Random matrix theory
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Ex: Atomic nuclei

Proton Neutron

Strongly coupled (QCD) protons and neutrons: chaotic, complex
many body system!
Note: non-MBL system! — Any other non-localized many body
system is believed to be qualitatively similar, with energy level
statistics well-described by random matrix theory
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Ex: Electrons in a quantum dot

Chaotic motion of single
or few electrons in a
gate-confined region of
a 2d electron gas
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Ex: Quantum billiards

LY

(a) (b)
Symmetric shapes Generic situation:
Periodic classical orbits Chaotic classic dynamics
Solvable quantum Quantum eigenstates
wavefunctions superpose essentially all equal

energy states randomly



Ex: Quantum billiards
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Other instances of random
matrices

« Sound waves in disordered solids
* Matrix J; of exchange couplings in spin glasses

 Couplings in neural networks or genomic
regulatory networks (usually non-Hermitian!)

* Relations between random matrices and directed
polymers / KPZ universality class
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Other random eigenvalues

Random,
uncorrelated
distribution
(Poisson)
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Figure 1.2. Some typical level sequences. From Bohigas and Giannoni (1984). (a) Random levels
with no correlations, Poisson series. (b) Sequence of prime numbers. (c¢) Slow neutron resonance
levels of the erbium 166 nucleus. (d) Possible energy levels of a particle free to move inside the
area bounded by 1/8 of a square and a circular arc whose center is the mid point of the square;
i.e. the area specified by the inequalities, y > 0, x > y, x < 1, and X2+ y2 > r. (Sinai’s billiard
table.) (e) The zeros of the Riemann zeta function on the line Rez = 1/2. (f) A sequence of
equally spaced levels (Bohigas and Giannoni, 1984).
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uniformly spaced
distribution



Energy levels with no correlation

Poissonian processes : e.g.

« Random points thrown on a line
 Spectrum of Anderson localized particles in a large volume
 Radioactive decay processes: emission time of a particle



Energy levels with no correlation

Poissonian processes : e.g.

« Random points thrown on a line
 Spectrum of Anderson localized particles in a large volume
 Radioactive decay processes: emission time of a particle

Average density p of points (or emission rate 1/t)
Probability that there is no point in interval s:
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Energy levels with no correlation

Poissonian processes : e.g.

« Random points thrown on a line
 Spectrum of Anderson localized particles in a large volume
 Radioactive decay processes: emission time of a particle

Average density p of points (or emission rate 1/t)
Probability that there is no point in interval s:

m—1
.. _ —sp _ _ i) _ 1 ( B i)m
P(no level in interval [0,s]) = e < Tr}gnoo 1:[0 (1 p W}gnoo 1 p

