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Note: non-MBL system! – Any other non-localized many body 
system is believed to be qualitatively similar, with energy level 

statistics well-described by random matrix theory   
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Figure 1.1. Slow neutron resonance cross-sections on thorium 232 and uranium 238 nuclei.
Reprinted with permission from The American Physical Society, Rahn et al., Neutron resonance
spectroscopy, X, Phys. Rev. C 6, 1854–1869 (1972).

The experimental nuclear physicists have collected vast amounts of data concern-
ing the excitation spectra of various nuclei such as shown on Figure 1.1 (Garg et al.,
1964, where a detailed description of the experimental work on thorium and uranium
energy levels is given; (Rosen et al., 1960; Camarda et al., 1973; Liou et al., 1972b).
The ground state and low lying excited states have been impressively explained in terms
of an independent particle model where the nucleons are supposed to move freely in an
average potential well (Mayer and Jensen, 1955; Kisslinger and Sorenson, 1960). As the
excitation energy increases, more and more nucleons are thrown out of the main body
of the nucleus, and the approximation of replacing their complicated interactions with
an average potential becomes more and more inaccurate. At still higher excitations the
nuclear states are so dense and the intermixing is so strong that it is a hopeless task to try
to explain the individual states; but when the complications increase beyond a certain
point the situation becomes hopeful again, for we are no longer required to explain the
characteristics of every individual state but only their average properties, which is much
simpler.

The statistical behaviour of the various energy levels is of prime importance in the
study of nuclear reactions. In fact, nuclear reactions may be put into two major classes—
fast and slow. In the first case a typical reaction time is of the order of the time taken
by the incident nucleon to pass through the nucleus. The wavelength of the incident
nucleon is much smaller than the nuclear dimensions, and the time it spends inside the
nucleus is so short that it interacts with only a few nucleons inside the nucleus. A typical
example is the head-on collision with one nucleon in which the incident nucleon hits
and ejects a nucleon, thus giving it almost all its momentum and energy. Consequently
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Other instances of random 
matrices

• Sound waves in disordered solids

• Matrix Jij of exchange couplings in spin glasses 

• Couplings in neural networks or genomic 
regulatory networks (usually non-Hermitian!)

• Relations between random matrices and directed 
polymers / KPZ universality class

• ...
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Figure 1.2. Some typical level sequences. From Bohigas and Giannoni (1984). (a) Random levels
with no correlations, Poisson series. (b) Sequence of prime numbers. (c) Slow neutron resonance
levels of the erbium 166 nucleus. (d) Possible energy levels of a particle free to move inside the
area bounded by 1/8 of a square and a circular arc whose center is the mid point of the square;
i.e. the area specified by the inequalities, y ! 0, x ! y, x " 1, and x2 + y2 ! r . (Sinai’s billiard
table.) (e) The zeros of the Riemann zeta function on the line Re z = 1/2. (f) A sequence of
equally spaced levels (Bohigas and Giannoni, 1984).

For the simple case in which the positions of the energy levels are not correlated
the probability that any Ei will fall between E and E + dE is independent of E and
is simply ρ dE, where ρ = D−1 is the average number of levels in a unit interval of
energy. Let us determine the probability of a spacing S; that is, given a level at E, what
is the probability of having no level in the interval (E,E + S) and one level in the
interval (E + S,E + S + dS). For this we divide the interval S into m equal parts.

E E + S/m E + 2S/m . . . E + (m − 1)S/m E + S E + S + dS

Because the levels are independent, the probability of having no level in (E,E + S)

is the product of the probabilities of having no level in any of these m parts. If m is

Random, 
uncorrelated 
distribution 
(Poisson)

Neither similar to 
random 
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uniformly spaced 
distribution



Energy levels with no correlation
Poissonian processes : e.g. 

• Random points thrown on a line
• Spectrum of Anderson localized particles in a large volume 
• Radioactive decay processes: emission time of a particle
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Poissonian processes : e.g. 

• Random points thrown on a line
• Spectrum of Anderson localized particles in a large volume 
• Radioactive decay processes: emission time of a particle

Average density ρ of points  (or emission rate 1/τ)
Probability that there is no point in interval s:  
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For the simple case in which the positions of the energy levels are not correlated
the probability that any Ei will fall between E and E + dE is independent of E and
is simply ρ dE, where ρ = D−1 is the average number of levels in a unit interval of
energy. Let us determine the probability of a spacing S; that is, given a level at E, what
is the probability of having no level in the interval (E,E + S) and one level in the
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Because the levels are independent, the probability of having no level in (E,E + S)

is the product of the probabilities of having no level in any of these m parts. If m is

Neither similar to 
random 
Poissonian nor 
uniformly spaced 
distribution

Many close 
levels for 
random, 
uncorrelated 
distribution 
(Poisson)



Level spacings in nuclei

12 Chapter 1. Introduction

large, so that S/m is small, we can write this as (1 −ρS/m)m, and in the limit m → ∞,

lim
m→∞

(
1 − ρ

S

m

)m

= e−ρS.

