Directed polymers as a glass,
pinning of elastic manifolds

Freezing transition of the directed polymer

Replica-related clone method to capture complex energy
landscapes

Pinning of elastic manifolds



Recapitulation

Specific models with exact solutions in the KPZ universality class:

 Polynuclear growth — map to problem of longest increasing subsequence
of a permutation — purely combinatorial problem

 Totally asymmetric exclusion process TASEP

 Directed polymer in the limit of delta-correlated disorder: replica treatment for

moments of the partition function Z" in the long distance limit

+ scaling assumption forIn(Z) — 6 = %

All predict Tracy-Widom distribution for the height.
Universality of the KPZ class beautifully confirmed in experiment.



Recapitulation

Directed polymer as a simple ‘glass’

A partition function of a system with N degrees of freedom is a sum of O(exp(c N)) terms!
It usually takes exponential time to compute it exactly.

Monte Carlo simulations nevertheless allow to sample phase space, but only if the phase
space is relatively easy to explore. It becomes very hard / slow when
Z is extremely broadly distributed or when huge energy barriers have to be overcome.

Disordered systems with lots of different low energy configurations (= glasses) defy this
usually. = Hard problems!

The directed polymer is an interesting exception: The partition function can be calculated
recursively, in linear rather than exponential time in its length N!

TODAY: Reveal the glassy aspect of directed polymers & understand pinning + metastability



Directed polymer as a glass problem

So far: directed polymer in finite transverse dimension, mostly d=1

 Asimpler, solvable case arises for a large number of transvserse dimensions
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Directed polymer as a glass problem

So far: directed polymer in finite transverse dimension, mostly d=1

 Asimpler, solvable case arises for a large number of transvserse dimensions

O~ root t+1 4
Cayley tree:
Neglect that some 1 2 3 t generations
second neighbors k=3 1
coincide in finite
dimension
leaves

 Apolymer goes from any leaf (bottom to the top), its energy being the sum of site
energies &; encountered along the path, E' = X;epqen &
 Recursion equation for partition function of increasing generation:

Zo(t+1) = e Po(Z1(t) + ... + Z(1)) Z(0)=1



Directed polymer as a glass problem

Simple recursion for the average partition function (first moment of Z):

Zo(t+1) =e PO(Zy(t) + ...+ Zp(t))  Z(0) =1
—> Z(t+1)=ke PeoZ(t)

—> Z(t) = [ke Pe]" = exp(— B fannt)

/

This computes the so-called “annealed” free energy f,, (per unit
length of the polymer)




Directed polymer as a glass problem

Simple recursion for the average partition function (first moment of Z):

Zo(t +1) = e POo>Z1(t) + ... + Zp(t)) Z(0)=1
—> Z(t+ 1) = ke PaZ(t)

—> Z(t) = [ke=F<0]" = exp(—f fannt)

—>_f

This computes the so-called “annealed free energy f,., (per unit
length of the polymer)



Annelaed versus quenched
averages

Note: Computing the disorder average Z means to treat both, configurations of the
polymer and disorder degrees of freedom, as dynamical variables! This thus treats the
disorder as ‘annealed’ (that is, to be averaged over) in the relevant time window over
which thermodynamic properties are probed:

_BFann L= 10g7 fann = lim Fann/N

N — o0

To be contrasted with the usual situation in disordered systems: The disordered
potential/couplings are fixed in time. In this case the relevant quantity is the free
energy in a fixed ("quenched”) disorder realization. Since the free energy density in
typical disorder configurations averages automatically over disorder in different portions
of the sample (= self-averaging), the free energy density tends to its disorder average

—fFq =log(Z) = —fF  EINESSEIN SN
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not reflect the physics of typical samples.



Annelaed versus quenched
averages

 Jensen’s inequality for convex functions implies that
log Zann = log Z > log Z = log(Zqu)
— Fann < Fqu

 As discussed last time (cf. single disordered path), at low T averages of Z (and thus
the annealed free energy) are dominated by rare disorder realizations and hence do
not reflect the physics of typical samples.

