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GAUSSIAN ENSEMBLES.
THE JOINT PROBABILITY DENSITY

FUNCTION FOR THE MATRIX
ELEMENTS

After examining the consequences of time-reversal invariance, we introduce Gaussian
ensembles as a mathematical idealization. They are implied if we make the hypothesis
of maximum statistical independence allowed under the symmetry constraints.

2.1 Preliminaries

In the mathematical model our systems are characterized by their Hamiltonians, which
in turn are represented by Hermitian matrices. Let us look into the structure of these
matrices. The low-lying energy levels (eigenvalues) are far apart and each may be de-
scribed by a different set of quantum numbers. As we go to higher excitations, the levels
draw closer, and because of their mutual interference most of the approximate quantum
numbers lose their usefulness, for they are no longer exact. At still higher excitations the
interference is so great that some quantum numbers may become entirely meaningless.
However, there may be certain exact integrals of motion, such as total spin or parity,
and the quantum numbers corresponding to them are conserved whatever the excitation
may be. If the basis functions are chosen to be the eigenfunctions of these conserved
quantities, all Hamiltonian matrices of the ensemble will reduce to the form of diagonal
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34 Chapter 2. Probability Density for the Matrix Elements

Figure 2.1. Block diagonal structure of a Hamiltonian matrix. Each diagonal block corresponds
to a set of exact symmetries or to a set of exactly conserved quantum numbers. The matrix ele-
ments connecting any two diagonal blocks are zero, whereas those inside each diagonal block are
random.

blocks. One block will correspond uniquely to each set of exact quantum numbers. The
matrix elements lying outside these blocks will all be zero, and levels belonging to two
different blocks will be statistically uncorrelated. As to the levels corresponding to the
same block, the interactions are so complex that any regularity resulting from partial
diagonalization will be washed out. (See Figure 2.1.)

We shall assume that such a basis has already been chosen and restrict our attention
to one of the diagonal blocks, an N × N Hermitian matrix in which N is a large but
fixed positive integer. Because nuclear spectra contain at least hundreds of levels with
the same spin and parity, we are interested in (the limit of) very large N .

With these preliminaries, the matrix elements may be supposed to be random vari-
ables and allowed the maximum statistical independence permitted under symmetry
requirements. To specify precisely the correlations among various matrix elements we
need a careful analysis of the consequences of time-reversal invariance.

2.2 Time-Reversal Invariance

We begin by recapitulating the basic notions of time-reversal invariance. From physical
considerations, the time-reversal operator is required to be antiunitary (Wigner, 1959)
and can be expressed, as any other antiunitary operator, in the form

T =KC, (2.2.1)
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where K is a fixed unitary operator and the operator C takes the complex conjugate of
the expression following it. Thus a state under time reversal transforms to

ψR = Tψ =Kψ∗, (2.2.2)

ψ∗ being the complex conjugate of ψ . From the condition

(�,Aψ)= (
ψR,AR�R

)
,

for all pairs of states ψ,�, and (2.2.2), we deduce that under time reversal an operator
A transforms to

AR =KATK−1, (2.2.3)

where AT is the transpose of A. A is said to be self-dual if AR =A. A physical system
is invariant under time reversal if its Hamiltonian is self-dual, that is, if

HR =H. (2.2.4)

When the representation of the states is transformed by a unitary transformation, ψ →
Uψ, T transforms according to

T → UTU−1 =UTU†, (2.2.5)

or K transforms according to

K →UKUT . (2.2.6)

Because operating twice with T should leave the physical system unchanged, we
have

T 2 = α · 1, |α| = 1, (2.2.7)

where 1 is the unit operator; or

T 2 =KCKC =KK∗CC =KK∗ = α · 1. (2.2.8)

But K is unitary:

K∗KT = 1.

From these two equations we get

K = αKT = α(αKT )T = α2K.
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Therefore

α2 = 1 or α = ±1, (2.2.9)

so that the unitary matrixK is either symmetric or antisymmetric. In other words, either

KK∗ = 1, (2.2.10)

or

KK∗ = −1. (2.2.11)

These alternatives correspond, respectively, to an integral or a half-odd integral total
angular momentum of the system measured in units of h̄ (Wigner, 1959), for the total
angular momentum operator J = (J1, J2, J3) must transform as

JR� = −J�, �= 1,2,3. (2.2.12)

For brevity we call the two possibilities the even-spin and odd-spin case, respectively.

