Project I, Part II

Killen-Lehmann decomposition, CPT, causality and statistics.

Based on the results of the first part of the project, we now want to study
the two point functions

(0[0(x° - y)OA(x)O%(y) £ 0(1° - x°)OL(y) O a(x)[0) (1)
(0104 (x)O}(y) + O (y)O(x)|0), )

Gap(x-y)
Cap(x-y)
show how they encapsulate the spectral content of the theory and derive

the connection between spin and statistics. For that purpose you should
follow these steps.

1. Assuming, for simplicity, that O can only interpolate for massive states!,
show

OOARORWI) = [ZoA 1G] (e ™0 @)

2. Argue, using Lorentz symmetry, that you can write
HI(:%)(pr)e—iPr(x—y) - ﬁgg(iax’Mz)e—im(x—y) @)

where flf:l%) is a finite polynomial in d,, while M2 = p2. The differen-

tial operator 1&[545;;) is thus local.

3. Define the positive spectral density at spin s

02 = [ dr|Zo,|6( - MD)s,, ©)

4. Show
0I0AEKwI0) = [ di T (A5 1D (- y) @
= [ e D5 ) )

where
D (x - y) = (0lp(x)¢()[0) ®)

! This way we avoid the slight complication of dealing with massless representations of
Poincare.



and ¢ is a free Klein-Gordon field of mass y. The content of the above
equation should be appreciated. It expresses the (non-time ordered)
two point function of an arbitrary operator O with its complex con-
jugate O in terms of a superposition with positive weight of two
point functions Dz(:g ) with definite spin s and mass p. Each (s, )
pair defines an irreducible representation of the Poincare group. This
is thus another instance of partial wave decomposition. Notice also
that Dl(:gl ) is simply obtained by acting with a differential operator
ﬁf:l);(iax, 1#%) on the two point function D) of a real scalar field: all
the partial waves can be algebraically constructed starting from the
lowest one by applying polynomial differential operators.

5. Using point 3 of Part I show
OIOFMOAI) = [ 2 3 pD (A (-id, 1) D™ (~x + 1))
[ LoD (x ) (10)

where you should notice the (-) signs in the coordinate dependence
and derivatives.

6. Using point 5 of Part I show

Chp(x-y) = [ a3 p® G5, 12) (D) (x - y) & (-1)2DW) (- + y)
S
. (11)
where 2j = j; + j, defines the “spin” of O, so that (-)? equals 1 and -1
for operators of respectively integer and half-integer spin. 2 You can
now recall the commutator of the free scalar

(01 [9(x),9(1)]10) = DY (x - y) - DM (=x +y) (12)

which, you have seen, vanishes for (x — y)2 <0, i.e. outside the light
cone. That property establishes causality for the free scalar field. You
can now see that, for integer j, it is C,; that vanishes outside the
light cone, while for half-integer j this property is satisfied by C ;.
In particular, at fixed time, the anticommutator of half-integer spin
operators vanishes. This establishes from prime principles the well
know fundamental relation between spin and statistics.

7. Define now the Feynman propagator

Gag(x~y) = {0l6(x° ~y")Oa(x) O} (y) + (-1)76(y° - xO)OE(y)OA(X)(IlOQ)

2You should not make confusion for our calling both s and j the spin: the first is truly
the spin labelling an irreducible representation of Poincare, the second is the maximal spin
that can be created by the action of O on the vacuum.
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Using egs. (6,9) above end the result of point 5 in Part I, now show

Cas(x-v) = [ an L {oO GG (0GP (x-y)+ (14)
v [0, T1517(i0,) DY (x — y) + [6-, 1157 (19,) ]DW) (~x + y)}

where 0. = 0(+(t, - t,)) and G is the time ordered propagator of a
Klein-Gordon field of mass p. By using the locality of I—I(S ! )(zax) (=

polynomial in 9), D#) (x) = D) (~x) for spacelike x, and that deriva-
tives of 6(t) are derivatives of (t) you can argue that the second line
of the above equation is a distribution localized at x —y = 0. In other
words it is given by spacetime derivatives of §®*) (x - y). It is what
in QFT jargon is called a contact term. In particular it can be elim-
inated by modifiying the definition of the time-ordered product. In
fact these contact terms are often not Lorentz covariant and inconve-
nient to carry out perturbation theory. The definition of time ordering
that is provided by the path integral has indeed these terms removed.
Dropping the contact terms we can thus write

OIT (04®031)) 10 = [ du S p® (G (12:) 6P (x-y) (15)

This equation should be compared to eqgs. (6,9,11): all the different
2-point functions of the operator O are written in terms of the cor-
responding 2-point functions of the Klein-Gornon field, by applying

the same differential operator flf:g ) and by summing over (s, u) with
a positive definite spectral density () (1?).

It is interesting to express the above result in momentum space

[ dxe" DT (0a)OF))10) = (0T (O4(p)O5(-p))I0)  (16)

(H)
; ( )

We can now try and say something about p(*)(3?). It is rather clear that the
presence in the spectrum of a single particle state with mass M and spin
s will correspond to a delta function contribution §(p* — M?) to p®) (p?).
By the above equation this will imply a pole p* = M? in the time-ordered
2-point function, in agreement with what we found when discussing LSZ
reduction. In general p(*)(3?) will have the form

o (1) = 2 82 - M%) + 05, (1) (17)

1



with Cl.(s) > 0, where Mi(s) represent the masses of the asymptotic states
of spin s while pgzzlt(yz) represents the contribution of multiparticle states,
which has obviously a continuous distribution in y? starting from a lowest
threshold value.

Two final questions

1. Show that for the case of s =1 and O4 — V, = (1/2,1/2) the projector
flfjg’ ) becomes

101 (p) =~y + p;f” (18)

2. If an asymptotic state contributes a 5(u? — M?) to the spectral density,

how do you expect the latter to change if the state developes a long

but finite lifetime when turning on a new weak interaction? Of course

you will no longer have a delta funtion density...but things should not
change too much. So?