« HOWEVER: It can happen (as we will show to be the case here) that at high
temperatures, the annealed free energy density coincides with the quenched one:

0 = farn = fqu (T >1T¢)

un lann N — 00
—
N
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Directed polymer as a glass problem

Z(t) = [ke—Pe]" = exp(—f fannt)

_

Evaluate for a Gaussian disorder distribution: P(so) = ex\;;(— 2A;)2 )
2mA
L 27 log(k)  BA®
(B) = — = log[keP"27)/2] =
fann(B) = = log|ke | 3 .



Directed polymer as a glass problem

Z(t) = [ke—Pe]" = exp(—f fannt)

_

62
exp(— A )

Evaluate for a Gaussian disorder distribution: P(go) = \/27TA 5
1 2 A 2 log(k) BAQ
ann = ——1 k (F7A7)/2] =
fann (B) 5 og|ke | ; 2
AQ

Sann = —dfann/dT = log(k)

2172



Directed polymer as a glass problem

Z(t) = [ke—Pe]" = exp(—f fannt)

_

Evaluate for a Gaussian disorder distribution: Plen) = eXp(_2A02)
(€0)
V2T A2
! 2 52 log(k)  BA?
(B =—=1 (B7A%)/21 —
fann(B) 3 oglke ] ; ;

A?Z  Tums negative for

sann = —foan /AT = o8(4) — 570
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Entropy crisis and freezing transition
What is happening?

fann(B) = fqu(B)  for small enough S (as we will see below)

BUT: s,,, becomes unphysical at low T, since s > 0 for any discrete system!

Reason:

As usual, at low enough T, any moments of Z (here the first moment) start being
dominated by rare disorder.

S < 0 reflects that very rare disorder (exponentially rare in system size N, having

probability ~ exp(s.,, N)<< 1) yields the dominant contribution to Z = exp(—BfN)
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Entropy crisis and freezing transition
What is happening?

fann(B) = fqu(B)  for small enough S (as we will see below)

BUT: s,,, becomes unphysical at low T, since s > 0 for any discrete system!
A

v/ 2log (k)

BUT: Since f,,, is analytical in  and coincides with f,, at high T, f,, must
necessarily be non-analytical at the point where the deviation starts.
The deviation point corresponds to a non-analyticity and marks a phase transition:

The freezing transition or (static) glass transition.

The above strategy is an elegant, often used proof for the existence of a (glass)
transition. -- To be determined: at which T, = T does the transition happen?
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The clone method (R. Monasson (1995))

Picture of glasses: Disorder generates low-lying energy configurations
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(Here “valleys” correspond just to the different polymer configurations.
Two configurations always differ beyond some point in the tree and thus
are typically very far from each other in phase space.)
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Entropy crisis and freezing transition

Generating deeper insight:
The clone method (R. Monasson (1995))

Picture of glasses: Disorder generates low-lying energy configurations
(= “valleys”) separated from other configurations by barriers.

m
(Here “valleys” correspond just to the different polymer configurations. [||
Two configurations always differ beyond some point in the tree and thus \
are typically very far from each other in phase space.) :

dip

Idea: Instead of calculating the partition function for a single copy of the
system, we imagine to weakly couple m copies of the system together, m=4
such that they all populate the same valley, but otherwise don't interact But eventually:

noticeably. — Separately weigh (valley) entropy and energy! m non-integer, m <1
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Clone partition function— separately weigh (valley) entropy and energy!

In a glass: expect exponential number of “valleys” of a given (free) energy density f

!

2(f) := “configurational entropy” or “complexity” (in a typical realization) |
Note: in general f = e-sT contains valley-internal entropy, '\
while Z counts the number (entropy) of valleys A

dip

Aim: Play with clone number to determine Z(f): Legendre trafo!
Zz(vm) _ / dfeNE(f)e—mﬁfN

= Partition function of a typical realization

m=4

But eventually:
m non-integer, m <1



Entropy crisis and freezing transition

Clone partition function— separately weigh (valley) entropy and energy!

In a glass: expect exponential number of “valleys” of a given (free) energy density f

X(f) :=“configurational entropy” or “complexity” (in a typical realization)
Note: in general f = e-sT contains valley-internal entropy, N
while Z counts the number (entropy) of valleys

Aim: Play with clone number to determine Z(f): Legendre trafo!