2.3 Gaussian Orthogonal Ensemble

Suppose now that the even-spin case holds and (2.2.10) is valid. Then a unitary operator
U will exist such that (cf. Appendix A.3)

K =UUT . (2.3.1)

By (2.2.6) a transformation ψ → U−1ψ performed on the states ψ brings K to unity.
Thus in the even-spin case the representation of states can always be chosen so that

K = 1. (2.3.2)

After one such representation is found, further transformations ψ → Rψ are allowed
only with R a real orthogonal matrix so that (2.3.2) remains valid. The consequence
of (2.3.2) is that self-dual matrices are symmetric. In the even spin case every system
invariant under time reversal will be associated with a real symmetric matrix H if the
representation of states is suitably chosen. For even-spin systems with time-reversal
invariance the Gaussian orthogonal ensemble E1G, defined below, is therefore appro-
priate.

Definition 2.3.1. The Gaussian orthogonal ensemble E1G is defined in the space T1G
of real symmetric matrices by two requirements:
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(1) The ensemble is invariant under every transformation

H →WT HW (2.3.3)

of T1G into itself, whereW is any real orthogonal matrix.
(2) The various elements Hkj , k � j , are statistically independent.

These requirements, expressed in the form of equations, read as follows:

(1) The probability P(H)dH that a system of E1G will belong to the volume ele-
ment dH =∏

k�j dHkj is invariant under real orthogonal transformations:

P(H ′) dH ′ = P(H)dH, (2.3.4)

where

H ′ =WTHW, (2.3.5)

and

WTW =WWT = 1. (2.3.6)

(2) This probability density function P(H) is a product of functions, each of which
depends on a single variable:

P(H)=
∏
k�j

fkj (Hkj ). (2.3.7)

Suppose, next, that we are dealing with a system invariant under space rotations. The
spin may now be even or odd. The Hamiltonian matrix H which represents the system
commutes with every component of J. If we use the standard representation of the J
matrices with J1 and J3 real and J2 pure imaginary, (2.2.12) may be satisfied by the
usual choice (Wigner, 1959)

K = eiπJ2 (2.3.8)

for K. With this choice of K,H and K commute and HR reduces to HT . Thus a
rotation-invariant system is represented by a real symmetric matrix H, and once again
the ensemble E1G is appropriate.
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2.4 Gaussian Symplectic Ensemble

In this section we discuss a system to whichE1G does not apply, a system with odd-spin,
invariant under time reversal, but having no rotational symmetry. In this case (2.2.11)
holds, K cannot be diagonalized by any transformation of the form (2.2.6), and there is
no integral of the motion by which the double-valuedness of the time-reversal operation
can be trivially eliminated.

Every antisymmetric unitary operator can be reduced by a transformation (2.2.6) to
the standard canonical form (cf. Appendix A.3)

Z =




0 +1 0 0 . . .

−1 0 0 0 . . .

0 0 0 +1 . . .

0 0 −1 0 . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .


≡

[
0 +1

−1 0

]
+̇
[

0 +1
−1 0

]
+̇ · · · , (2.4.1)

which consists of (2 × 2) blocks [
0 +1

−1 0

]

along the leading diagonal; all other elements of Z are zero. We assume that the repre-
sentation of states is chosen so that K is reduced to this form. The number of rows and
columns of all matrices must now be even, for otherwise K would be singular in con-
tradiction to (2.2.11). It is convenient to denote the order of the matrices by 2N instead
ofN . After one such representation is chosen, for whichK =Z, further transformations
ψ → Bψ are allowed, only with B a unitary (2N × 2N) matrix for which

Z = BZBT . (2.4.2)

Such matrices B form precisely the N -dimensional symplectic group (Weyl, 1946),
usually denoted by Sp(N).