Moreover, the probability of having a level in dS at E + S is ρ dS. Therefore, given
a level at E, the probability that there is no level in (E,E + S) and one level in dS at
E + S is

e−ρSρ dS,

or in terms of the variable s = S/D = ρS

p(s) ds = e−s ds. (1.4.1)

This is known as the Poisson distribution or the spacing rule for random levels.
That (1.4.1) is not correct for nuclear levels of the same spin and parity or for atomic

levels of the same parity and orbital and spin angular momenta is clearly seen by a
comparison with the empirical evidence (Figures 1.3 and 1.4). It is not true either for
the eigenvalues of a matrix from any of the Gaussian ensembles, as we will see.

Figure 1.3. The probability density for the nearest neighbor spacings in slow neutron resonance
levels of erbium 166 nucleus. The histogram shows the first 108 levels observed. The solid
curves correspond to the Poisson distribution, i.e. no correlations at all, and that for the eigen-
values of a real symmetric random matrix taken from the Gaussian orthogonal ensemble (GOE).
Reprinted with permission from The American Physical Society, Liou et al., Neutron resonance
spectroscopy data, Phys. Rev. C 5 (1972) 974–1001.
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1.5. Wigner Surmise 13

Figure 1.4. Level spacing histogram for a large set of nuclear levels, often referred to as nu-
clear data ensemble. The data considered consists of 1407 resonance levels belonging to 30 se-
quences of 27 different nuclei: (i) slow neutron resonances of Cd(110, 112, 114), Sm(152, 154),
Gd(154, 156, 158, 160), Dy(160, 162, 164), Er(166, 168, 170), Yb(172, 174, 176), W(182, 184,
186), Th(232) and U(238); (1146 levels); (ii) proton resonances of Ca(44) (J = 1/2+), Ca(44)
(J = 1/2−), and Ti(48) (J = 1/2+); (157 levels); and (iii) (n,γ )-reaction data on Hf(177)
(J = 3), Hf(177) (J = 4), Hf(179) (J = 4), and Hf(179) (J = 5); (104 levels). The data cho-
sen in each sequence is believed to be complete (no missing levels) and pure (the same angular
momentum and parity). For each of the 30 sequences the average quantities (e.g. the mean spac-
ing, spacing/mean spacing, number variance µ2, etc., see Chapter 16) are computed separately
and their aggregate is taken weighted according to the size of each sequence. The solid curves
correspond to the Poisson distribution, i.e. no correlations at all, and that for the eigenvalues of a
real symmetric random matrix taken from the Gaussian orthogonal ensemble (GOE). Reprinted
with permission from Kluwer Academic Publishers, Bohigas O., Haq R.U. and Pandey A., Fluc-
tuation properties of nuclear energy levels and widths, comparison of theory with experiment, in:
Nuclear Data for Science and Technology, Bökhoff K.H. (Ed.), 809–814 (1983).

1.5 Wigner Surmise

When the experimental situation was not yet conclusive, Wigner proposed the following
rules for spacing distributions:

(1) In the sequence of levels with the same spin and parity, called a simple sequence,
the probability density function for a spacing is given by

pW (s) = πs

2
exp

(
−π

4
s2

)
, s = S

D
. (1.5.1)
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Figure 1.12. Plot of the density of normalized spacings for the zeros 0.5 ± iγn , γn real, of the
Riemann zeta function on the critical line. 1 < n < 105. The solid curve is the spacing probability
density for the Gaussian unitary ensemble, Eq. (6.4.32). From Odlyzko (1987). Reprinted from
“On the distribution of spacings between zeros of the zeta function,” Mathematics of Computation
(1987), pages 273–308, by permission of The American Mathematical Society.

Also the distribution of the zeros of dζ(1/2 + it)/dt and those of the derivative of
the characteristic function of a random unitary matrix has been investigated and found
empirically to be the same when centered and normalized properly (Mezzadri, 2003).

It is hard to imagine the zeros of the zeta function as the eigenvalues of some unitary
or Hermitian operator. It is even harder to imagine the zeta function on the critical line
as the characteristic function of a unitary operator.

1.8. The Zeros of The Riemann Zeta Function 25

Figure 1.13. The same as Figure 1.12 with 1012 < n < 1012 + 105. Note the improvement in
the fit. From Odlyzko (1987). Reprinted from “On the distribution of spacings between zeros of
the zeta function,” Mathematics of Computation (1987), pages 273–308, by permission of The
American Mathematical Society.

