Deeper dive in the random setting

Fourier phase retrieval

$$\mathbf{A} = \mathbf{F}$$

by a lens



by free-space propagation

Coded illumination

$$\mathbf{A}_l = \mathbf{F} \mathbf{D}_l$$

imagin systen

Coded detection

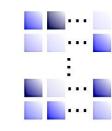
$$\mathbf{A}_l = \mathbf{F} \mathbf{D}_l \mathbf{F}^{\mathrm{H}}$$

phase diversity

computer-generated holography

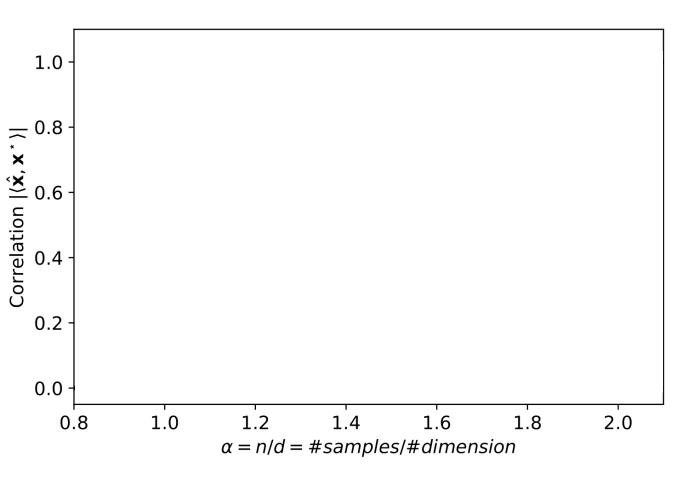
Random

by random projections



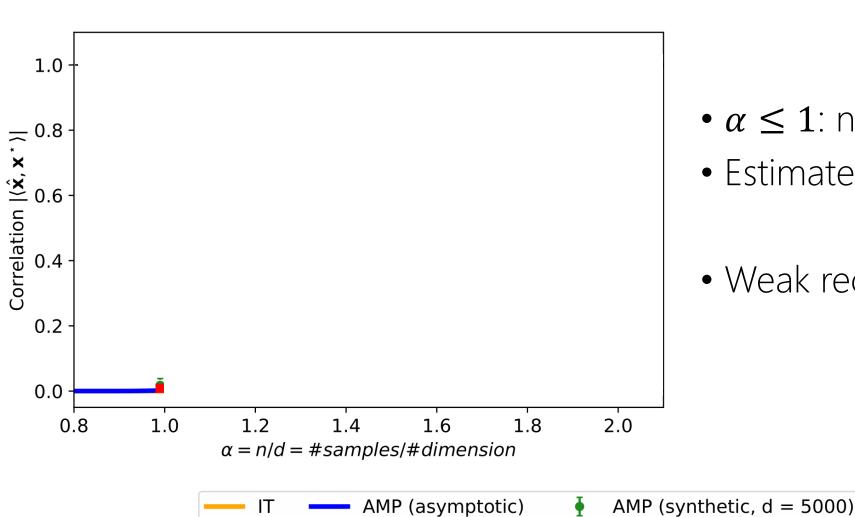
by propagation through complex media

Theory break



- Can we characterize performance as a function of oversampling $\alpha = n/d$?
- Correlation = higher is better

Weak recovery

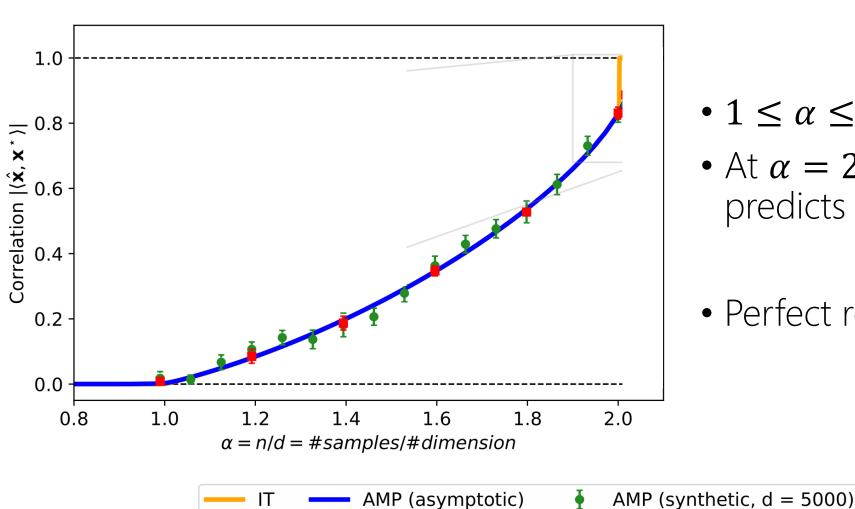


• $\alpha \leq 1$: no information on solution

AMP (image)