It is well known (Chevalley, 1946; Dieudonné, 1955) that the algebra of the sym-
plectic group can be expressed most conveniently in terms of quaternions. We therefore
introduce the standard quaternion notation for (2 × 2) matrices,

e1 =
[
i 0
0 −i

]
, e2 =

[
0 1

−1 0

]
, e3 =

[
0 i

i 0

]
, (2.4.3)

with the usual multiplication table

e2
1 = e2

2 = e2
3 = −1, (2.4.4)

e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2. (2.4.5)
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Note that in (2.4.3), as well as throughout the rest of this book, i is the ordinary imagi-
nary unit and not a quaternion unit. The matrices e1, e2, and e3, together with the (2×2)
unit matrix

1 =
[

1 0
0 1

]
,

form a complete set, and any (2 × 2) matrix with complex elements can be expressed
linearly in terms of them with complex coefficients:

[
a b

c d

]
= 1

2
(a + d)1 − i

2
(a − d)e1 + 1

2
(b− c)e2 − i

2
(b+ c)e3. (2.4.6)

All the (2N×2N)matrices will be considered as cut intoN2 blocks of (2×2) and each
(2 × 2) block expressed in terms of quaternions. In general, a (2N × 2N) matrix with
complex elements thus becomes an (N ×N) matrix with complex quaternion elements.
In particular the matrix Z is now

Z = e2I, (2.4.7)

where I is the (N ×N) unit matrix. It can be verified that the rules of matrix multipli-
cation are not changed by this partitioning.

Let us add some definitions. We call a quaternion “real” if it is of the form

q = q(0) + q · e ≡ q(0) + q(1)e1 + q(2)e2 + q(3)e3, (2.4.8)

with real coefficients q(0), q(1), q(2), and q(3). Thus a real quaternion does not corre-
spond to a (2 × 2) matrix with real elements. Any complex quaternion has a “conjugate
quaternion”

q̄ = q(0)− q · e, (2.4.9)

which is distinct from its “complex conjugate”

q∗ = q(0)∗ + q∗ · e. (2.4.10)

A quaternion with q∗ = q is real; one with q∗ = −q is pure imaginary; and one with
q̄ = q is a scalar. By applying both types of conjugation together, we obtain the “Her-
mitian conjugate”

q† = q̄∗ = q(0)∗ − q∗ · e. (2.4.11)
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A quaternion with q† = q is Hermitian and corresponds to the ordinary notion of a
(2 × 2) Hermitian matrix; one with q† = −q is anti-Hermitian. The conjugate (Her-
mitian conjugate) of a product of quaternions is the product of their conjugates (Her-
mitian conjugates) taken in the reverse order:

q1q2 . . . qn = q̄n . . . q̄2q̄1, (2.4.12)

(q1q2 . . . qn)
† = q†

n . . . q
†
2q

†
1 . (2.4.13)

Now consider a general (2N × 2N) matrix A which is to be written as an (N ×N)
matrix Q with quaternion elements qkj ; k, j = 1,2, . . . ,N . The standard matrix opera-
tions on A are then reflected in Q in the following way:

Transposition

(
QT

)
kj

= −e2q̄jke2. (2.4.14)

Hermitian conjugation

(
Q†)

kj
= q†

jk. (2.4.15)

Time reversal

(
QR

)
kj

= e2
(
QT

)
kj
e−1

2 = q̄jk. (2.4.16)

The matrix QR is called the “dual” of Q. A “self-dual” matrix is one with QR =Q.
That is if qjk = [ ajk bjk

cjk djk

]
, then Q= [qjk] is self-dual if

ajk = dkj , bjk = −bkj and cjk = −ckj . (2.4.17)

The usefulness of quaternion algebra is a consequence of the simplicity of (2.4.15)
and (2.4.16). In particular, it is noteworthy that the time-reversal operator K does not
appear explicitly in (2.4.16) as it did in (2.2.3). By (2.4.15) and (2.4.16) the condition

QR =Q† (2.4.18)

is necessary and sufficient for the elements of Q to be real quaternions. When (2.4.18)
holds, we call Q “quaternion real”.

