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Phase imaging
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Optical phase imaging

Holography Zernike phase microscope* ‘Fourier ptychography Computational
(Interference with a \‘ | imaging
reference) (phase retrieval
reconstrustion)
4 Phase plate ﬂl 4
Digital holographig microscopy m Plychopmaphy
Reference
Wavefront Shack-Hartmann*
sensing |
(based on
displacements)
Microlens
y array 4
With a thin diffuser*




=P7L The Biomedical Imaging Group (BIG)

Image reconstruction Image analysis S ‘
Advanced algorithms Digital histopathology b 0;});
Michael Unser Machine learning for imaging Localization microscopy

Collaboration with imaging groups Tools for biologists / doctors Daniel Sage



Phase retrieval

Find x* in
y = |Ax*|*



Phase retrieval

Find x* in
y = |Ax*|*
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Imaging as an inverse problem

Physical model of interaction between incoming wave and object
Diversity - Can be used to encode more information, e.g. rotation, scanning, energy
r (dimensionality) can be 2D, 3D, time, spectra

O (contrast) matter-wave interaction can be a scalar, vector, tensor
Captures local anisotropy

M (modulation and measurement) images, diffraction, fluorescence, photo-electrons

M
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Inverse problem framework

Find x* in
y = A{x"}

* X" Image to recover, parameters to estimate
* A: physical model
°* y: measurements



Inverse problem framework

Find x* in
y = A{x"}

« Optimization approach:
X = argmin, [(y, x)
« We often split the loss L into I(y,x) = f(y,x) + g(x):
- Data fidelity, e.g. L2: f(y,x) = ||y — A{x}|5
 Regularization, e.g. LT: g(x) = ||x||;



Linear systems

Find x™ in
y = Ax”
with a linear operator A

e If A is invertible, £ = ATy

* I A is not invertible, add prior on x:
 Sparsity with LT: g(x) = ||x]|4
e Total variation: g(x) = ||Vx|l;
 Deep learning regularization
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* General inverse problem framework
* Phase retrieval (PR) applications

« PR algorithms

* PR theory: random model

« Machine learning



Find x* in
y = |Ax*|?

Phase retrieval

unknown : .
object Imaging system measurements
€ Cd = (CTle = Rn

Intensity
measurement
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Amplitude

Phase retrieval applications

20pm

Quantitative Phase Imaging  ppase

unknown : :
\ measurements
object Imaging system e
x* A y = |Ax*|?
Label-free —
d nxd n BT ra
€eC €C eR L ess invasive l L
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Observations over several days

Fast

Tian, Waller (2015). Optics Express Videos of samples v



Phase retrieval applications

Quantitative Phase Imaging

9—@
unknown M M - DHM® -
: imaging system  measurements lyncée tec
object NINOLIVE
x* A y — |Ax* |2 Looking inside life
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Disclaimer: They mainly use holographic
approaches for 3D measurements 1

4 F Tomocube



Phase retrieval

Find x* in Non-linear equation
* | 2
y = |4x7|
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Phase retrieval and machine learning

Find x* in
y = |Ax*|?

2
ail Aid Ty




Machine learning

Single-layer neural network

S
S

Deep neural network

UUUUUU
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Machine learning

Single-laver neural network .
9 y Phase retrieval =

Training a 1-layer neural network
When is it solvable?
What algorithm to use?

s the solution unigue?




Object

Fourier in optics

Output field
E°%t = Fx

Far-field propagation
Fourier transform F
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Object

Fourier transform
F

Fourier in optics

Output field
E°%t = Fx
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Fourier in optics

* Applications

Object Output * Crystallography
Y EOUt — Fy  Adaptive optics
y = |Fx|? * PSF engineering

« Complex media imaging
* Non-line of sight imaging

Fourier transform
F

21

Fienup (1982). Applied Optics



Object

[lumination
probe
D

Coded-illumination: ptychography

Output field
E°Y“t = FDx
O
S’
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Object

[lumination
probe
D,

Coded-illumination: ptychography

Output field
E0" = FD;x
O
S’
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Coded-illumination: ptychography