Z§Vm>_ dfeNE() g=mBIN — p=Bmé(m)N mee

_ But eventually:

¢: Clone“or o non-integer, m <1

= Partition function of a typical realization ~ “replicated” free energy
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Computing the complexity from cloning
Zm) _ / dfeNEWD) =mBIN — =pme(m)N
N

Suppose we have calculated the replicated fr ergy ¢(m) for a range of m (not necessarily integer)
(N>>1) — —mBd(m) = max £1s3(f)>0 2(f) —mpf]

z 1 Physically relevant, stable
complexities X(f) are concave,

_ i mf = Z'(f)
/ Fz 0
g — <
_ml[g(p 3f2

cf. thermodynamic stability :
> £ - 0*°S(E) oyT 1
OE2  OE T2y

<0




Computing the complexity from cloning
Zm) _ / dfeNEWD) =mBIN — =pme(m)N
N

Suppose we have calculated the replicated fr

>

ergy ¢(m) for a range of m (not necessarily integer)

(N>>1) —> —mBo(m) = maxsisfy>o [2(f) — mBf]

f

Physically relevant, stable
complexities Z(f) are concave,
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Suppose we have calculated the replicated fr ergy ¢(m) for a range of m (not necessarily integer)
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Computing the complexity from cloning
Zm) _ / dfeNVEWD =mBIN — =Bmd(m)N
N

Suppose we have calculated the replicated fr ergy ¢(m) for a range of m (not necessarily integer)

(N>>1) —> —mBo(m) = maxsisfy>o [2(f) — mBf]

Obtain complexity £ from
inverse Legendre transform! :

: mp =) 3B(f) = ming, [-mBé(m) +mpBf]
/ = —pm|op(m) = fllagme)/dm=7
d(ma)

= —fpm [gb(m) T am ] |d(me)/dm=7

f = Bm*¢' (m)|a(me) /dm=

ZA

—mpo




Computing the complexity from cloning
Zm) _ / dfeNEWD) =mBIN — =pme(m)N
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Suppose we have calculated the replicated fr ergy ¢(m) for a range of m (not necessarily integer)

(N>>1) —> —mBo(m) = maxsisfy>o [2(f) — mBf]
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inverse Legendre transform! :
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d(ma)

= —fpm [gb(m) T am ] |d(me)/dm=7
>

——> Physicalrangeof ¢ : 2 >0 & ¢' > Of — BmQ(ZS/(m)‘d(mcb)/dm:f




Computing the complexity from cloning
Zm) _ / dfeNVEWD =mBIN — =Bmd(m)N
N
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Computing the complexity from cloning
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Computing the complexity from cloning
Zm) _ / dfeNVEWD =mBIN — =Bmd(m)N
N

Suppose we have calculated the replicated fr ergy ¢(m) for a range of m (not necessarily integer)

(N>>1) —> —mBo(m) = maxsisfy>o [2(f) — mBf]
o A

Quenched free energy of the actual system:

o BF _ / dfeN (=R
>(f)>0

F =mings(p)>o [f — B712(f)] = ¢(1),
if Z(fmin) ™~ ¢/(1) > 07
else

7
Physical range of ¢ : 2 >0 < ¢’ >0 — f‘Z(f)zo = @|ypr=0 = max,, p(m).




Computing the complexity from cloning

COmpaCt result: F _ Fqu — maXmgl ¢(m)!

The quenched free energy is the maximum of the free energy per clone, ¢o(m), in the range m < 1.



Computing the complexity from cloning

C t It:
ompact resu F = Fqu = MaX;, <1 ¢(m)'

The quenched free energy is the maximum of the free energy per clone, ¢o(m), in the range m < 1.

Note:

Curiously, ¢ is to be maximized over the clone number m, in contrast to the minimum principle of F
with respect to constraints:

The free energy of an unconstrained thermodynamic system is the minimum over the free energies
of constrained systems.

(Obviously, because constraints can only reduce the partition function and thus can only increase F).

But: Cloning is not a physical constraint, there is no contradiction with thermodynamic principles.