A unitary matrix B that satisfies (2.4.2) is automatically quaternion real. In fact, it
satisfies the conditions

BR = B† = B−1, (2.4.19)
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which define the symplectic group. The matrices H which represent the energy opera-
tors of physical systems are Hermitian as well as self-dual:

HR =H, H † =H, (2.4.20)

hence are also quaternion real. From (2.4.15) and (2.4.16) we see that the quaternion
elements of a self-dual Hermitian matrix must satisfy

q
†
jk = q̄jk = qkj , (2.4.21)

or q(0)jk must form a real symmetric matrix, whereas q(1)jk , q(2)jk , and q(3)jk must form real
antisymmetric matrices. Thus the number of real independent parameters that define a
(2N × 2N) self-dual Hermitian matrix is

1

2
N(N + 1)+ 1

2
N(N − 1) · 3 =N(2N − 1).

From this notational excursion, let us come back to the point. Systems having odd-
spin, invariance under time-reversal, but no rotational symmetry, must be represented
by self-dual, Hermitian Hamiltonians. Therefore the Gaussian symplectic ensemble, as
defined below, should be appropriate for their description.

Definition 2.4.1. The Gaussian symplectic ensemble E4G is defined in the space T4G
of self-dual Hermitian matrices by the following properties:

(1) The ensemble is invariant under every automorphism

H →WRHW (2.4.22)

of T4G into itself, whereW is any symplectic matrix.
(2) Various linearly independent components ofH are also statistically independent.

These requirements put in the form of equations read as follows:

(1) The probability P(H)dH that a system E4G will belong to the volume element

dH =
∏
k�j

dH
(0)
kj

3∏
λ=1

∏
k<j

dH
(λ)
kj (2.4.23)

is invariant under symplectic transformations; that is,

P(H ′) dH ′ = P(H)dH, (2.4.24)
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if

H ′ =WRHW, (2.4.25)

where

WRW = 1 or WZWT =Z. (2.4.26)

(2) The probability density function P(H) is a product of functions each of which
depends on a single variable:

P(H)=
∏
k�j

f
(0)
kj

(
H
(0)
kj

) 3∏
λ=1

∏
k<j

f
(λ)
kj

(
H
(λ)
kj

)
. (2.4.27)

2.5 Gaussian Unitary Ensemble

Mathematically a much simpler ensemble is the Gaussian unitary ensemble E2G which
applies to systems without invariance under time reversal. Such systems are easily cre-
ated in principle by putting an ordinary atom or nucleus, for example, into an externally
generated magnetic field. The external field is not affected by the time-reversal opera-
tion. However, for the unitary ensemble to be applicable, the splitting of levels by the
magnetic field must be at least as large as the average level spacing in the absence of
the magnetic field. The magnetic field must, in fact, be so strong that it will completely
“mix up” the level structure that would exist in zero field; for otherwise our random hy-
pothesis cannot be justified. This state of affairs could never occur in nuclear physics. In
atomic or molecular physics a practical application of the unitary ensemble may perhaps
be possible.

A system without time-reversal invariance has a Hamiltonian that may be an arbitrary
Hermitian matrix not restricted to be real or self-dual. Thus we are led to the following
definition.

Definition 2.5.1. The Gaussian unitary ensemble E2G is defined in the space T2G of
Hermitian matrices by the following properties:

(1) The probability P(H)dH that a system of E2G will belong to the volume ele-
ment

dH =
∏
k�j

dH
(0)
kj

∏
k<j

dH
(1)
kj , (2.5.1)
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whereH(0)kj andH(1)kj are real and imaginary parts ofHkj , is invariant under every
automorphism

H → U−1HU (2.5.2)

of T2G into itself, where U is any unitary matrix.
(2) Various linearly independent components ofH are also statistically independent.