- Estimate is as good as random
- Weak recovery threshold: $lpha_{
 m WR}=1$

Perfect recovery

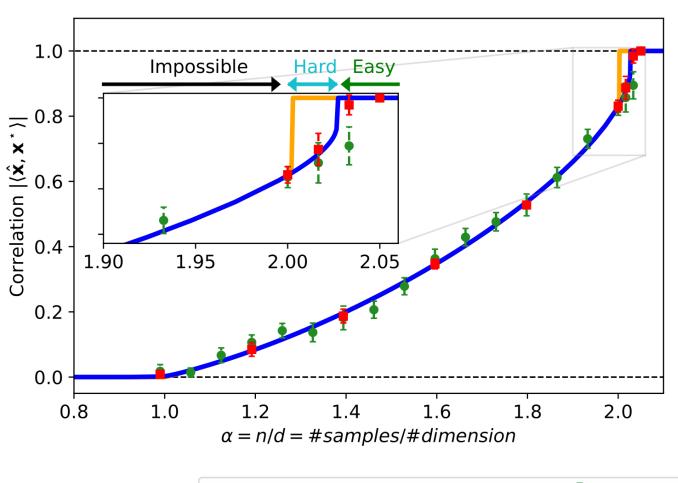


• $1 \le \alpha \le 2$: Performance improves

AMP (image)

- At $\alpha = 2$, information theory predicts perfect recovery
- Perfect recovery threshold: $\alpha_{PR} = 2$

In practice



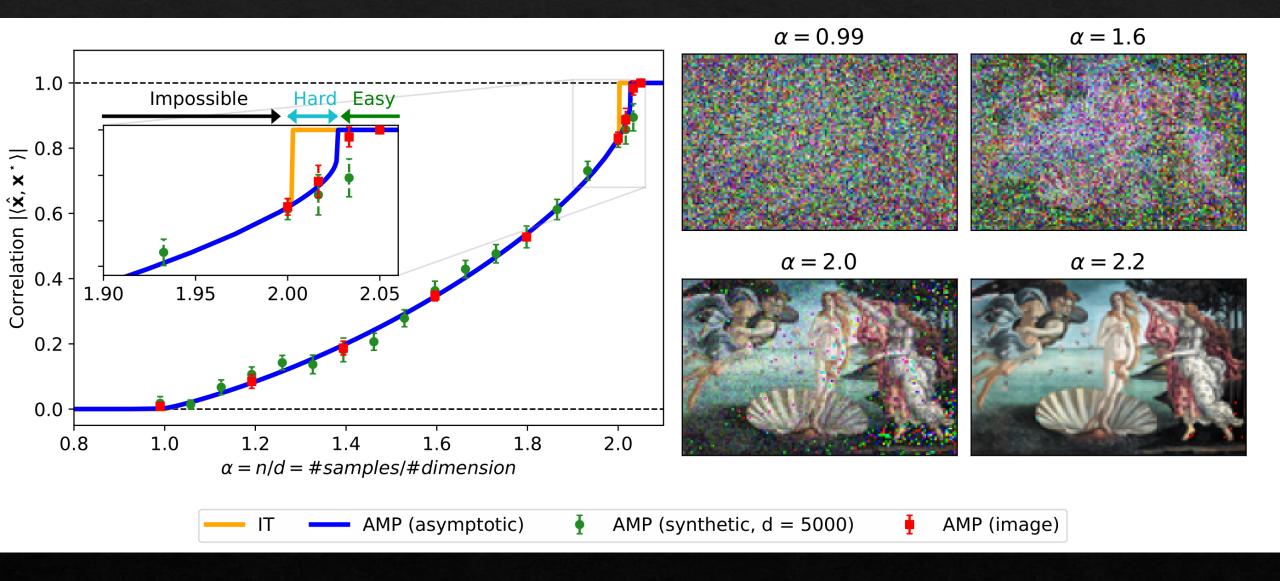
ΙT

• In practice, best algorithmic threshold:

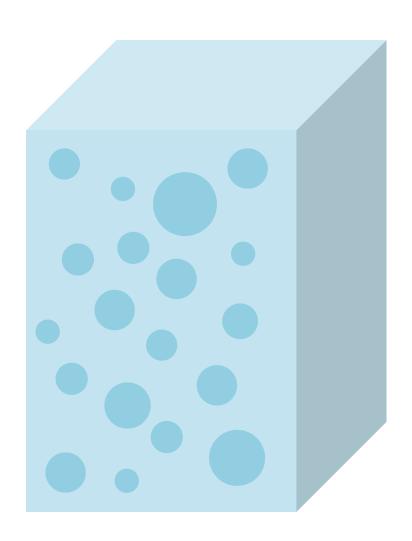
$$\alpha \approx 2.03$$

- Achieved with AMP
 - Approximate Message Passing
 - Bayesian algorithm

Example



And in practice?



How to get a random matrix in optics?

Thanks to multiple scattering

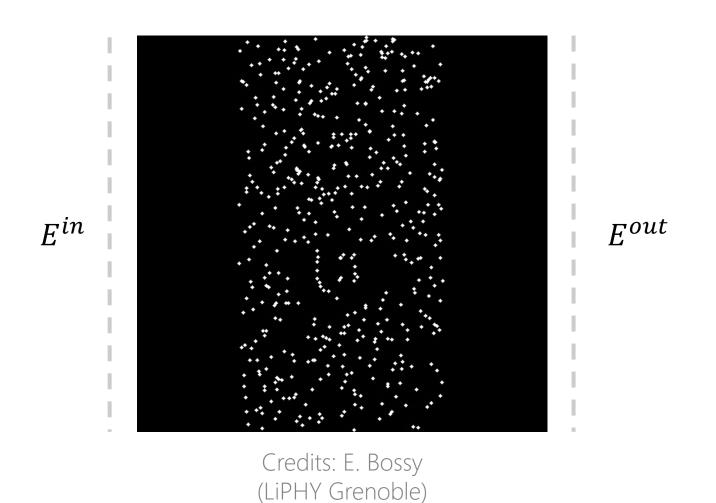
Examples

Fog

White paint

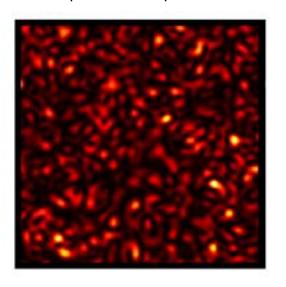
Biological tissue

Light scattering



Random interference

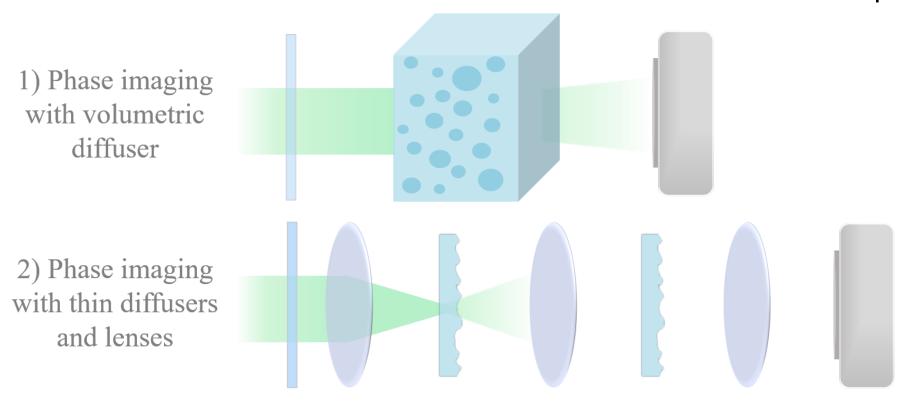
→ speckle pattern



Still linear! $E^{out} = AE^{in}$

(assuming monochromatic coherent light)