Object
X Output field

E" = FDx
b A an
o L)

25}

~ with 4, = FD,

F
F
F

llumination
probe
D,
Miao, Charalambous, Kirz, Sayre (1999). Nature
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Coded-illumination experiments

Ptychography Fourier Ptychography Coded Diffraction Imaging

N :

W

| L , o Arbitrary pattern
Shifted illumination Tilted illumination (Spatial Light Modulator

25

Zheng, Horstmeyer, Yang (2013). Nature Photonics mask, grating)



Coded detection

 Applications:
* Astronomy
» Non-invasive bioimaging

= Modulate on the detection side

* Model Al = FDlFH
with defocus phase in Fourier space

D, = Diag (eizl‘/l__“z)

26

Paxman, Schulz, Fienup (1992). JOSA A



The random model

e Ais ani.i.d. random matrix

) Y1 a1l
+ay ~ N (0,7)
 Canonical setting for theory .

* Applications:
» Compressed sensing Yn (n1
* Imaging in complex media

Mondelli, Montanari (2019). Foundations of Computational Mathematics



Unitying framework y = |4x|?

Fourier phase Coded Coded Random
retrieval illumination detection
A=F A; = FD; A; = FD,FH B naficom
projections
by a lens imaging phase diversity BE-
system i i Ri--R

BE B
9

code - 6 -

E e e E R
\ computer-generated by propagation
through

: holography
Fourier :
complex media
by free-space ptycho- ptycho-  random : P
propagation graphy graphy code

o R[]
ll — \3§ LU
ATy OOm
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Dong, Valzania, Maillard, Pham, Gigan, Unser (2023). IEEE Signal Processing Magazine
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From previous lecture

Projection-based algorithms

Vi1 = WYn+ Le[211o0(¥Yh) — V] — LHo(Wh)

Use projections to find intersection
between sets of constraints

Explore solution space and escapes
local minima

- Data fidelity (to match the measurements)

=~ QObject constraints (known support, positivity)

30



Gradient descent

Find x* in  Optimization approach:
y = Ax* |2 X = argmin, f(y,x) + g(x)
* Gradient descent to solve non-linear
optimization problem

* Includes regularization
» Many variants / acceleration strategies

* Lacks theoretical guarantees (in general)

31



Convex relaxation

« Example: Phaselift (Candes "11)
e Trick:
Yi = |a{’x|2
= (afx)(x"a;)

= af Xa; with X = xxH



Convex relaxation

« Example: Phaselift (Candes "11)

e Trick:
y; = ai’Xa; with X = xxH

* Optimization:
- . H 2
X = argminy rank 1 zuyi — 4 Xal'”
l



Convex relaxation

« Example: Phaselift (Candes "11)

e Trick:
y; = ai’Xa; with X = xxH

« Optimization with convex relaxation:
X = argminy Zuyi — af’XaiHZ + ATr(X)
i

 Can avoid local minima
* Memory intensive (quadratic vs linear)

See also PhaseCut, Phasemay, etc.
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Spectral methods

i 2
* Intuition based on y; = |al x|

a; and x a; and x
correlated uncorrelated
= high intensity y; = low intensity y;



Spectral methods

o 2
* Intuition based on y; = |al x|
Spectral method

“Construct a matrix giving more weight to
a; correlated with the unknown x"

Returns the leading eigenvector
of the weighted covariance matrix:

a; and x a; and x Z= Zyi“ialiq
correlated uncorrelated ‘
= high intensity y; = low intensity y;



Spectral methods

" 2
* Intuition based on y; = |al x|

a; and x
correlated
= high intensity y;

a; and x
uncorrelated
= low intensity y;

Spectral method

“Construct a matrix giving more welight to

a; correlated with the unknown x"

Returns the leading eigenvector
of the weighted covariance matrix:

Z = ZT(Yi)SiSZr
i

for T an increasing preprocessing
function



Spectral methods

. " | o Ha]?
Intuition based on y; ‘az X ‘ Spectral method

“Construct a matrix giving more welight to

a; correlated with the unknown x"

