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GAUSSIAN ENSEMBLES.
LEVEL DENSITY

In this short chapter we reproduce a statistical mechanical argument of Wigner to “de-
rive” the level density for the Gaussian ensembles. The joint probability density of the
eigenvalues is written as the Boltzmann factor for a gas of charged particles interacting
via a two dimensional Coulomb force. The equilibrium density of this Coulomb gas is
such as to make the potential energy a minimum, and this density is identified with the
level density of the corresponding Gaussian ensembles. That the eigenvalue density so
deduced is correct, will be seen later when in Chapters 6 to 8 and 14 we will compute
it for each of the four Gaussian ensembles for any finite N × N matrices and take the
limit as N → ∞.

Another argument, again essentially due to Wigner, is given to show that the same
level density, a “semi-circle”, holds for random Hermitian matrices with elements hav-
ing an average value zero and a common mean square value.

4.1 The Partition Function

Consider a gas of N point charges with positions x1, x2, . . . , xN free to move on the
infinite straight line −∞< x <∞. Suppose that the potential energy of the gas is given
by

W = 1

2

∑
i

x2
i −

∑
i<j

ln |xi − xj |. (4.1.1)
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64 Chapter 4. Gaussian Ensembles. Level Density

The first term in W represents a harmonic potential which attracts each charge inde-
pendently towards the point x = 0; the second term represents an electrostatic repulsion
between each pair of charges. The logarithmic function comes in if we assume the uni-
verse to be two-dimensional. Let this charged gas be in thermodynamical equilibrium
at a temperature T , so that the probability density of the positions of the N charges is
given by

P(x1, . . . , xN)= C exp(−W/kT ), (4.1.2)

where k is the Boltzmann constant. We immediately recognize that (4.1.2) is identical
to (3.3.8) provided β is related to the temperature by

β = (kT )−1. (4.1.3)

This system of point charges in thermodynamical equilibrium is called the Coulomb gas
model, corresponding to the Gaussian ensembles.

Following Dyson (1962a, 1962b, 1962c), we can define various expressions that re-
late to our energy-level series in complete analogy with the classical notions of entropy,
specific heat, and the like. These expressions, when computed from the observed exper-
imental data and compared with the theoretical predictions, provide a nice method of
checking the theory.

In classical mechanics the joint probability density in the velocity space is a product
of exponentials

∏
j

exp
(−Cjv2

j

)

with constant Cj , and its contribution to the thermodynamic quantities of the model
are easily calculated. We simply discard these trivial terms. The nontrivial contributions
arise from the partition function

ψN(β)=
∫ ∞

−∞
· · ·

∫ ∞

−∞
e−βW dx1 · · · dxN (4.1.4)

and its derivatives with respect to β . Therefore it is important to have an analytical
expression for ψN(β). Fortunately, this can be deduced from an integral evaluated by
Selberg (see Chapter 17).

Theorem 4.1.1. For any positive integer N and real or complex β we have, identically,

ψN(β)= (2π)N/2β−N/2−βN(N−1)/4(�(1 + β/2))−N
N∏
j=1

�(1 + βj/2). (4.1.5)
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Let us note the fact that the energyW given by (4.1.1) is bounded from below. More
precisely,

W �W0 = 1

4
N(N − 1)(1 + ln 2)− 1

2

N∑
j=1

j ln j, (4.1.6)

and this minimum is attained when the positions of the charges coincide with the zeros
of the Hermite polynomialHN(x) (cf. Appendix A.6).

Once the partition function is known, other thermodynamic quantities such as free
energy, entropy, and specific heat can be calculated by elementary differentiation. Be-
cause all the known properties are identical to those of the circular ensembles, studied
at length in Chapter 12 we do not insist on this point here.

4.2 The Asymptotic Formula for the Level Density. Gaussian Ensembles

Since the expression (3.3.8) for P(x1, . . . , xN), the probability that the eigenvalues will
lie in unit intervals around x1, x2, . . . , xN , is valid for all values of xi , the density of
levels

σN(x)=N
∫ ∞

−∞
· · ·

∫ ∞

−∞
P(x, x2, . . . , xN) dx2 · · · dxN (4.2.1)

can be calculated for anyN by actual integration (Mehta and Gaudin, 1960). The details
of this tedious calculation are not given here, since an expression for σN(x), derived by
a different method, appears in Chapters 6, 7 and 8.