Structured-random example



Lens = Fourier transform

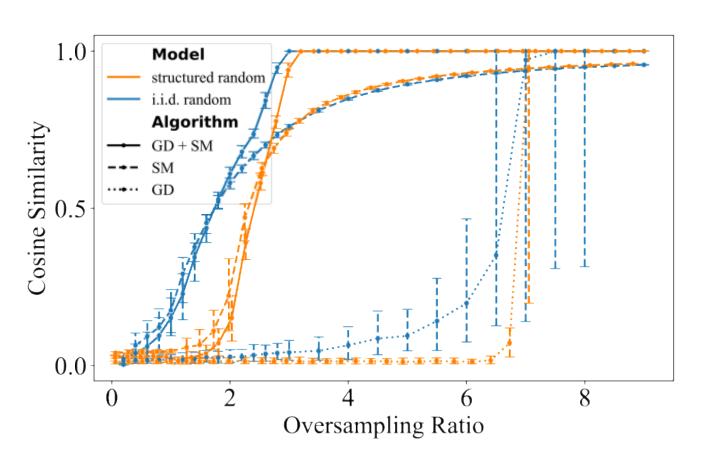
Diffuser = Multiplication by diagonal matrix

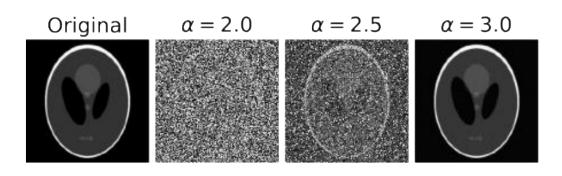
Final operator: $A = FD_1FD_2F$

Structured-random models

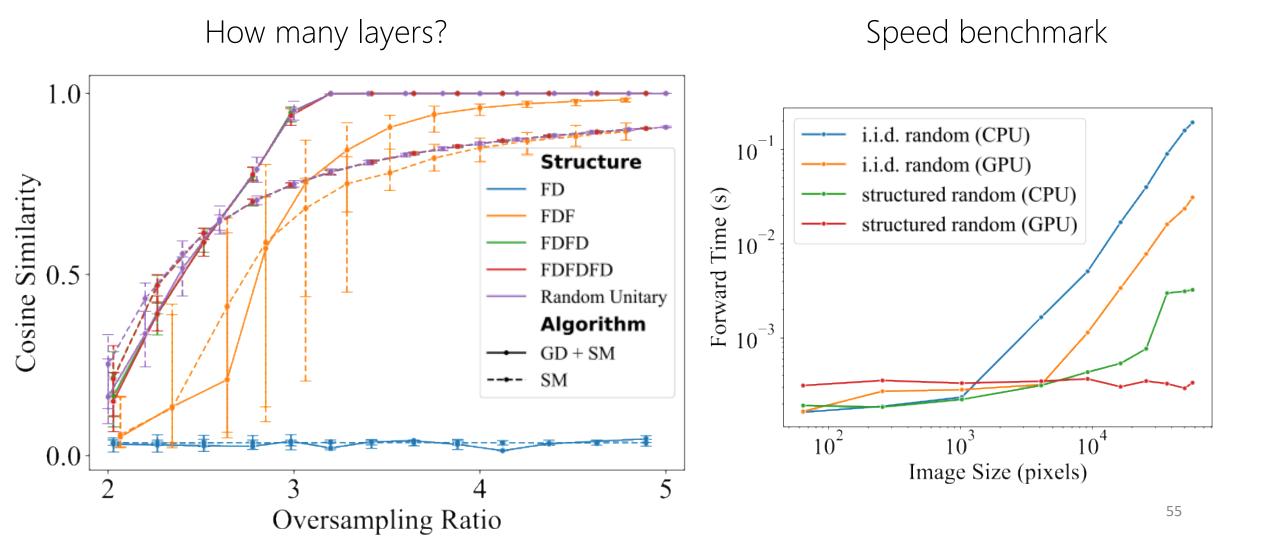
Name	Model	Computational complexity	Storage complexity	Compatible with spectral methods	Compatible with AMP
Random model	$A_{ij} \sim p(a)$ i.i.d.	$O(n^2)$	$O(n^2)$	Yes	Yes
Pseudo-random models (3)	$A = FD_1FD_2FD_3F'$ with D_k random diagonal and F' upsampled Fourier	$O(n \log n)$	O(n)	Yes?	Yes?
Pseudo-random models (2)	$A = FD_1FD_2F'$ with D_k random diagonal and F' upsampled Fourier	$O(n \log n)$	O(n)	Yes?	Yes?
Pseudo-random models (1)	$A = FD_1F'$ with D_k random diagonal and F' upsampled Fourier	$O(n \log n)$	O(n)	?	?
Random Coded Diffractive Imaging	Concatenation of $A_l = FD_l$ with D_l random diagonal	$O(n \log n)$	O(n)	?	No?
Random Probe Ptychography	Concatenation of $A_l = FD_l$ with D_l shifted probe vector	$O(n \log n)$	O(n)	?	No?