In mathematical language these requirements are

(1)

P(H ′) dH ′ = P(H)dH, (2.5.3)

if

H ′ =U−1HU, (2.5.4)

where U is any unitary matrix.
(2) P(H) is a product of functions, each of which depends on a single variable:

P(H)=
∏
k�j

f
(0)
kj

(
H
(0)
kj

)∏
k<j

f
(1)
kj

(
H
(1)
kj

)
. (2.5.5)

2.6 Joint Probability Density Function for the Matrix Elements

We now come to the question of the extent to which we are still free to specify the joint
probability density function P(H). It will be seen that the two postulates of invariance
and statistical independence elaborated above fix uniquely the functional form of P(H).

The postulate of invariance restricts P(H) to depend only on a finite number of traces
of the powers of H.We state this fact as a lemma (Weyl, 1946).

Lemma 2.6.1. All the invariants of an (N ×N) matrixH under nonsingular similarity
transformations A,

H →H ′ =AHA−1,

can be expressed in terms of the traces of the first N powers of H .

Actually the trace of the j th power of H is the sum of the j th powers of its eigenval-
ues λk, k = 1,2, . . . ,N, of H ,

trHj =
N∑
k=1

λ
j

k ≡ pj , say,
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and it is a well-known fact that any symmetric function of the λk can be expressed in
terms of the firstN of the pj ; see, for example, Macdonald (1979) or Mehta (1989MT).

The postulate of statistical independence excludes everything except the traces of the
first two powers, and these, too, may occur only in an exponential. To see this we will
need the following lemma.

Lemma 2.6.2. If three continuous and differentiable functions fk(x), k = 1,2,3, satisfy
the equation

f1(xy)= f2(x)+ f3(y), (2.6.1)

then they are necessarily of the form a lnx + bk (k = 1,2,3), with b1 = b2 + b3.

Proof. Differentiating (2.6.1) with respect to x , we have

f ′
1(xy)=

1

y
f ′

2(x),

which, on integration with respect to y, gives

1

x
f1(xy)= f ′

2(x) lny + 1

x
g(x), (2.6.2)

where g(x) is still arbitrary. Substituting f1(xy) from (2.6.2) into (2.6.1),

xf ′
2(x) lny + g(x)− f2(x)= f3(y). (2.6.3)

Therefore the left-hand side of (2.6.3) must be independent of x; this is possible only if

xf ′
2(x)= a and g(x)− f2(x)= b3,

that is, only if

f2(x)= a lnx + b2 = g(x)− b3,

where a, b2 and b3 are arbitrary constants.
Now (2.6.3) gives

f3(y)= a lny + b3,

and finally (2.6.1) gives

f1(xy)= a ln(xy)+ (b2 + b3). �
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Let us now examine the consequences of the statistical independence of the various
components of H. Consider the particular transformation

H =U−1H ′U, (2.6.4)

where

U =




cosθ sin θ 0 . . . 0
− sin θ cosθ 0 . . . 0

0 0 1 . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . 1


 , (2.6.5)

or, in quaternion notation (provided N is even),

U =



cosθ + e2 sin θ 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . .

0 0 . . . 0 . . . 1


 . (2.6.6)

This U is, at the same time, orthogonal, symplectic, and unitary.
Differentiation of (2.6.4) with respect to θ gives

∂H

∂θ
= ∂UT

∂θ
H ′U +UTH ′ ∂U

∂θ
= ∂UT

∂θ
UH +HUT ∂U

∂θ
, (2.6.7)

and by substituting for U , UT , ∂U/∂θ and ∂UT /∂θ from (2.6.5) or (2.6.6) we get

∂H

∂θ
=AH +HAT , (2.6.8)

where

A= ∂UT

∂θ
U =




0 −1 0 0
1 0 0 0
0 0 0 0
. . . . . . . . . . . .

0 0 0 0


 , (2.6.9)

or, in quaternion notation, A is diagonal.

A=



−e2 0 . . . 0
0 0 . . . 0
. . . . . . . . . . . .