A generalization of the Riemann zeta function is the function ζ(z, a) defined for
Re z > 1, by

ζ(z, a) =
∞∑

n=0

(n + a)−z, 0 < a ! 1, (1.8.12)

and by its analytical continuation for other values of z. For a = 1/2 and a = 1, one has

ζ(z,1/2) = (2z − 1)ζ(z), ζ(z,1) = ζ(z), (1.8.13)

26 Chapter 1. Introduction

Figure 1.14. The same as Figure 1.12 but for the 79 million zeros around the 1020th zero. From
Odlyzko (1989). Copyright © 1989, American Telephone and Telegraph Company, reprinted with
permission.

so there is nothing more about their zeros. For rational values of a other than 1/2 or 1
or for transcendental values of a, it is known that ζ(z, a) has an infinity of zeros with
Re z > 1. For irrational algebraic values of a it is not known whether there are any zeros
with Re z > 1 (Davenport and Heilbronn, 1936).

A quadratic form (in two variables) Q(x,y) = ax2 + bxy + cy2, a, b, c integers, is
positive definite if a > 0, c > 0 and the discriminant d = b2 − 4ac < 0. It is primitive,
if a, b, c have no common factor other than 1. Let the integers α, β , γ , δ be such that
αδ − βγ = ±1. When x and y vary over all the integers, the set of values taken by the
quadratic forms Q(x,y) and

Q′(x, y) := Q(αx + βy,γ x + δy) = a′x2 + b′xy + c′y2

are identical; the two forms have the same discriminant d , they are said to be equivalent.
The number h(d) of inequivalent primitive positive definite quadratic forms with a given
discriminant d is finite and is called the class function. (See Appendix A.53.)
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Figure 1.12. Plot of the density of normalized spacings for the zeros 0.5 ± iγn , γn real, of the
Riemann zeta function on the critical line. 1 < n < 105. The solid curve is the spacing probability
density for the Gaussian unitary ensemble, Eq. (6.4.32). From Odlyzko (1987). Reprinted from
“On the distribution of spacings between zeros of the zeta function,” Mathematics of Computation
(1987), pages 273–308, by permission of The American Mathematical Society.

Also the distribution of the zeros of dζ(1/2 + it)/dt and those of the derivative of
the characteristic function of a random unitary matrix has been investigated and found
empirically to be the same when centered and normalized properly (Mezzadri, 2003).

It is hard to imagine the zeros of the zeta function as the eigenvalues of some unitary
or Hermitian operator. It is even harder to imagine the zeta function on the critical line
as the characteristic function of a unitary operator.
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Figure 1.13. The same as Figure 1.12 with 1012 < n < 1012 + 105. Note the improvement in
the fit. From Odlyzko (1987). Reprinted from “On the distribution of spacings between zeros of
the zeta function,” Mathematics of Computation (1987), pages 273–308, by permission of The
American Mathematical Society.

A generalization of the Riemann zeta function is the function ζ(z, a) defined for
Re z > 1, by

ζ(z, a) =
∞∑

n=0

(n + a)−z, 0 < a ! 1, (1.8.12)

and by its analytical continuation for other values of z. For a = 1/2 and a = 1, one has

ζ(z,1/2) = (2z − 1)ζ(z), ζ(z,1) = ζ(z), (1.8.13)
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Figure 1.14. The same as Figure 1.12 but for the 79 million zeros around the 1020th zero. From
Odlyzko (1989). Copyright © 1989, American Telephone and Telegraph Company, reprinted with
permission.

so there is nothing more about their zeros. For rational values of a other than 1/2 or 1
or for transcendental values of a, it is known that ζ(z, a) has an infinity of zeros with
Re z > 1. For irrational algebraic values of a it is not known whether there are any zeros
with Re z > 1 (Davenport and Heilbronn, 1936).

A quadratic form (in two variables) Q(x,y) = ax2 + bxy + cy2, a, b, c integers, is
positive definite if a > 0, c > 0 and the discriminant d = b2 − 4ac < 0. It is primitive,
if a, b, c have no common factor other than 1. Let the integers α, β , γ , δ be such that
αδ − βγ = ±1. When x and y vary over all the integers, the set of values taken by the
quadratic forms Q(x,y) and

Q′(x, y) := Q(αx + βy,γ x + δy) = a′x2 + b′xy + c′y2

are identical; the two forms have the same discriminant d , they are said to be equivalent.
The number h(d) of inequivalent primitive positive definite quadratic forms with a given
discriminant d is finite and is called the class function. (See Appendix A.53.)
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