Entropy crisis and freezing transition

Application of the clone method to the directed polymer:

Simple, but instructive!

fl
m.

dip

m=4

Z](Vm) — /df@NE(f)e_mﬁfN — —pme(m)N But eventually:

m non-integer, m <1



Entropy crisis and freezing transition
Recursion for clones:
Zy0 = e Pz 4+ 20

f

Polymer length = tree generation

m=4

Z](Vm) — /dfeNE(f)e_mﬁfN — —pme(m)N But eventually:

m non-integer, m <1



Entropy crisis and freezing transition

Recursion for clones:
(m) _ _—Begm(rz(m) (m)
Znii=¢€ (ZN’1+...+ZN7k)
For small enough m (€= high effective temperature T/m!) expect annealed = quenched average

In(Z§Y))/N = In(Z§Y,)) /N

Z](Vm) — /dfeNE(f)e_mﬁfN — e_5m¢(m)N But eventually:

m non-integer, m <1



Entropy crisis and freezing transition

Recursion for clones:
(m) _ —Beom( z(m) (m)
Znii=¢€ (ZN,1 —|—...+ZN’k)
For small enough m (€= high effective temperature T/m!): expect annealed = quenched average

In(Z§Y))/N = In(Z§Y,)) /N

e AP g

Z](Vm) = /dfeNE(f)e_mﬁfN — —pme(m)N But eventually:

m non-integer, m <1
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Entropy crisis and freezing transition

Replicated free energy in this simple case

1
_ —mpBeo| —
¢(m) Bm log[ke ] Jann (mﬁ)
For Gaussian disorder: , A2 ( ﬁm)2
p(m) = —— |—log(k) — 9
Dominant f:

bm
—>  f(m) = d(m¢p(m))/dm = —BmA




Entropy crisis and freezing transition

Replicated free energy ¢ in this simple case
1
o(m) = B log[ke=mF] = fann(mp3)
For Gaussian disorder: )
{ o) = =5
Dominant f:
—> f(m m))/dm = —BmAz
Complexity

—



Entropy crisis and freezing transition

Replicated free energy in this simple case

p(m) = : log[ke=mPeo] = ‘ fann(mp)

pm
5[ S10

For Gaussian disorder:

Dominant f:

Complexity




Entropy crisis and freezing transition

Replicated free energy in this simple case

p(m) = 5171 log[ke—mPeo] i fann(mp)

For Gaussian disorder: |

om) = 5 [— log (k) —

AZ(gm)Q]

Dominant f:

—>  f(m) = d(meo(m))/dm = —BmA?

Complexity
_

N(f) _ NN 12 N — WD
e j\[(f):@ — k 2A2 — kY e 2nNAZ

Probability that path has
energy density = f

Natural interpretation: Total No. of paths
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)

o—BF _ / dfeN (EU)=50)
2(£)=0



Entropy crisis and freezing transition

Tangent construction:

e PE = /Z e dfe™N(Z)=B1) Dominating paths at T > T_ have

energy density f(T):
Y(f(T)) =1/T

Configurational entropy NX is
extensive!

AT) J
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o—BF _ / dfeN (C(0)=50)
£(f)20

Dominating path at T =T, is the
(single) path of lowest energy
Configurational entropy vanishes!

Below T, the polymer is frozen in
the optimal path.

AT) J
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Tangent construction:

)

o BF _ / dfeN (C(0)=50)
5(f)20

Dominating path at T =T, is the
(single) path of lowest energy
Configurational entropy vanishes!

Below T, the polymer is frozen in
the optimal path.

AT) J



Exercise

1. Redo the DPRM analysis for non-Gaussian disorder assuming a small third or forth cumulant of the
distribution of local energies, neglecting higher cumulants. How come the results is different? Why does
the CLT not apply?

2. Compare the DPRM on the Cayley tree to the random energy model (REM):

The REM is a system assumed to have 2V configurations. Each of those has a random energy, drawn
independently from a Gaussian distribution with zero mean and variance NAZ.

- Write down the partition function of this system, analyze it by a saddle point method. Identify the freezing
transition T.. Compare to the DPRM!

- What happens at the freezing transition? What is the likelihood to find the system in the lowest energy
configuration for T>T_ and for T<T.?

- Imagine to do Monte Carlo for this REM: In each step you propose a new configuration. Accept the move
with probability exp(-max(E_new —E_old,0)/T). Imagine to start in low energy configuration with E/N = e <
0. How long will it take roughly to find yourself in a new state with ' < 0 ? Argue that this takes
exponentially long (in N) time, at any temperature! Thus even above the freezing temperature the
dynamics of such a system is very slow or ‘glassy’, even though thermodynamically it is still in the high
temperature phase!