0 0 . . . 0


 . (2.6.10)
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If the probability density function

P(H)=
∏
(α)

∏
j�k

f
(α)
kj

(
H
(α)
kj

)
(2.6.11)

is invariant under the transformationU , its derivative with respect to θ must vanish; that
is

∑ 1

f
(α)
kj

∂f
(α)
kj

∂H
(α)
kj

∂H
(α)
kj

∂θ
= 0. (2.6.12)

Let us write this equation explicitly, say, for the unitary case. Equations (2.6.8) and
(2.6.12) give

[(
− 1

f
(0)
11

∂f
(0)
11

∂H
(0)
11

+ 1

f
(0)
22

∂f
(0)
22

∂H
(0)
22

)(
2H(0)12

)+ 1

f
(0)
12

∂f
(0)
12

∂H
(0)
12

(
H
(0)
11 −H(0)22

)]

+
N∑
k=3

(
− 1

f
(0)
1k

∂f
(0)
1k

∂H
(0)
1k

H
(0)
2k + 1

f
(0)
2k

∂f
(0)
1k

∂H
(0)
2k

H
(0)
1k

)

+
N∑
k=3

(
− 1

f
(1)
1k

∂f
(1)
1k

∂H
(1)
1k

H
(1)
2k + 1

f
(1)
2k

∂f
(1)
2k

∂H
(1)
2k

H
(1)
1k

)
= 0. (2.6.13)

The braces at the left-hand side of this equation depend on mutually exclusive sets of
variables and their sum is zero. Therefore each must be a constant; for example,

−H
(0)
2k

f
(0)
1k

∂f
(0)
1k

∂H
(0)
1k

+ H
(0)
1k

f
(0)
2k

∂f
(0)
2k

∂H
(0)
2k

= C(0)k . (2.6.14)

On dividing both side of (2.6.14) by H(0)1k H
(0)
2k and applying the Lemma 2.6.2, we con-

clude that the constant C(0)k must be zero, that is,

1

H
(0)
1k

1

f
(0)
1k

∂f
(0)
1k

∂H
(0)
1k

= 1

H
(0)
2k

1

f
(0)
2k

∂f
(0)
2k

∂H
(0)
2k

= constant = −2a, say, (2.6.15)

which on integration gives

f
(0)
1k

(
H
(0)
1k

)= exp
[−a(H(0)1k

)2]
. (2.6.16)
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In the other two cases we also derive a similar equation. Now because the off-diagonal
elements come on as squares in the exponential and all invariants are expressible in
terms of the traces of powers of H , the function P(H) is an exponential that contains
traces of at most the second power of H .

Because P(H) is required to be invariant under more general transformations than
we have here considered, one might think that the form of P(H) is further restricted.
This, however, is not so, for

P(H) = exp
(−a trH 2 + b trH + c)

= ec
∏
j

exp
(
bH

(0)
jj

)∏
k�j

exp
[−a(H(0)kj )2]∏

λ

∏
k<j

exp
[−a(H(λ)kj )2]

(2.6.17)

is already a product of functions, each of which depends on a separate variable. More-
over, because we require P(H) to be normalizable and real, a must be real and positive
and b and c must be real.

Therefore we have proved the following theorem (Porter and Rosenzweig, 1960a).

Theorem 2.6.3. In all the above three cases the form of P(H) is automatically re-
stricted to

P(H)= exp
(−a trH 2 + b trH + c), (2.6.18)

where a is real and positive and b and c are real.

In the foregoing discussion we have emphasized the postulate of statistical indepen-
dence of various components of H even at the risk of frequent repetitions. This sta-
tistical independence is important in restricting P(H) to the simple form (2.6.18), and
hence makes the subsequent analytical work tractable. However, it lacks a clear physical
motivation and therefore looks somewhat artificial.

The main objection to the assumption of statistical independence, leading to (2.6.18),
is that all values of H(λ)kj are not equally weighted and therefore do not correspond to all
“interactions” being “equally probable”. By a formal change Dyson (1962a, I) has de-
fined his “circular ensembles”, which are esthetically more satisfactory and equally easy
to work with. We shall come to them in Chapters 9 to 11. They give equivalent results
as we will see in Chapter 11. On the other hand, Rosenzweig (1963), has emphasized
the “fixed strength” ensemble briefly considered in Chapter 27. Others (Leff, 1963;
Fox and Kahn, 1964) have arbitrarily tried the so-called “generalized” ensembles re-
lated to classical orthogonal polynomials other than the Hermite polynomials. We will
study them in Chapter 19.
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If we keep only the first requirement that P(H) is invariant under H → UHU−1,
then P(H) may be any function of the traces of powers of H . People have studied in
particular the case when P(H)∝ exp(− trV (H)), where V (x) is a polynomial, prefer-
ably of even degree with the coefficient of the highest power positive. This case is briefly
mentioned in Section 19.4.