However, if one is interested in the limit of largeN , as we certainly are, these compli-
cations can be avoided by assuming that the corresponding Coulomb gas is a classical
fluid with a continuous macroscopic density. More precisely, this amounts to the fol-
lowing two assumptions:

(1) The potential energyW given by (4.1.1) can be approximated by the functional

W(σ)= 1

2

∫ ∞

−∞
dx x2σ(x)− 1

2

∫ ∞

−∞
dx dy σ(x)σ (y) ln |x − y|. (4.2.2)

(2) The level density σ(x) will be such as to minimize the expression (4.2.2), con-
sistent with the requirements ∫ ∞

−∞
dx σ(x)=N, (4.2.3)

and

σ(x)� 0. (4.2.4)
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The first integral in (4.2.2) reproduces the first sum in (4.1.1) accurately in the limit
of large N . The same is not true of the second integral, for it neglects the two-level
correlations, which may be expected to extend over a few neighboring levels; however,
because the total number of levels is large their effect may be expected to be small. The
factor 1/2 in the second term of (4.2.2) comes from the condition i < j in (4.1.1).

The problem of finding the stationary points of the functionalW(σ), (4.2.2), with the
restriction (4.2.3) leads us to the integral equation

−1

2
x2 +

∫ ∞

−∞
dy σ(y) ln |x − y| = C, (4.2.5)

where C is a Lagrange constant. Actually (4.2.5) has to hold only for those values of x
for which σ(x) > 0. One cannot add a negative increment to σ(x) where σ(x)= 0, and
therefore the functional differentiation is not valid; hence (4.2.5) cannot be derived for
such values of x . It is not difficult to solve (4.2.5) (Mushkelishvili, 1953). This will not
be done here, but the solution will be given and then verified.

Differentiation of (4.2.5) with respect to x eliminates C. Before carrying it out, we
must replace the integral with

lim
ε→0

(∫ x−ε

−∞
dy +

∫ ∞

x+ε
dy

)
σ(y) ln |x − y|. (4.2.6)

When (4.2.6) is differentiated with respect to x , the terms arising from the differentiation
of the limits drop out and only the derivative of ln |x−y| remains. The integral becomes
a principal value integral and (4.2.5) becomes

P

∫ ∞

−∞
σ (y)

x − y dy = x. (4.2.7)

Conversely, if (4.2.7) is satisfied by some σ(y) and this σ is an even function, then it
will satisfy (4.2.5) also. We try

σ(y)=
{
C
(
A2 − y2

)1/2
, |y|<A,

0, |y|>A.
(4.2.8)

Elementary integration gives

∫
(A2 − y2)1/2

x − y dy = x sin−1
(
y

A

)
− (
A2 − y2)1/2

+ (
A2 − x2)1/2 ln

(
A(x − y)− x(A2 − y2)1/2 − y(A2 − x2)1/2

A(x − y)− x(A2 − y2)1/2 + y(A2 − x2)1/2

)
. (4.2.9)
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Taking the principal value of (4.2.9) between the limits (−A,A), we find that only the
first term gives a nonzero contribution, which is πx . Hence (4.2.7) gives

C = 1/π, (4.2.10)

and (4.2.3) gives

1

π

π

2
A2 =N. (4.2.11)

Thus

σ(x)=



1

π

(
2N − x2)1/2

, |x|< (2N)1/2,

0, |x|> (2N)1/2.
(4.2.12)

This is the so-called “semicircle law” first derived by Wigner.
Actually the two-level correlation function can be calculated (cf. Sections 6.2, 7.2

and 8.2) and the above intuitive arguments put to test. Instead, we shall derive an exact
expression for the level-density valid for any N . The limit N → ∞ can then be taken
(cf. Appendix A.9) to obtain the “semicircle law”.

We have noted in Section 4.1 that without any approximation whatever the energyW
attains its minimum value when the points x1, x2, . . . , xN are the zeros of the N th order
Hermite polynomial. The postulate of classical statistical mechanics then implies that in
the limit of very large N the level density is the same as the density of zeros of the N th
order Hermite polynomial. This later problem has been investigated by many authors,
and we may conveniently refer to the relevant mathematical literature (Szegö, 1959).

4.3 The Asymptotic Formula for the Level Density. Other Ensembles

Numerical evidence shows, as we said in Chapter 1, that the local statistical properties
of the Gaussian ensembles are shared by a much wider class of matrices. In particular
even the eigenvalue density, which is a global property, follows the “semi-circle law”.
Wigner (1955) first considered bordered matrices, i.e., real symmetric matrices H with
elements

Hjk =
{±h, if |j − k| �m,

0, if |j − k|>m.
(4.3.1)

Except for the symmetry of H , the signs of Hjk are random. He then calculates the
moments of the level density and derives an integral equation for it. The calculations are
long. The final result is that in the limit of h2/m→ 0 and the order of the matrices is
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infinite, the eigenvalue density is a “semi-circle”. Here we present still another heuristic
argument in its support, again essentially due to Wigner.