| | | | | |
| |
E E+S/m  E+2S/m E+(m—1S/m E+S E+S+dS

Probability density to find a spacing s between

adjacent levels: dP
p(s)ds = —d—ds =e *pds; p(s=0)=p = finite!
S



Other random eigenvalues

Many close
levels for
random,
uncorrelated
distribution
(Poisson)
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Figure 1.2. Some typical level sequences. From Bohigas and Giannoni (1984). (a) Random levels
with no correlations, Poisson series. (b) Sequence of prime numbers. (c¢) Slow neutron resonance
levels of the erbium 166 nucleus. (d) Possible energy levels of a particle free to move inside the
area bounded by 1/8 of a square and a circular arc whose center is the mid point of the square;
i.e. the area specified by the inequalities, y > 0, x > y, x < 1, and X2+ y2 > r. (Sinai’s billiard
table.) (e) The zeros of the Riemann zeta function on the line Rez = 1/2. (f) A sequence of
equally spaced levels (Bohigas and Giannoni, 1984).
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Level spacings in nuclel
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Figure 1.3. The probability density for the nearest neighbor spacings in slow neutron resonance
levels of erbium 166 nucleus. The histogram shows the first 108 levels observed. The solid
curves correspond to the Poisson distribution, i.e. no correlations at all, and that for the eigen-
values of a real symmetric random matrix taken from the Gaussian orthogonal ensemble (GOE).
Reprinted with permission from The American Physical Society, Liou et al., Neutron resonance
spectroscopy data, Phys. Rev. C 5 (1972) 974-1001.
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Figure 1.3. The probability density for the nearest neighbor spacings in slow neutron resonance
levels of erbium 166 nucleus. The histogram shows the first 108 levels observed. The solid
curves correspond to the Poisson distribution, i.e. no correlations at all, and that for the eigen-
values of a real symmetric random matrix taken from the Gaussian orthogonal ensemble (GOE).
Reprinted with permission from The American Physical Society, Liou et al., Neutron resonance
spectroscopy data, Phys. Rev. C 5 (1972) 974-1001.
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Figure 1.4. Level spacing histogram for a large set of nuclear levels, often referred to as nu-
clear data ensemble. The data considered consists of 1407 resonance levels belonging to 30 se-
quences of 27 different nuclei: (i) slow neutron resonances of Cd(110, 112, 114), Sm(152, 154),
Gd(154, 156, 158, 160), Dy(160, 162, 164), Er(166, 168, 170), Yb(172, 174, 176), W(182, 184,
186), Th(232) and U(238); (1146 levels); (ii) proton resonances of Ca(44) (J = 1/2+), Ca(44)
(J =1/2—), and Ti(48) (J = 1/2+); (157 levels); and (iii) (n, y)-reaction data on Hf(177)
(J =3), Hf(177) (J = 4), Hf(179) (J = 4), and Hf(179) (J = 5); (104 levels). The data cho-
sen in each sequence is believed to be complete (no missing levels) and pure (the same angular
momentum and parity). For each of the 30 sequences the average quantities (e.g. the mean spac-
ing, spacing/mean spacing, number variance py, etc., see Chapter 16) are computed separately
and their aggregate is taken weighted according to the size of each sequence. The solid curves
correspond to the Poisson distribution, i.e. no correlations at all, and that for the eigenvalues of a
real symmetric random matrix taken from the Gaussian orthogonal ensemble (GOE). Reprinted
with permission from Kluwer Academic Publishers, Bohigas O., Haq R.U. and Pandey A., Fluc-
tuation properties of nuclear energy levels and widths, comparison of theory with experiment, in:
Nuclear Data for Science and Technology, Bokhoff K.H. (Ed.), 809-814 (1983).
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Figure 1.12. Plot of the density of normalized spacings for the zeros 0.5 + iy, ¥, real, of the
Riemann zeta function on the critical line. 1 < n < 10%. The solid curve is the spacing probability
density for the Gaussian unitary ensemble, Eq. (6.4.32). From Odlyzko (1987). Reprinted from
“On the distribution of spacings between zeros of the zeta function,” Mathematics of Computation
(1987), pages 273-308, by permission of The American Mathematical Society.
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Figure 1.13. The same as Figure 1.12 with 10'2 < n < 10'2 + 10°. Note the improvement in
the fit. From Odlyzko (1987). Reprinted from “On the distribution of spacings between zeros of
the zeta function,” Mathematics of Computation (1987), pages 273-308, by permission of The
American Mathematical Society.
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Figure 1.14. The same as Figure 1.12 but for the 79 million zeros around the 10?%th zero. From
Odlyzko (1989). Copyright © 1989, American Telephone and Telegraph Company, reprinted with
permission.
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Figure 1.12. Plot of the density of normalized spacings for the zeros 0.5 + iy, ¥, real, of the
Riemann zeta function on the critical line. 1 < n < 10%. The solid curve is the spacing probability
density for the Gaussian unitary ensemble, Eq. (6.4.32). From Odlyzko (1987). Reprinted from
“On the distribution of spacings between zeros of the zeta function,” Mathematics of Computation
(1987), pages 273-308, by permission of The American Mathematical Society.
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Figure 1.13. The same as Figure 1.12 with 10'2 < n < 10'2 + 10°. Note the improvement in
the fit. From Odlyzko (1987). Reprinted from “On the distribution of spacings between zeros of
the zeta function,” Mathematics of Computation (1987), pages 273-308, by permission of The
American Mathematical Society.
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Figure 1.14. The same as Figure 1.12 but for the 79 million zeros around the 10?%th zero. From
Odlyzko (1989). Copyright © 1989, American Telephone and Telegraph Company, reprinted with