Reconstruction results for FDFD



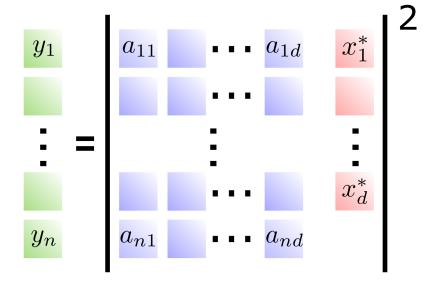


Additional results



Content

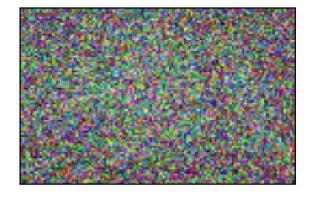
Find
$$x^*$$
 in $y = |Ax^*|^2$



- General inverse problem framework
- Phase retrieval (PR) applications
- PR algorithms
- PR theory: random model
- Machine learning

Regularization

Add information about typical solutions to help reconstruction



Regularization

• Non-linear optimization formulation:

 $\mathcal{L}(x,y)$

Data-consistency term

Regularization

Add a regularization term:

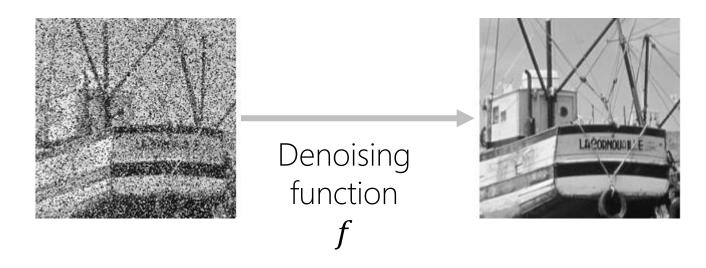
$$\mathcal{L}(x,y) + \mathcal{R}(x)$$

Promotes realistic images

- Sparsity $\mathcal{R}(x) = ||x||_1$
- Total variation $\mathcal{R}(x) = \|\nabla x\|_1$

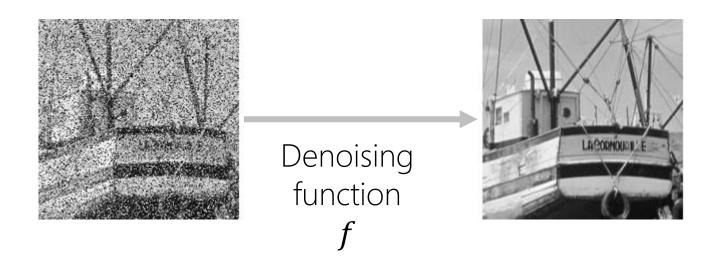
• Step 1: Train a neural network f for denoising

Learn what is a realistic image

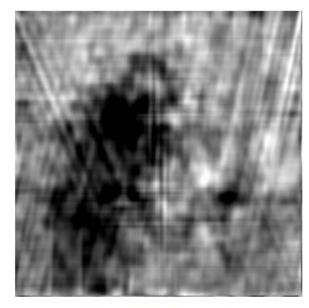


- Step 1: Train a neural network f for denoising
- Step 2: Regularization by denoising (RED) $\mathcal{R}(x) = x(x f(x))$

Plug in a deep learning denoiser



Phase retrieval reconstruction from noisy oversampled Fourier measurements



(b) WF (63 sec)

Without regularization

(d) SPAR (294 sec)

Classical regularization

(h) prDeep (345 sec)