2.7 Gaussian Ensemble of Hermitian Matrices With Unequal Real and
Imaginary Parts

The ensembles so far considered were characterized by two requirements: (i) the prob-
ability P(H)dH that a system belongs to the volume element dH is such that P(H) is
invariant under H → U−1HU , where U is any matrix which is either real orthogonal,
symplectic or unitary according to the symmetry of the system; and (ii) various linearly
independent components of H are also statistically independent.

If for our system the time reversal invariance is only weakly violated, then the ap-
propriate ensemble will be almost an orthogonal or symplectic ensemble slightly mixed
with the unitary ensemble. Keeping the hypothesis (ii) that various linearly independent
parts of H are also statistically independent, we should now take

P(H)∝ exp
(− tr

(
H 2

1 /c1 +H 2
2 /c2

))
, (2.7.1)

where H =H1 +H2, H1 and H2 are Hermitian, H1 is symmetric (self-dual) and H2 is
anti-symmetric (anti-self-dual). If c2 = 0, then H2 = 0 with probability 1, and we have
the orthogonal (symplectic) ensemble; if c2 = c1, then we have the unitary ensemble.
For a small violation of the time reversal invariance, c2 � c1. Since it does not increase
the mathematical difficulties and the analytical solution is as elegant, we will treat in
Chapter 14 the general case where c1 and c2 are arbitrary real numbers.

Note that under real orthogonal transformations the traces of powers of H1 and H2

(i.e. of real and imaginary parts of H ) are invariant and so is the probability density
P(H) of Eq. (2.7.1). However, under unitary transformations the real and imaginary
parts of H mix up and the above P(H) is no longer invariant unless c1 = c2.

2.8 Anti-Symmetric Hermitian Matrices

Though physically not relevant, the mathematical analysis of a Gaussian ensemble of
anti-symmetric (or that of anti-self-dual quaternion) Hermitian matrices is equally ele-
gant. As above, the probability will be taken as

P(H)dH, dH =
∏
j<k

dHjk,
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and

P(H)∝ exp
(−a trH 2).

Summary of Chapter 2

The probability density P(H) of a random matrix H is proportional to exp(−a trH 2 +
b trH + c) with certain constants a, b, c in the following three cases:

(1) If H is a Hermitian symmetric random matrix, its elements Hjk with j � k are
statistically independent, and P(H) is invariant under all real orthogonal trans-
formations of H . The resulting ensemble is named as Gaussian orthogonal.

(2) If H is a Hermitian random matrix, its diagonal elements Hjj and the real and
imaginary parts of its off-diagonal elements Hjk for j > k are statistically in-
dependent, and P(H) is invariant under all unitary transformations of H . The
resulting ensemble is named as Gaussian unitary.

(3) If H is a Hermitian self-dual random matrix, its diagonal elements Hjj and the
four quaternionic components of its off-diagonal elements Hjk with j > k are
statistically independent, and P(H) is invariant under all symplectic transforma-
tions of H . The resulting ensemble is named as Gaussian symplectic.

Moreover,

(4) For a Hermitian anti-symmetric random matrix H , it is not unreasonable to take
the elements Hjk with j > k as Gaussian variables with the same variance.

(5) Similarly, for a Hermitian random matrix H , with P(H) not invariant under uni-
tary transformations of H , it is not unreasonable to take its symmetric and anti-
symmetric parts to have the probability densities prescribed under cases (1) and
(4) above.

Invariance of P(H) under orthogonal, unitary or symplectic transformations of H is
required by physical considerations and depend on whether the system described by the
Hamiltonian H has or does not have certain symmetries like time reversal or rotational
symmetry. The statistical independence of the various real parameters entering H is
assumed for simplicity.