Rigorous solution by
Derrida and Spohn  J stat. prys. 88

 The above heuristic methods can be shown to give the rigorously exact free energy
density.

* Instead of a discretely branching tree, it is nicer to consider a continuous branching
process. Then the problem maps onto the KPP equation - a simple nonlinear equation
known for wave propagation phenomena.

« Exact results for the wave propagation problem allow one to obtain exact results for the
DPRM on the tree



Rigorous solution by
Derrida and Spohn  J stat. prys. 88

* At generation t from the leaves one defines the partition function Z(t) and the quantity

xr—r 00

Gi(x) = exp(—e=PzZ(1)) ~ 1—eBzZ(t)

 One can show that the discrete tree recursion implies that

G (z) = / AV (V)G (z + V)]*

This can be shown to tend to a travelling wave solution of the form w(x-ct).
(as suggested by the solution on the continuously branching tree)

Determining the speed ¢ > 0 is equivalent to computing (minus) the free energy
density f (since exp(—fx) Z(t)~ exp(—B(x + ft)).
This turns out to be exactly the f obtained with our less rigorous methods above.

Freezing of f at low T: <> wave must travel with minimal speed ¢ = - f(T_c).



How does the glassy aspect of
an elastic line or interface
affect their motion?
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Pinning of elastic manifolds

“Glassy” features of the directed polymer:

» Deep energy valleys: domination by one single valley at low T,

— thermal fluctuations are frozen out, disorder dominates:
Competing low energy configurations are far apart

 Scaling considerations:
To change from one configuration to another one has
to cross large barriers: to move a portion of the poly-
mer sideways by Ax requires typically detaching a
length Az = Ax/S.
Intermediate configurations have excess
energy scaling as AE ~Az% ~Ax(2¢+d=2)/¢
(nd=1: ~Ax®/® ~px3 )
— Growing energy barriers. How do these affect motion under a force?
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Thermal creep

Applying a force f, what are the minimal barriers to cross?

Barrier: AE ~AE' ~Az9=(2=2+2¢)
Energy gain: E;~ Az% Ax ~Az% Az¢

E; > AE — Az > f~1/(2=0)
—> AE > 709/




Thermal creep

Applying a force f, what are the minimal barriers to cross?

Barrier: AE ~AE' ~Az9=(d=2+2¢)
Energy gain: E;~ Az% Ax ~Az% Az¢
E, > AE - Az > f1/ 2=

—> AE > 709/

X . C f_e/(z_{)
——> creep motion: v ~exp(— —)




Thermal creep

Applying a force f, what are the minimal barriers to cross?

In{v)

Ll Ll T I I Ll
1 1.2 1.4 1.6 1.8 2 2.2 2.4

(17H)'"* (koe ™"
d=1+1: domain wall in magnetic'}’n\
pushed by magnetic field H

f—9/(2—C) — f—1/3/(2—2/3) — f—1/4

C f_e/(z_Z)

—)

——> creep motion: v ~exp(—
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What about motion at T = 07

Naively: our reasoning shows that for any force f there are
barriers. So, at T=0, is there never any motion for any force?

Not necessarily: The larger the force the smaller the scale L(f).
Thus the question is:
Are there metastable states/ barriers at all scales,

or is there a smallest scale which determines a maximal force
that suffices to unpin the interface?



Minimal displacement for
metastability to set in”?

Caution: The random manifold regime only holds beyond some
minimal length scale where the correlations in the potential are not felt
anymore!

What is this length scale, and what happens before?

Revisit disorder more carefully!




Minimal displacement for
metastability to set in”?

Caution: The random manifold regime only holds beyond some
minimal length scale where the correlations in the potential are not felt
anymore!

What is this length scale, and what happens before?

