
Project I

Källen-Lehmann decomposition, CPT, causality and statistics

This is a guided project through the derivation of the Källen-Lehmann spectral formula for operators
transforming as arbitrary Lorentz tensors. In the course of the derivation a connection between CPT,
causality and statistics will emerge. The project consists of two steps. The first step here described
consists of a set of preliminary results.

Notation

In what follows it will be convenient to choose a basis of states described by a collective label r that
runs over irreducible representations of the Poincarè group: r includes in particular the mass mr and
angular momentum sr of the state, but also includes other quantum numbers such as the number of
particles in the state, their charges, etc. The 3-momentum p⃗ and angular momentum s3 along ẑ, shall
be kept as independent quantum numbers. To make clear what we mean, the completeness relation
will take the form

I = ∫ dr∫ dΩr

sr

∑
s3=−sr

∣r, p⃗, sr⟩ ⟨r, p⃗, s3∣ (1)

where

dΩr =
d3p

(2π)32p0r
, p0r =

√
m2

r + (p⃗)
2, pµr = (p

0
r, p⃗). (2)

Of course, for states of zero angular momentum (sr = 0) the sum over s3 reduces to just one term
corresponding to s3 = 0. We stress that the Poincarè group only acts on p⃗ and s3, while the label r
is Poincarè invariant: that is the main advantage of the above apparently complicated notation. Eq.
(1) corresponds to the normalization condition

⟨r, p⃗, s3∣r
′, p⃗′, s′3⟩ = δ(r − r

′
)δs3 s′3

(2π)32p0r δ
(3)
(p⃗ − p⃗′) (3)

In what follows we shall often condense eq. (1) into

I = ⨋
r,p⃗,s3

∣r, p⃗, sr⟩ ⟨r, p⃗, s3∣ (4)

Step 1

Consider the action of the CPT transformation performed by the anti-unitary operator Θ

Θ ∣r, p⃗, s3⟩ = ηr(−1)
sr−s3 ∣r̄, p⃗,−s3⟩ , (5)

where ∣ηr ∣ = 1 and r̄ corresponds to an identical state but with all the charges reversed. The projector
on the subspace of states with total 4-momentum Pµ = kµ (here simply indicated by k) and total
angular momentum s is written as

Pk,s = ⨋
r,p⃗,s3

δs srδ
(4)
(pr − k) ∣r, p⃗, s3⟩ ⟨r, p⃗, s3∣ . (6)

Of course, the sum over r includes states and their CPT conjugates. Consider now a local operator
OA(x) transforming in some irreducible (j−, j+) representation of the Lorentz group. The index A
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then collectively indicates a set α1, ..., α2j− ; β̇1, ..., β̇2j+ of left and right spinorial indices. Under CPT
the operator satisfies

ΘOA(x)Θ
†
= ηOO

†
Ā
(−x), (7)

with ∣ηO ∣ = 1 and where we indicate the index of the hermitian conjugate operator by Ā, to account
for the fact that it transforms like the conjugate representation (j+, j−). Consider furthermore the
matrix element

⟨0∣OA(0) ∣r, p⃗, s3⟩ =
√
ZO,rΨ

(sr)
A,s3
(pr) (8)

where Ψ
(sr)
A,s3
(pr) is a suitably normalized relativistic wave function. (According to the discussion in

class, the normalization can be fixed by going to the rest frame pµ → p̄µ = (m,0,0,0) and choosing

Ψ
(s)
A,s3
(p̄) such that Π

(s)
AB̄
(p̄) = ∑s3 Ψ

(s)
A,s3
(p̄)Ψ

(s)
B̄,s3
(p̄)∗ is the projector on the subspace of spin s.

Notice that, since OA ∼ (j−, j+), there is at most one subspace of any given spin, and indeed only for
∣j+ − j−∣ ≤ s ≤ j+ + j−). For any pr define then

Π
(s)
AB̄
(p̄r) = ∑

s3

Ψ
(sr)
A,s3
(pr)Ψ

(sr)
B̄,s3
(pr)

∗. (9)

We want to derive the spectral decomposition of the two-point function ⟨0∣OA(x)O
†
B̄
(y) ∣0⟩. For this

purpose, you should first prove the following preliminary results

1. Pk,sPk′,s′ = δ
(4)(k − k′)δs,s′Pk,s, (as befits a projector)

2. ⟨0∣OA(0)Pk,sO
†
B̄
(0) ∣0⟩ = ⟨0∣O†

B̄
(0)Pk,sOA(0) ∣0⟩ ,

3. Π
(s)
AB̄
(p) transforms covariantly, namely

Π
(s)
AB̄
(Λp) =DAA′(Λ)DB̄B̄′(Λ)

∗Π
(s)
A′B̄′
(p) (10)

4. Π
(s)
AB̄
(−p) = (−1)2j−+2j+Π

(s)
AB̄
(p).

Hint: by point 4, Π
(s)
AB̄
(p) is a covariant tensor transforming as the representation OAO

†
B̄
∼

(j−, j+) ⊗ (j+, j−). In spinorial notation we thus have the equivalence

Π
(s)
AB̄
∼ Π(s)α1,...,α2j−+2j+;β̇1,...,β̇2j++2j−

. (11)

Again, according to point 3, this expression should be covariantly built out of covariant objects,
that is out of εαβ , εα̇β̇ and pαβ̇ = pµσ

µ

αβ̇
. From this, you should be able to prove 4.

5. In the definition of Pk,s, we have been a bit sloppy, as we have not specified whether the states
in the sum are ”in” or ”out”. For single particle states there is no distinction, but here we are
summing over all states. Can you argue that indeed Pk,s can be equally well written using ”in”
and using ”out” states?
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