Deep learning regularization

Favor realistic images

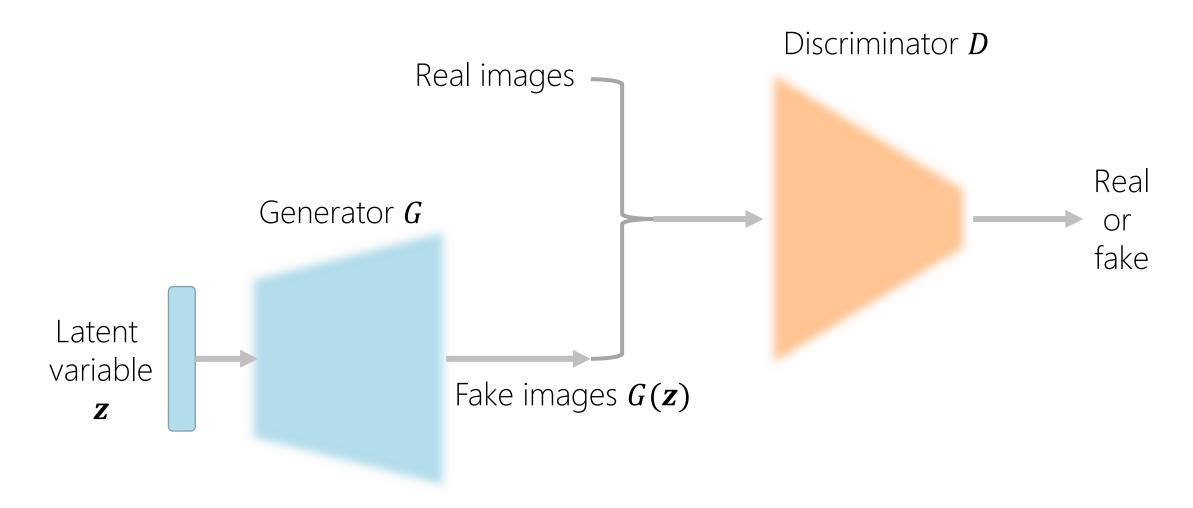
Restrict the search space

Regularization by denoising Metzler, Schniter, Veeraraghavan, Baraniuk (2018). *ICML*

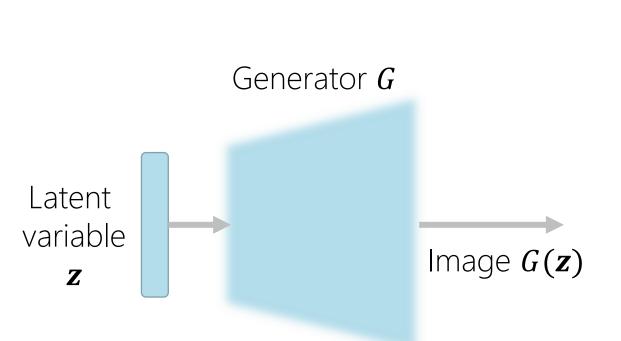
Plug-and-play priors Chang, Bian, Zhang (2021). *eLight* Generative models
Hand, Leong, Voroninski (2018). NeurIPS

Deep Image Prior
Wang et al (2021). Light: Science & Applications

Generative adversarial networks

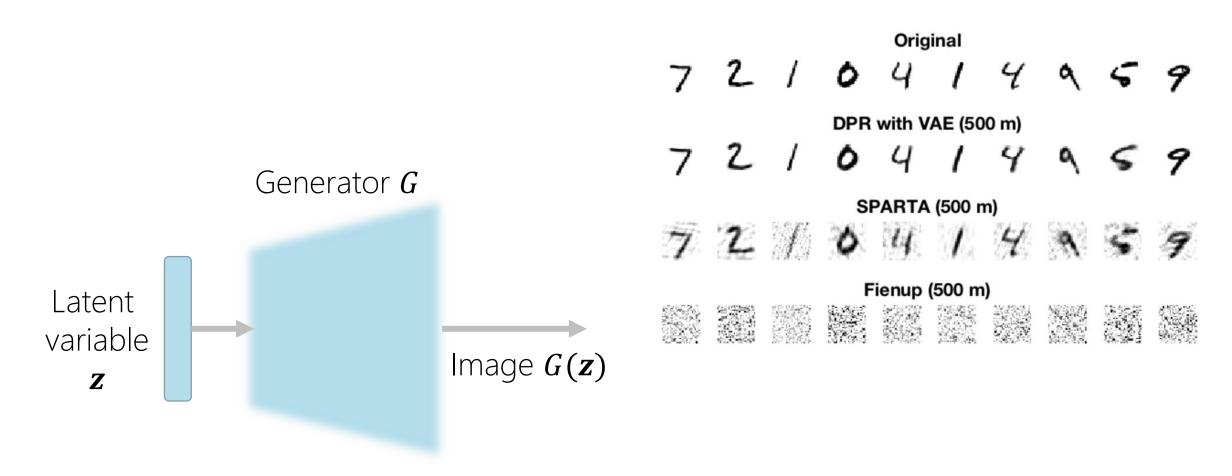


Generative adversarial networks



- The generator has learned the distribution of images
- Restrict the search space to the generator output
- \Rightarrow Gradient descent on z directly

