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Phase imaging

2
Tian, Waller (2015). Optics Express

Amplitude Phase



Optical phase imaging
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The Biomedical Imaging Group (BIG)
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Image reconstruction

Advanced algorithms

Machine learning for imaging

Collaboration with imaging groups

Image analysis

Digital histopathology

Localization microscopy

Tools for biologists / doctors
Michael Unser Daniel Sage



Phase retrieval
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Find 𝒙∗ in
𝒚 = 𝑨𝒙∗ 2



Phase retrieval
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Find 𝒙∗ in
𝒚 = 𝑨𝒙∗ 2

And in the 
previous episode…





Inverse problem framework
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• 𝒙∗: image to recover, parameters to estimate

• 𝑨: physical model

• 𝒚: measurements

Find 𝒙∗ in
𝒚 = 𝑨{𝒙∗}



Inverse problem framework
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• Optimization approach:
ො𝑥 = argmin𝑥  𝑙(𝑦, 𝑥)

• We often split the loss 𝑙 into 𝑙 𝑦, 𝑥 = 𝑓 𝑦, 𝑥 + 𝑔(𝑥):
• Data fidelity, e.g. L2: 𝑓 𝑦, 𝑥 = 𝑦 − 𝐴 𝑥 2

2

• Regularization, e.g. L1: 𝑔 𝑥 = 𝑥 1

Find 𝒙∗ in
𝒚 = 𝑨{𝒙∗}



Linear systems
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• If 𝐴 is invertible, ො𝑥 = 𝐴†𝑦

• If 𝐴 is not invertible, add prior on 𝑥:
• Sparsity with L1: 𝑔 𝑥 = 𝑥 1

• Total variation: 𝑔 𝑥 = ∇𝑥 1

• Deep learning regularization

Find 𝒙∗ in
𝒚 = 𝑨𝒙∗

with a linear operator 𝐴



Content
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Find 𝒙∗ in
𝒚 = 𝑨𝒙∗ 2 • General inverse problem framework

• Phase retrieval (PR) applications

• PR algorithms

• PR theory: random model

• Machine learning



Phase retrieval
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Find 𝒙∗ in
𝒚 = 𝑨𝒙∗ 2

Intensity 

measurement

𝒙∗

∈ ℂ𝑑
𝑨

∈ ℂ𝑛×𝑑
𝒚 = 𝑨𝒙∗ 2

∈ ℝ𝑛



Phase retrieval applications
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𝒙∗

∈ ℂ𝑑
𝑨

∈ ℂ𝑛×𝑑
𝒚 = 𝑨𝒙∗ 2

∈ ℝ𝑛

Amplitude

PhaseQuantitative Phase Imaging

Label-free
 Less invasive

No bleaching
 Observations over several days

Fast
 Videos of samples

Tian, Waller (2015). Optics Express



Phase retrieval applications
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𝒙∗

∈ ℂ𝑑
𝑨

∈ ℂ𝑛×𝑑
𝒚 = 𝑨𝒙∗ 2

∈ ℝ𝑛

Quantitative Phase Imaging

Disclaimer: They mainly use holographic 

approaches for 3D measurements



Phase retrieval
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Find 𝒙∗ in
𝒚 = 𝑨𝒙∗ 2

Non-linear equation



Phase retrieval and machine learning
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Find 𝒙∗ in
𝒚 = 𝑨𝒙∗ 2



Machine learning
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Single-layer neural network Deep neural network



Machine learning
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Single-layer neural network
Phase retrieval =

Training a 1-layer neural network

When is it solvable?

What algorithm to use?

Is the solution unique?