Consider a matrix H with elements Hij all having an average value zero and a mean
square value V 2. Let the order N be large enough so that the density of its eigenvalues
may be taken to be a continuous function. Let this function be σ(ε,V 2), so that the
number of eigenvalues lying between ε and ε+δε is given by σ(ε,V 2) dε. If we change
the matrix elements by small quantities δHij such that the δHij themselves all have the
average value zero and a mean square value v2, the change in a particular eigenvalue at
εi can be calculated by the second order perturbation theory

Z
(
ε,V 2)= δHii +

∑
j �=i

|δHij |2
εi − εj + · · · . (4.3.2)

The δHii do not produce, on the average, any change in εi . The eigenvalues εj which
lie nearest to εi give the largest contribution to (4.3.2) with an absolute value v2/s̄

where s̄ is the mean spacing at εi . But as there are eigenvalues on both sides of εi , the
two contributions arising from the two nearest eigenvalues nearly cancel out, leaving
quantities of a higher order in v2. The sum in (4.3.2) can therefore be approximated by

Z
(
ε,V 2)≈ v2

∫
σ(ε′,V 2)

ε− ε′ dε′, (4.3.3)

where the integral in (4.3.3) is a principal value integral and

V 2 = 〈|Hij |2〉, v2 = 〈|δHij |2〉. (4.3.4)

The ensemble averages being indicated by 〈 〉. Let us calculate the change in the number
of eigenvalues lying in an interval (ε, ε+ δε). This can be done in two ways; one gives,
as is obvious from the way of writing,

σ
(
ε,V 2)Z(ε,V 2)− σ (ε + δε,V 2)Z(ε + δε,V 2)≈ −∂(σZ)

∂ε
δε, (4.3.5)

while the other gives in a similar way

v2 ∂σ

∂V 2 . (4.3.6)

If all the matrix elements Hij are multiplied by a constant c, the values εi are also
multiplied by c, while V 2 is multiplied by c2. Hence,

σ
(
cε, c2V 2)c dε = σ (ε,V 2)dε. (4.3.7)
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Setting cV = 1 the last equation gives

σ
(
ε,V 2)= 1

V
σ(ε/V,1),

which could have been inferred by dimensional arguments. Putting

Z
(
ε,V 2)= v2

V
Z1(ε/V ), σ

(
ε,V 2)= 1

V
σ1(ε/V ), (4.3.8)

in (4.3.3), (4.3.5) and (4.3.6), we obtain

∂(Z1σ1)

∂x
= 1

2

∂(xσ1)

∂x
, x = ε/V, (4.3.9)

Z1(x)= P
∫
σ1(x

′)
x − x ′ dx

′. (4.3.10)

When x = 0, by symmetry requirement Z1 = 0; therefore (4.3.9) gives, on integration

Z1(x)= x/2. (4.3.11)

Finally we have the boundary condition∫
σ
(
ε,V 2)dε =

∫
σ1(x) dx =N. (4.3.12)

Equations (4.3.10), (4.3.11) and (4.3.12) together are equivalent to the integral equation
(4.2.7) together with (4.2.3). The solution, as there, is the semi-circle law (4.2.12):

σ
(
ε,V 2)=




1

2πV 2

(
2NV 2 − ε2)1/2

, ε2 < 2NV 2,

0, ε2 > 2NV 2.
(4.3.13)

Olson and Uppulury (1972) and later Wigner extended these considerations to include
a still wider class of matrices to have the “semi-circle law” as their eigenvalue density.

For the two level correlation function or the spacing distribution no such argument
has yet been found.

Summary of Chapter 4

As a consequence of Selberg’s integral one has the partition function

ψN(β)=
∫ ∞

−∞
· · ·

∫ ∞

−∞
e−βW dx1 · · · dxN (4.1.4)
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= (2π)N/2β−N/2−βN(N−1)/4(�(1 + β/2))−N
N∏
j=1

�(1βj/2), (4.1.5)

where

W = 1

2

N∑
j=1

x2
j −

∑
1�j<k�N

ln |xj − xk|. (4.1.1)

For a large class of random matrices the asymptotic density of eigenvalues is the “semi-
circle”

σ(x)=



1

π

(
2N − x2)1/2

, |x|< (2N)1/2,

0, |x|> (2N)1/2.
(4.2.12)