E. Candes, et dl,
IEEE Trans. on - .
To(y) =y Information Theory Returns the leading eigenvector

2015 . . .
- of the weighted covariance matrix:

S. Marchesini, et al,

f]"l(y) — (y > T) Applied and Comput. 7 — z T(yi)sis;'l-
i

Harmonic Analysis
(2076)

W, Luo, et al, [EEE Trans. for T an increasing preprocessing

T .. =1 —-— on Signal Processing function
optim ) y 2079)
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Algorithm taxonomy

Alternating Gradient-based Convex Bayesian Spectral
projections optimization relaxation AMP methods



Algorithms comparison

Name

Computational

speed

Performance

Designed for the
random setting

Alternating projections
Gradient-based optimization
Convex relaxation
Approximate Message Passing

Spectral methods

Kk

*kk

8 06
KXW

Kk

KX
KON
8 0
*kk
8 0

Yes

Yes
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Unitying framework y = |4x|?

Fourier phase Coded Coded Random
retrieval illumination detection
A=F A; = FD; A; = FD,FH B naficom
projections
by a lens imaging phase diversity BE-
system i i Ri--R

BE B
9

code - 6 -

E e e E R
\ computer-generated by propagation
through

: holography
Fourier :
complex media
by free-space ptycho- ptycho-  random : P
propagation graphy graphy code
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Dong, Valzania, Maillard, Pham, Gigan, Unser (2023). IEEE Signal Processing Magazine



Deeper dive in the random setting

Dong, Valzania, Maillard, Pham, Gigan, Unser (2023). IEEE Signal Processing Magazine

Random

by random
projections

R

BE B
LL

by propagation

through
complex media
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Theory break

1.01
_0s8- « Can we characterize
x performance as a function of
<x .

0.61 oversampling a = n/d?

Correlation [{
o
N

« Correlation = higher is better

©
N

©
o
1

1.0 1.2 1.4 1.6 1.8 2.0
a = n/d = #samples/#dimension

©
o)



Weak recovery

1.0t
_ 08| * ¢ < 1: no information on solution
2. » Estimate is as good as random

« Weak recovery threshold:

Correlation [{
o
N

0.2 aAWwWR = 1
0. () ——
0.8 1.0 1.2 1.4 1.6 1.8 2.0
a = n/d = #samples/#dimension
IT = AMP (asymptotic) ¢ AMP (synthetic, d = 5000) ¥ AMP (image)

Dong, Valzania, Maillard, Pham, Gigan, Unser (2023). IEEE Signal Processing Magazine



Perfect recovery

=
o

* 1 < a < 2: Performance improves

* At @ = 2, information theory
predicts perfect recovery

X, X" )|
=
(0]
1

©
o
1

Correlation [{
o
N

* Perfect recovery threshold:

©
N

ApRr = 2
0.0 A
0.8 1.0 1.2 1.4 1.6 1.8 2.0
a = n/d = #samples/#dimension
IT = AMP (asymptotic) ¢ AMP (synthetic, d = 5000) ¥ AMP (image)

Dong, Valzania, Maillard, Pham, Gigan, Unser (2023). IEEE Signal Processing Magazine



In practice

=
o
1

* In practice,
best algorithmic threshold:
a ~ 2.03

 Achieved with AMP
* Approximate Message Passing

o©
(00]
1

X, X" )|

©
o
1

Correlation [{
o
N

©
N

* Bayesian algorithm

©
o
1

0.8 1.0 1.2 1.4 1.6 1.8 2.0
a = n/d = #samples/#dimension

IT = AMP (asymptotic) ¢ AMP (synthetic, d = 5000) ¥ AMP (image)

Dong, Valzania, Maillard, Pham, Gigan, Unser (2023). IEEE Signal Processing Magazine



Impossible Hard Easy

: > > ¢
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® 0ad - . -
= 1.90 1.95 2.00 2.05
(@]
QO

©
N
1

©
o
1

0.8
a = n/d = #samples/#dimension

IT = AMP (asymptotic) ¢ AMP (synthetic, d = 5000) ¥ AMP (image)

Dong, Valzania, Maillard, Pham, Gigan, Unser (2023). IEEE Signal Processing Magazine



And in practice?