Fourier in optics
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Object

𝒙
Output field

𝑬𝑜𝑢𝑡 = 𝑭𝒙

Far-field propagation

Fourier transform 𝑭



Fourier in optics
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Object

𝒙
Output field

𝑬𝑜𝑢𝑡 = 𝑭𝒙

Fourier transform

𝑭



Fourier in optics
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Object

𝒙
Output

𝑬𝑜𝑢𝑡 = 𝑭𝒙
𝒚 = 𝑭𝒙 𝟐

Fourier transform

𝑭

• Applications
• Crystallography

• Adaptive optics

• PSF engineering

• Complex media imaging

• Non-line of sight imaging

Fienup (1982). Applied Optics



Coded-illumination: ptychography
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Output field

𝑬𝑜𝑢𝑡 = 𝑭𝑫𝒙

Object

𝒙

Illumination

probe

𝑫



Coded-illumination: ptychography
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Object

𝒙 Output field

𝑬𝑙
𝑜𝑢𝑡 = 𝑭𝑫𝒍𝒙

Illumination

probe

𝑫𝒍



Coded-illumination: ptychography
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Output field

𝑬𝑙
𝑜𝑢𝑡 = 𝑭𝑫𝒍𝒙

Object

𝒙

Illumination

probe

𝑫𝒍

𝒚 =
𝑨1

⋮
𝑨𝐿

𝒙

2

with 𝑨𝑙 = 𝑭𝑫𝑙

𝐹

𝐹

𝐹

Miao, Charalambous, Kirz, Sayre (1999). Nature



Coded-illumination experiments
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Ptychography Fourier Ptychography Coded Diffraction Imaging

Shifted illumination Tilted illumination
Arbitrary pattern

(Spatial Light Modulator, 

mask, grating)Zheng, Horstmeyer, Yang (2013). Nature Photonics



Coded detection

• Applications:
• Astronomy

• Non-invasive bioimaging

⇒ Modulate on the detection side

• Model 𝑨𝑙 = 𝑭𝑫𝑙𝑭𝐻

with defocus phase in Fourier space

𝑫𝑙 = Diag 𝑒𝑖𝑧𝑙 1−𝒖2

26
Paxman, Schulz, Fienup (1992). JOSA A



The random model

• 𝐴 is an i.i.d. random matrix

• 𝑎𝑖𝑗 ∼ 𝒩 0,
1

𝑑

• Canonical setting for theory

• Applications:
• Compressed sensing

• Imaging in complex media

27
Mondelli, Montanari (2019). Foundations of Computational Mathematics



Unifying framework

28
Dong, Valzania, Maillard, Pham, Gigan, Unser (2023). IEEE Signal Processing Magazine

𝒚 = 𝑨𝒙 2
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Find 𝒙∗ in
𝒚 = 𝑨𝒙∗ 2 • General inverse problem framework

• Phase retrieval (PR) applications

• PR algorithms

• PR theory: random model

• Machine learning



Projection-based algorithms
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From previous lecture

Data fidelity (to match the measurements)

Object constraints (known support, positivity)

Fienup ‘82
Maiden ‘09



Gradient descent
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• Optimization approach:
ො𝑥 = argmin𝑥  𝑓 𝑦, 𝑥 + 𝑔(𝑥)

• Gradient descent to solve non-linear 
optimization problem

Find 𝒙∗ in

𝒚 = 𝑨𝒙∗ 𝟐

• Includes regularization

• Many variants / acceleration strategies

• Lacks theoretical guarantees (in general)
Fienup ’93

Yeh, Dong ’15
Chen ‘18



Convex relaxation

• Example: Phaselift (Candès ‘11)

• Trick: 

𝑦𝑖 = 𝑎𝑖
𝐻𝑥

2

                                                 = 𝑎𝑖
𝐻𝑥 𝑥𝐻𝑎𝑖

                                                 = 𝑎𝑖
𝐻𝑋𝑎𝑖 with 𝑋 = 𝑥𝑥𝐻

32

Candès ‘11
Waldspurger ‘12

Goldstein  ‘16



Convex relaxation

• Example: Phaselift (Candès ‘11)

• Trick: 
                                          𝑦𝑖 = 𝑎𝑖

𝐻𝑋𝑎𝑖 with 𝑋 = 𝑥𝑥𝐻

• Optimization:

෠𝑋 = argmin𝑋 rank 1 ෍

𝑖

𝑦𝑖 − 𝑎𝑖
𝐻𝑋𝑎𝑖

2

33

Candès ‘11
Waldspurger ‘12

Goldstein  ‘16



Convex relaxation

• Example: Phaselift (Candès ‘11)

• Trick: 
                                          𝑦𝑖 = 𝑎𝑖

𝐻𝑋𝑎𝑖 with 𝑋 = 𝑥𝑥𝐻

• Optimization with convex relaxation:

෠𝑋 = argmin𝑋 ෍

𝑖

𝑦𝑖 − 𝑎𝑖
𝐻𝑋𝑎𝑖

2
+ 𝜆Tr(𝑋)

34

Candès ‘11
Waldspurger ‘12

Goldstein  ‘16

• Can avoid local minima

• Memory intensive (quadratic vs linear)

See also PhaseCut, Phasemax, etc.



Spectral methods
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• Intuition based on 𝑦𝑖 = 𝑎𝑖
𝐻𝑥

2

Unknown

𝒙

Known

𝒂𝒊 Unknown

𝒙

Known

𝒂𝒊

𝒂𝑖 and 𝒙
correlated 

⇒ high intensity 𝑦𝑖

𝒂𝑖 and 𝒙
uncorrelated 

⇒ low intensity 𝑦𝑖



Spectral methods
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• Intuition based on 𝑦𝑖 = 𝑎𝑖
𝐻𝑥

2

Unknown

𝒙

Known

𝒂𝒊 Unknown

𝒙

Known

𝒂𝒊

𝒂𝑖 and 𝒙
correlated 

⇒ high intensity 𝑦𝑖

𝒂𝑖 and 𝒙
uncorrelated 

⇒ low intensity 𝑦𝑖

Spectral method

“Construct a matrix giving more weight to 

𝑎𝑖 correlated with the unknown 𝑥”

Returns the leading eigenvector

of the weighted covariance matrix: 

𝒁 = ෍

𝑖

𝑦𝑖𝒂𝒊𝒂𝒊
𝐻



Spectral methods
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• Intuition based on 𝑦𝑖 = 𝑎𝑖
𝐻𝑥

2

Unknown

𝒙

Known

𝒂𝒊 Unknown

𝒙

Known

𝒂𝒊

𝒂𝑖 and 𝒙
correlated 

⇒ high intensity 𝑦𝑖

𝒂𝑖 and 𝒙
uncorrelated 

⇒ low intensity 𝑦𝑖

Spectral method

“Construct a matrix giving more weight to 

𝑎𝑖 correlated with the unknown 𝑥”

Returns the leading eigenvector

of the weighted covariance matrix: 

𝒁 = ෍

𝑖

𝒯 𝑦𝑖 𝒔𝒊𝒔𝒊
†

for 𝒯 an increasing preprocessing 

function



Spectral methods
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• Intuition based on 𝑦𝑖 = 𝑎𝑖
𝐻𝑥

2

Spectral method

“Construct a matrix giving more weight to 

𝑎𝑖 correlated with the unknown 𝑥”

Returns the leading eigenvector

of the weighted covariance matrix: 

𝒁 = ෍

𝑖

𝒯 𝑦𝑖 𝒔𝒊𝒔𝒊
†

for 𝒯 an increasing preprocessing 

function

𝒯0(𝑦) = 𝑦

𝒯1(𝑦) = (𝑦 > 𝑇)

E. Candes, et al, 

IEEE Trans. on 

Information Theory 
(2015)

𝒯optim(𝑦) = 1 −
1

𝑦

W. Luo, et al, IEEE Trans. 

on Signal Processing 

(2019)

S. Marchesini, et al, 

Applied and Comput. 