Recall: Elasticity and disorder compete

Le
C ,
“ Hq = /ddz E(Vu)z Hpin = /ddz V(u(z),z)
Disorder correlations:
V(u,z)V(u,z') = K(ju—u'|)é%(z — 2
<>  Force correlations: f = —VV

fo(u,z)f3(u,z') = —90°90° K (lu—u'|)6%(z—2') = AY(jlu—u'|)0%(z—2').
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Short scale roughness: Larkin model

Equilibrium configuration satisfies the force balance:

—cViu(z) = fyin(u(z),z) = —VuVpin(u(z),z)
Neglect u-dependence on the right (u < &): Solve for response to the pinning forces:

u’(z) = / d%2' G*P(z — z')fgin(O,z').
with the elastic Green’s function
ddq eiq-(z—z’)
(27)¢ ©@*

Gaﬁ(z —7') = dap

dq 1 A(0)

amill—esta- =2z ~ =5

(u(z) —u@) (u(z) —u@)? = 28(0)da | 12— 2'[' 65



Short scale roughness: Larkin model

Equilibrium configuration satisfies the force balance:

—cViu(z) = fyin(u(z),z) = —VuVpin(u(z),z)
Neglect u-dependence on the right (u < &): Solve for response to the pinning forces:

u®(z) = / d%2' G*P(z — z')ffin(O,z').
with the elastic Green’s function

By _ o dlq e'at2) Short range f at
(z—z)—/ G o 0 ort range force correlator

d
(u,(z) —u(z'))*(u(z) —u(z))? = 2A(0)daﬂ/ (;;)14 1= cos(q - (z — z/))]L _A(0)




Short scale roughness: Larkin model

Equilibrium configuration satisfies the force balance:

—cViu(z) = fyin(u(z),z) = —VuVpin(u(z),z)
Neglect u-dependence on the right (u < &): Solve for response to the pinning forces:

u®(z) = / d%2' G*P(z — z')ffin(O,z').
with the elastic Green’s function

44 iq-(z—2')
G (z —2') = / i das  Shortrange force correlator

(2m)¢  cq?
Short scale roughness:

d4 1 A(0)

(ufe) —u()*(ule) —u@)’ = 28Oy [ Gl costa- G-z ~




Short scale roughness: Larkin model

dq 1 A(0)

il —es(@- @z ~ =

(u(z) —u(z))*(u(z) —u(@))” = 2A(0)dp 2 — 2"~ %dap

(Au)? ~ &% « u-independence of pinning forces breaks down
o Az~ [c?E2/A(0)]Y/ 4D = [ ="Larkin length’



Short scale roughness: Larkin model

ddq 1 A(0)

(ufe) —u())*(ule) —u@)’ = 28Oy [ Gl —costa- -z ~

|Z . z/|4—d(5aﬁ

(Au)? ~ &% « u-independence of pinning forces breaks down
o Az~ [c?E2/A(0)]Y/ 4D = [ ="Larkin length’

Beyond L. Coarse-grained description with delta-correlations applies — crossover to random
manifold (like DPRM) with large scale roughness ¢.



Short scale roughness: Larkin model

ddq / 1 A(O)

(o) — @) (0le) —u@)’ = 2800)0u [ G- cos(a- (2 -2z ~

S~ a2

(Au)? ~ &% « u-independence of pinning forces breaks down
o Az~ [c?E2/A(0)]Y/ 4D = [ ="Larkin length’

Beyond L. Coarse-grained description with delta-correlations applies — crossover to random
manifold (like DPRM) with large scale roughness ¢.

L. : Minimal length scale on which 2 local minima (solutions for static equilibrium) may exist!
——> To move the manifold at T =0

\ Ntﬂ*%m\ Q M (downward sliding) ?
ST o e AE~ c(&/L,)%L8



Short scale roughness: Larkin model

d%q 1 A(0)

(ufe) —u())*(ule) —u@)’ = 28Oy [ Gl —costa- -z ~

|Z . Z,|4_d(saﬁ

(Au)? ~ &% « u-independence of pinning forces breaks down
o Az~ [c?E2/A(0)]Y/ 4D = [ ="Larkin length’

Beyond L. Coarse-grained description with delta-correlations applies — crossover to random
manifold (like DPRM) with large scale roughness ¢.