How to get a random
matrix in optics?

Thanks to multiple
scattering

49



Examples

Biological tissue

50



Light scattering

Random interference
— speckle pattern

Ein Eout

Still linear!
Eout — AEin

Credits: E. Bossy
(LIPHY Grenoble)

Popofi, Lerosey, Carminati, Fink, Boccara, Gigan (2010). Physical Review Letters



Structured-random example

1) Phase imaging
with volumetric
diffuser

2) Phase imaging
with thin diffusers
and lenses

Lens = Fourier transform
Diffuser = Multiplication by diagonal matrix

Final operator: A = FD{FD,F

52



Structured-random models

Computational Storage C.ompatlble Compatible
Name Model complexit complexit with spectral with AMP
P Y P y methods
Random model Ajj ~ p(a)iid. 0(n?) 0(n?) Yes Yes
Pecudoorand A = FD,FD,FD,F’
>ed C? i"an?’ om with D;, random diagonal 0] (TL lOg Tl) 0 (n) Yes? Yes?
models ( ) and F' upsampled Fourier
Pscudoorand A = FD,FD,F'
>ed Ccl) i‘anz o with D;, random diagonal 0] (TL lOg Tl) 0 (?’1) Yes? Yes?
LL0LD0 1 ( ) and F' upsampled Fourier
Pscudoorand A =FD,F
>ed :1) i‘al’ll om with D;, random diagonal 0 (TL lOg Tl) 0 (n) ? ?
models ( ) and F' upsampled Fourier
Random Coded Concatenation of
Diffractive A; = FD, O(nlogn) 0(n) ? No?
Imaging with D; random diagonal
Concatenation of
Random Probe A, = FD, 0(nlogn) 0(n) 9 No?

Ptychography

with D, shifted probe vector




Reconstruction results for FDEFD

= LLd. random
Algorithm
—— GD+5M

1.01 Model }« * 1 i’.mf prsme———
: et e g
—— structured random 1/7L e S TS 3

Original

Cosine Similarity
S
Lhn

"
——————"......-‘l_——————————————
L
Swa

'———‘--i‘T‘-—-——-—-—l

T Sl
1 . II
1 :
oot LT
T | 1 .-t :
— |
T . Jet T 0 E
e R e T T T o

0.0

0 2 4 6 8
Oversampling Ratio
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Hu, Tachella, Unser, Dong (2024). submitted



Additional results

How many layers? Speed benchmark
].0 1 PSR ————
- e e 0 —— 1.1.d. random (CPU)
Structure | —— iid. random (GPU)
'E, FD 0 | —— structured random (CPU) y
é ]]:EED g _, | —— structured random (GPU) /-”f
= 10 7 .
JE 0.5 FDFDFD % I _ / .
] Random Unitary E : —
= Algorithm 5 3
5 =~ 10 1
S GD + SM | /-
oM e : ——e—
0 0" ; e = e i =~ = e = 1{']2 o 1{']3 - 1{'}4

Image Size (pixels)

Oversampling Ratio ”
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Reqgularization

Add information about typical solutions
to help reconstruction

57



Reqgularization

* Non-linear optimization formulation:
L(x,y)

Data-consistency term

58



Reqgularization

« Add a regularization term:
L(x,y)+ R(x)

Promotes realistic images
» Classical regularization

 Sparsity R(x) = [|x]|;
o Total variation R(x) = ||Vx||;

59

Shechtman, Eldar, Cohen, Chapman, Miao, Segev (2015). IEEE Signal Processing Magazine



Deep learning regularization

e Step 1: Train a neural network f for denoising
Learn what (s a realistic image

Denoising
function

f

Metzler, Schniter, Veeraraghavan, Baraniuk (2018). ICML

60



Deep learning regularization

e Step 1: Train a neural network f for denoising
- Step 2: Regularization by denoising (RED) R(x) = x(x — f(x))
Plug in a aeep learning denoiser