Harmonic Analysis 
(2016)
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Algorithm taxonomy

Alternating 
projections

Gradient-based 
optimization

Convex 
relaxation

Bayesian 
AMP

Spectral 
methods

Fienup ‘82
Maiden ‘09

Fienup ’93
Yeh, Dong ’15

Chen ‘18

Candès ‘11
Waldspurger ‘12

Goldstein  ‘16

Rangan ’10
Metzler ‘17
Barbier ‘17
Maillard ‘20

Candès ‘15
Lu ‘17

Mondelli ‘18
Luo ‘18



Algorithms comparison
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Find 𝒙∗ in
𝒚 = 𝑨𝒙∗ 2 • General inverse problem framework

• Phase retrieval (PR) applications

• PR algorithms

• PR theory: random model

• Machine learning



Unifying framework

42
Dong, Valzania, Maillard, Pham, Gigan, Unser (2023). IEEE Signal Processing Magazine

𝒚 = 𝑨𝒙 2



Deeper dive in the random setting

43
Dong, Valzania, Maillard, Pham, Gigan, Unser (2023). IEEE Signal Processing Magazine



Theory break
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• Can we characterize 
performance as a function of 
oversampling 𝛼 = 𝑛/𝑑?

• Correlation = higher is better
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• 𝛼 ≤ 1: no information on solution

• Estimate is as good as random

• Weak recovery threshold:
𝛼WR = 1

Weak recovery

Dong, Valzania, Maillard, Pham, Gigan, Unser (2023). IEEE Signal Processing Magazine
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• 1 ≤ 𝛼 ≤ 2: Performance improves

• At 𝛼 = 2, information theory 
predicts perfect recovery

• Perfect recovery threshold:
𝛼PR = 2

Perfect recovery

Dong, Valzania, Maillard, Pham, Gigan, Unser (2023). IEEE Signal Processing Magazine
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• In practice, 
best algorithmic threshold:

𝛼 ≈ 2.03

• Achieved with AMP

• Approximate Message Passing

• Bayesian algorithm

In practice

Dong, Valzania, Maillard, Pham, Gigan, Unser (2023). IEEE Signal Processing Magazine
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Example

Dong, Valzania, Maillard, Pham, Gigan, Unser (2023). IEEE Signal Processing Magazine



And in practice?
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How to get a random 

matrix in optics?

Thanks to multiple 

scattering



Fog

White paint

Biological tissue

Examples

50



Light scattering
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𝐸𝑖𝑛 𝐸𝑜𝑢𝑡

Random interference

→ speckle pattern

Still linear!

𝐸𝑜𝑢𝑡 = 𝐴𝐸𝑖𝑛

(assuming monochromatic coherent light)

Popoff, Lerosey, Carminati, Fink, Boccara, Gigan (2010). Physical Review Letters

Credits: E. Bossy 

(LiPHY Grenoble)



Structured-random example
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Lens = Fourier transform

Diffuser = Multiplication by diagonal matrix

Final operator: 𝐴 = 𝐹𝐷1𝐹𝐷2𝐹



Structured-random models

53



Reconstruction results for 𝐹𝐷𝐹𝐷

54
Hu, Tachella, Unser, Dong (2024). submitted



Additional results
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Speed benchmarkHow many layers?
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Find 𝒙∗ in
𝒚 = 𝑨𝒙∗ 2 • General inverse problem framework

• Phase retrieval (PR) applications

• PR algorithms

• PR theory: random model

• Machine learning



Regularization
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Add information about typical solutions 
to help reconstruction



Regularization

• Non-linear optimization formulation:
ℒ 𝒙, 𝒚

58

Data-consistency term



Regularization

• Add a regularization term:
ℒ 𝒙, 𝒚 + ℛ(𝒙)

