HW11

1 One-loop structure of QED

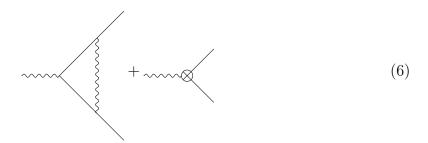
The Lagrangian is given by

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + i\bar{\psi}(\not D - m)\psi, \tag{1}$$

where covariant derivative is defined as

$$D_{\mu} = \partial_{\mu} + ieA_{\mu}. \tag{2}$$

Similarly to Yukawa find counter terms needed to render the theory finite at one loop level. To this end use the following propagators, for fermions


$$= \frac{i(\not p + m)}{p^2 - m^2 + i\varepsilon}, \tag{3}$$

and photons

$$\mu \sim \nu = \frac{-i\eta_{\mu\nu}}{p^2 + i\varepsilon}.$$
 (4)

• Diagrams contributing to fermionic 2-pt function:

• 3-pt function $A_{\mu}\bar{\psi}\gamma^{\mu}\psi$:

• Diagrams contributing to bosonic 2-pt function:

• What diagrams contribute to charge renormalization? Why? Compute the corresponding beta-function.