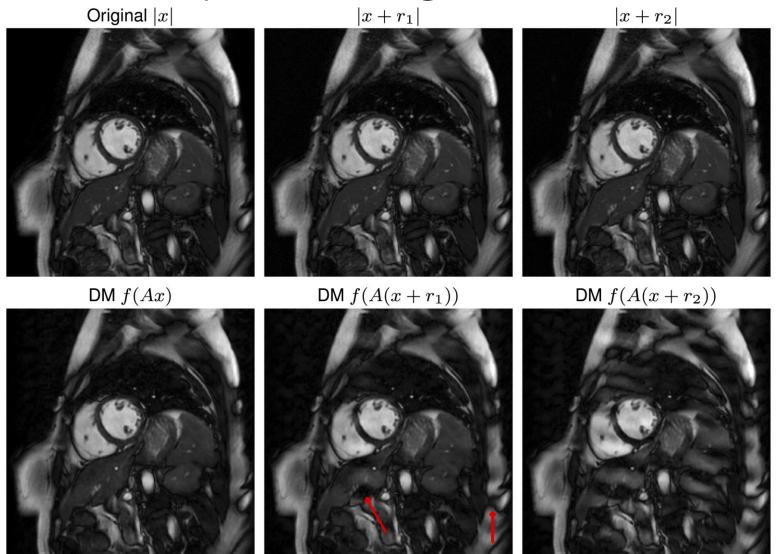
Generative adversarial networks



Limits of deep learning

Original phantom

Deep learning reconstruction



Limits of deep learning

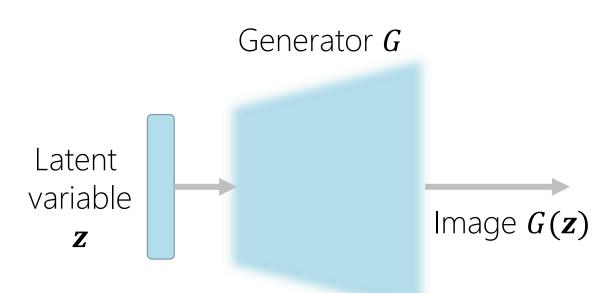
Unstable, sensitive to perturbations

Erase outliers (e.g., tumors)

Sensitive to acquisition parameters (noise, sampling)

Often returns a realistic image

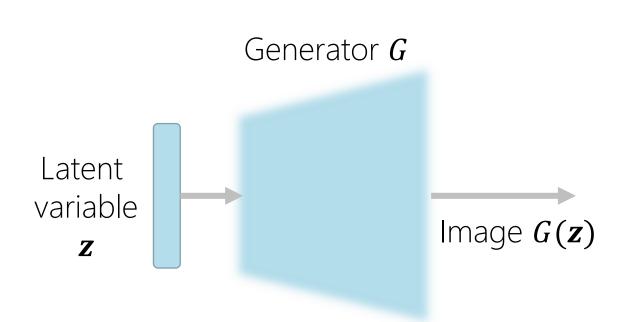
Bayesian GAN



- The generator has learned the distribution of images
- Restrict the search space to the generator output

 \Rightarrow Gradient descent on z directly (point estimate)

Bayesian GAN



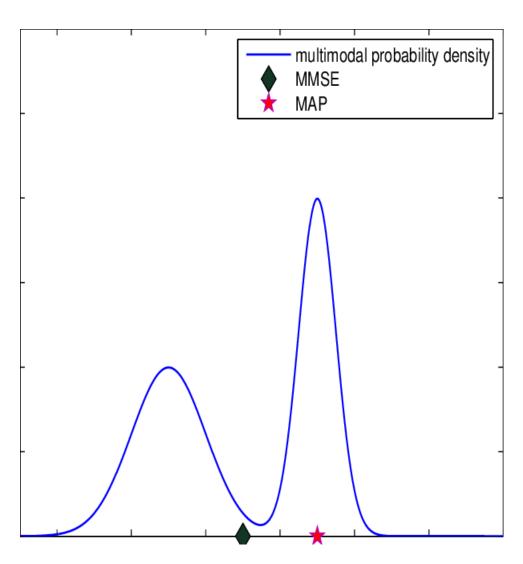
- The generator has learned the distribution of images
- Restrict the search space to the generator output