L. : Minimal length scale on which 2 local minima (solutions for static equilibrium) may exist!

——> To move the manifold at T =0
(downward sliding) ?
Apply force f. that overcomes

AE~ c(§/L)?LE

@ the barrier to the next
%/X@//@ minimum: AE~ f.& L¢
757 - f, = c§[12~E174 (-]



Depinning and flow

What happens (at T = 0) as one approaches and crosses f.?
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Depinning: a dynamical critical
phenomenon!
Second critical exponent 8
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Diverging correlation
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Depinning and flow

Depinning: a dynamical critical

phenomenon!
Second critical exponent 8
U= (f m fc)ﬁ
Diverging correlation
length and time
gz ™~ (f — fc)_y
T~ &

2 independent exponents are left!




Large scale roughness

Large scale roughness beyond 1+1 dimensions? Capturing metastability in field theory?

 Replicate action (elasticity+ disorder)

2 a=1 2T a,b=1

« Disorder average  H,, = / d’z [Ei(%a)? - Z K (Ju,(z) —ub(Z)I)]

 Require first and second term in H../T to scale similarly (Ex 1 - Flory)

K(u) ~ |u]=®  L972%26 o L[ /(T ~ LI472120))




Random bonds vs random fields

Two universality classes of disorder

So far considered:

‘Random bond (RB)" disorder : The elastic object feels a potential where it passes
through

— K(u) is short ranged (typical scale &) = K(u) ~ 1/|u| a=1

RB



Random bonds vs random fields

Two universality classes of disorder

So far considered:

‘Random bond (RB)" disorder : The elastic object feels a potential where it passes
through

— K(u) is short ranged (typical scale &) = K(u) ~ 1/|u| a=1

Also relevant:
“Random force (RF)": The elastic interface separates two phases (e.g. up / down

magnet). The random disorder couples oppositely to the two phases — K(u) ~ |u| Q== —1

RB RF




Large scale roughness

Large scale roughness beyond 1+1 dimensions? Capturing metastability in field theory?

 Replicate action (elasticity+ disorder)

m m
C 1

e Disorderaverage H,, = / d?z l§Z(Vua)2 - 57 > K(|u,(z) —ub(z)|)] -
a=1 a,b=1

 Require first and second term in H../T to scale similarly (Ex 1 - Flory) —




Large scale roughness

Large scale roughness beyond 1+1 dimensions? Capturing metastability in field theory?

 Replicate action (elasticity+ disorder)

2 3 2T a,b=1

* Disorder average  H,, = / d’z [Ei(Vua)2 - i K(|ua(z) —ub(Z)I)]

 Require first and second term in H../T to scale similarly (Ex 1 - Flory) —

Can one do better? Yes!



Renormalization group

4—d , _ ,
(shore =——  €=>  Disorderisrelevantind < d,,. = 4!

Renormalization group treatmentford = 4 — & ?

Yes: Renormalize replicated action!

n= [ at !_ (Vuo)? — o 3 K(Jua(z) — w(n))



Renormalization group

<> Disorder is relevantind < d,. = 4!

9 A—d @
Problem: u ~z ~

u is marginal field in d = 4: All powers of u are marginal! They must be
retained in a consistent RG flow.



Renormalization group

4—d , , _
(shore =——  €=>  Disorderisrelevantind < d,,. = 4!

Renormalization group treatmentford = 4 — € ?

Yes: Renormalize replicated action!

Hy = [ d [5 > (Vo) — g O K(lua(s) - ub(z)n]

a=1 a,b=1
Problem:  u? ~ 2374 ~ €
u is marginal field in d = 4: All powers of u are marginal! They must be
retained in a consistent RG flow.

— Cannot expand K(u) in a power law series and truncate, but must
renormalize the full function! — functional RG



Renormalization group

FRG flow equation for rescaled force correlator
A(u) = —K"(u)
~ (1 ‘
Ay(u) = i eU=d=20 A (uef!) A = short-scale cutoff
(cA?)?

~

AA(u) = (e—20)A1(u) + (ulj(u)  +AY(u) (Al(O)—A,(u))—A;(u)‘Z.

Interesting aspect:

After renormalization to a finite length scale of order L, the renormalized
correlator becomes non-analyticat u = 0: A;(u) = A;(0) — a|u] Larkin scale!

! ) 1 ) 1/e ‘ 2 1/e
le=-In(1+— > Lo=Aledr (=  EYWI
¢ 3146 (0)] A\ 3A%4(0) 344 A5(0)

The non-analytic term —a|u| reflects emergence of degenerate local
minima at the scale L, !




