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1 Solution sets and metrics for phase retrieval

It is useful to recognize the space of solutions of phase retrieval problems. This
will inform us on the symmetries of the problem and how to compute metrics
to efficiently evaluate the result of a phase retrieval algorithm.

1. Let us assume that we have found a solution x to the equation y = |Ax∗|2.
Could you find an infinite number of solutions constructed from this solu-
tion x?

2. Let’s now focus on the case of Fourier phase retrieval. In this setting, we
have measurements y = |Fx∗|2. Constraints such as finite support and
positivity are required to make this problem solvable.
When we do not make any assumption, could you find a generic strategy
to construct infinitely many solutions even up to a global phase shift?

3. Would a metric ∥x − x∗∥2 be suitable to evaluate reconstruction perfor-
mance?

4. Which metric would you suggest using to evaluate reconstruction perfor-
mance? Several solutions are possible.
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2 Gradient descent and link with error reduc-
tion algorithm

Here we are going to derive the usual formulas for gradient descent in phase
retrieval. The formula will be computed for real-valued phase retrieval y =
|Ax∗|2 with A and x real-valued. This simplifies the formalism and the actual
formulas to use are very close.

(The clean extension to complex-valued phase retrieval would require the
concept of CR-calculus or Wirtinger derivatives. Derivatives of functions defined
in a complex-valued space is a complicated field involving holomorphic functions,
integrals along paths, etc. With CR-calculus or Wringer derivatives, we work in
a real-valued space and just define derivatives on the real and imaginary parts
independently.)

1. Warm up: linear regression
Forward model y = Ax∗

Loss function l(x) = ∥y −Ax∥2
What is the component i of the gradient, i.e. dl

dxi
?

Can you find a compact vectorial formula?

2. 1st loss: Intensity loss function
Forward model y = (Ax∗)2

Loss function l1(x) = ∥y − (Ax)2∥2
What is the component i of the gradient, i.e. dl1

dxi
?

Can you find a compact vectorial formula?

3. 2nd loss: amplitude loss function
Forward model y = (Ax∗)2

Loss function l2(x) = ∥√y − |Ax|∥2
What is the component i of the gradient, i.e. dl2

dxi
?

Can you find a compact vectorial formula?

4. Let us assume now that the forward model A is a Fourier transform and
that x has a finite known support Γ.
We consider the error reduction algorithm (Fienup ’82) where we alternate
between amplitude constraint and support constraint. Write the update
equation of the error reduction algorithm. Can you make a link between
gradient descent with the amplitude loss function and the error reduction
algorithm?
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3 Spectral method explained

Even though phase retrieval is a non-linear problem, spectral methods can be a
convenient way to get a good initial estimate. They are designed for the random
setting in which the A is iid random.

Let’s consider measurements y = (Ax∗)2 where A is an iid random matrix:
each element of A is drawn independently from a complex-valued normal dis-
tribution (aij ∼ N (0, 1/2) + jN (0, 1/2)). d is the dimension of x and n the
dimension of y. We can also write it component by component: yi = |aHi x|2.

The weighted simplest weighted covariance matrix is defined as:

Z =
1

n

∑
i

yiaia
H
i . (1)

1. As Z is an empirical sum of a random variable, introduce an iid random
vector a and write the law of large numbers to find the limit of Z as n
goes to infinity.

2. Writing the scalar product aHx explicitly, expand y = |aHx|2 into a double
sum.

3. Deduce an expanded expression of Z.

4. Which terms have non-zero expectation? Find the limit of the weighted
covariance matrix.

The study of the weighted covariance matrix in the general case and when
both n and d go to infinity (with fixed oversampling ratio n/d) requires more
notions from random matrix theory.
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