Denoising
function

f

Metzler, Schniter, Veeraraghavan, Baraniuk (2018). ICML

61



Deep learning regularization

Phase retrieval reconstruction
from noisy oversampled Fourier measurements

(b) WF (63 sec) (d) SPAR (294 sec) (h) prDeep (345 sec)

Without Classical Deep learning
regularization regularization regularization

Metzler, Schniter, Veeraraghavan, Baraniuk (2018). ICML o



Deep learning regularization

Favor realistic images

Regularization by denoising
Metzler, Schniter, Veeraraghavan, Baraniuk (2018). /CML

Plug-and-play priors
Chang, Bian, Zhang (2021). eLight

Restrict the search space

Generative models
Hand, Leong, Voroninski (2018). NeurlPS

Deep Image Prior
Wang et al (2021). Light: Science & Applications

63



Generative adversarial networks

Discriminator D

Real images
Real
Generator G or
fake
Latent
variable ,
. Fake images G (2)

Goodfellow et al (2014). NeurlPS



Generative adversarial networks

Generator G

Latent
variable
Z

Hand, Leong, Voroninski (2018). NeurlPS

Image G(2)

* The generator has learned the
distribution of images

* Restrict the search space to the
generator output

= Gradient descent on z directly



Generative adversarial networks

Original
7 L/ 6 4 | 4 A& 2
DPR with VAE (500 m)
7 2/ 6 4 (| 9 84 g 2
SPARTA (500 m)

7 LY YN S S

Fienup (500 m)

Generator G

XY oo o 0 S W ytu e e ) Xord g
e R Ve R S i L T < 1

Latent

variable Ghe MRV ouh ST RS S o gEy ) o
7 Image G(2)

Hand, Leong, Voroninski (2018). NeurlPS o0



Limits of deep learning

Original |z| |z + 71|

Original phantom

Deep learning
reconstruction

67

Antun et al (2020). PNAS



Limits of deep learning

Unstable, sensitive to perturbations
Erase outliers (e.g., tumors)
Sensitive to acquisition parameters (noise, sampling)

Often returns a realistic image



Bayesian GAN

* The generator has learned the
distribution of images

* Restrict the search space to the
generator output

Generator G

= Gradient descent on z directly

oint estimate
Latent (|O )

variable

7 Image G(2)



Bayesian GAN

* The generator has learned the
distribution of images

* Restrict the search space to the
generator output

Generator G

= Gragiept-cescent-on-z-cirectly
o |
Latent : :
variable Sampling from the posterior
z Image G(2) distribution

Markov-Chain Monte-Carlo on z

Bohra, Pham, Dong, Unser (2022). Submitted



Bayesian GAN

mténéodmpmbabmtydensity * The generator has learned the

MAP | distribution of images

* Restrict the search space to the
generator output

= Gradientdescent-on-z-directly
o ! |

Sampling from the posterior
distribution

Markov-Chain Monte-Carlo on z

1 . I * I
Bohra, Pham, Dong, Unser (2022). Submitted
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Bayesian GAN

Ground-truth image

Bohra, Pham, Dong, Unser (2022). Submitted

Initial reconstruction
SNR: 3.10 dB

Posterior mean
SNR: 16.03 dB

results

TV reconstruction
SNR: 3.16 dB

Posterior standard deviation

0.4

0.3

0.2

0.1

0.0

0.030

0.025

0.020

0.015

0.010

0.005

0.000
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Bayesian GAN

Ground-truth image

Bohra, Pham, Dong, Unser (2022). Submitted

Initial reconstruction
SNR: 8.81 dB

Posterior mean
SNR: 15.09 dB

results

TV reconstruction
SNR: 10.25 dB

Posterior standard deviation

0.8

0.6

0.4

0.2

0.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00
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Conclusion

Rich history of phase retrieval

« From Fourier phase retrieval
» Jo computational imaging

Advancing fast

« Many algorithmic improvements
« Powerful algorithms for random setting

An interdisciplinary topic

« Many applications (astronomy,
biomedical, etc.)

* Deep learning regularization

y = |Ax*|?



Thanks for your attention
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