⇒ Gradient descent on z directly (point estimate)

Sampling from the posterior distribution

Markov-Chain Monte-Carlo on z

Bayesian GAN



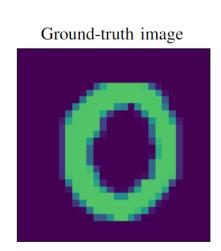
- The generator has learned the distribution of images
- Restrict the search space to the generator output

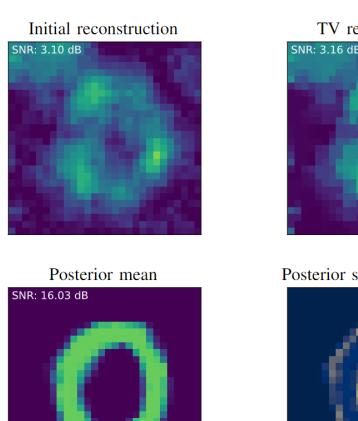
⇒ Gradient descent on z directly (point estimate)

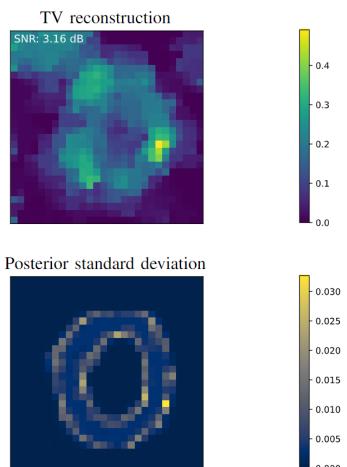
Sampling from the posterior distribution

Markov-Chain Monte-Carlo on z

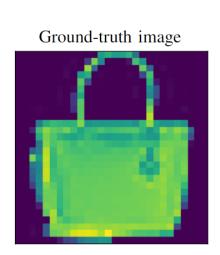
Bayesian GAN results

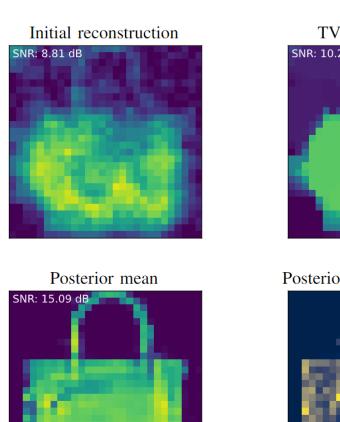


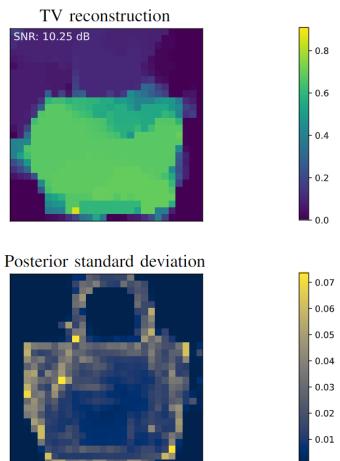




Bayesian GAN results

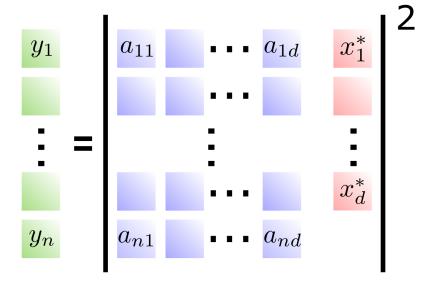






Content

Find
$$x^*$$
 in $y = |Ax^*|^2$



- General inverse problem framework
- Phase retrieval (PR) applications
- PR algorithms
- PR theory: random model
- Machine learning

Conclusion

$$y = |Ax^*|^2$$

Rich history of phase retrieval

- From Fourier phase retrieval
- To computational imaging

Advancing fast

- Many algorithmic improvements
- Powerful algorithms for random setting

An interdisciplinary topic

- Many applications (astronomy, biomedical, etc.)
- Deep learning regularization