• Classical regularization
• Sparsity ℛ 𝒙 = 𝒙 1

• Total variation ℛ 𝒙 = 𝛁𝒙 1

Promotes realistic images

59
Shechtman, Eldar, Cohen, Chapman, Miao, Segev (2015). IEEE Signal Processing Magazine



Deep learning regularization

• Step 1: Train a neural network 𝑓 for denoising

  Learn what is a realistic image

Denoising

function

𝑓

60
Metzler, Schniter, Veeraraghavan, Baraniuk (2018). ICML



Deep learning regularization

• Step 1: Train a neural network 𝑓 for denoising

• Step 2: Regularization by denoising (RED) ℛ 𝒙 = 𝒙 𝒙 − 𝑓 𝒙

  Plug in a deep learning denoiser

Denoising

function

𝑓

61
Metzler, Schniter, Veeraraghavan, Baraniuk (2018). ICML



Deep learning regularization

62
Metzler, Schniter, Veeraraghavan, Baraniuk (2018). ICML

Without 
regularization

Classical 
regularization

Deep learning 
regularization

Phase retrieval reconstruction 
from noisy oversampled Fourier measurements



Deep learning regularization
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Favor realistic images Restrict the search space

Regularization by denoising
Metzler, Schniter, Veeraraghavan, Baraniuk (2018). ICML

Plug-and-play priors
Chang, Bian, Zhang (2021). eLight

Generative models
Hand, Leong, Voroninski (2018). NeurIPS

Deep Image Prior
Wang et al (2021). Light: Science & Applications



Generative adversarial networks

Real images

Generator 𝐺

Fake images 𝐺(𝒛)

Latent 

variable

𝒛

Discriminator 𝐷

Real

or 

fake

64
Goodfellow et al (2014). NeurIPS



Generative adversarial networks

Generator 𝐺

Latent 

variable

𝒛

65

• The generator has learned the 
distribution of images

• Restrict the search space to the 
generator output

⇒ Gradient descent on 𝒛 directly
Image 𝐺(𝒛)

Hand, Leong, Voroninski (2018). NeurIPS



Generative adversarial networks

Generator 𝐺

Latent 

variable

𝒛

66

Image 𝐺(𝒛)

Hand, Leong, Voroninski (2018). NeurIPS



Limits of deep learning

Original phantom

67
Antun et al (2020). PNAS

Deep learning 
reconstruction



Limits of deep learning

Unstable, sensitive to perturbations

Erase outliers (e.g., tumors)

Sensitive to acquisition parameters (noise, sampling)

Often returns a realistic image

68



Bayesian GAN
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Generator 𝐺

Latent 

variable

𝒛

• The generator has learned the 
distribution of images

• Restrict the search space to the 
generator output

⇒ Gradient descent on 𝒛 directly 
(point estimate)

Image 𝐺(𝒛)



Bayesian GAN
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Generator 𝐺

Latent 

variable

𝒛

• The generator has learned the 
distribution of images

• Restrict the search space to the 
generator output

⇒ Gradient descent on 𝒛 directly 
(point estimate)

Sampling from the posterior 
distribution

Markov-Chain Monte-Carlo on 𝒛

Image 𝐺(𝒛)

Bohra, Pham, Dong, Unser (2022). Submitted



Bayesian GAN
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• The generator has learned the 
distribution of images

• Restrict the search space to the 
generator output

⇒ Gradient descent on 𝒛 directly 
(point estimate)

Sampling from the posterior 
distribution

Markov-Chain Monte-Carlo on 𝒛

Bohra, Pham, Dong, Unser (2022). Submitted



Bayesian GAN results
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Bohra, Pham, Dong, Unser (2022). Submitted



Bayesian GAN results

73
Bohra, Pham, Dong, Unser (2022). Submitted
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Conclusion

• From Fourier phase retrieval

• To computational imaging

Rich history of phase retrieval

• Many algorithmic improvements

• Powerful algorithms for random setting

Advancing fast

• Many applications (astronomy, 

biomedical, etc.)

• Deep learning regularization

An interdisciplinary topic

75

𝒚 = 𝑨𝒙∗ 2



Thanks for your attention

76
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