The Kardar-Parisi-Zhang
equation and universality class

M. Kardar, G. Parisi and YC Zhang (PRL 1986)

From randomly growing non-equilibrium surfaces
to fluid dynamics and polymers in random media

Relations to random matrices, sequence alignment ...

Splendid recent progress in mathematical physics
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Universality, self-similarity and Cri’_ticali:c)y
beyond equilibrium phase transitions”
Second order phase transitions:

* Universality: at large scale: independence of microscopic details
« Self-similarity: critical exponents, scaling
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Universality, self-similarity and Cri’_ticali:t)y
beyond equilibrium phase transitions”

Second order phase transitions:

* Universality: at large scale: independence of microscopic details
« Self-similarity: critical exponents, scaling

Does this exist
» out of equilibrium?
» in random, disordered systems?

» Does disorder matter? How so?
» Are there new aspects not present in clean systems?



Universality, self-similarity and Cri’_ticali:t)y
beyond equilibrium phase transitions”

Second order phase transitions:

* Universality: at large scale: independence of microscopic details
« Self-similarity: critical exponents, scaling

Does this exist
» out of equilibrium? YES!
> in random, disordered systems? '

» Does disorder matter? How so?
» Are there new aspects not present in clean systems?



Growing surfaces

one of the simplest examples of this kind

(beyond simple diffusion / Brownian motion)

Rich and ubiquituos



Growing surfaces

See Takeuchi Review for details

t =6841 min

t =3901 min

h(x,1) t =961 min

000 um

(a) Proliferating cancer cells.

1d surface of cancer cells growing on a Petri dish



Growing surfaces

See Takeuchi Review for details

Coffee ring effect:

(b) Particle deposition in suspen-
sion droplet.

Colloid particles accumulating at the edge of a droplet
inward growth of colloid layer: roughening with time



Growing surfaces

See Takeuchi Review for details

Boundary between
two (turbulent) liquid
crystal phases

500 um

K. A. Takeuchi, M. Sano
(J. Stat. Phys. 2012)



Growing surfaces

Physical examples:

 Growth of bacteria colonies

* Interfaces between two liquids; ink spreading on paper
* Slow combustion of paper

* Forest fire fronts

* Front of chemical reaction

 Motion of the front of a thin liquid film on surface

* Crystal growth

Ingredients: Growth under noise (heterogeneity) and short range interactions
Nontrivial relations to:

 Asymmetric simple exclusion process (hopping motion of hardcore particles)
* Longest growing subsequence in a random permutation, combinatorics



Universal scaling of surface
roughness

Characterization of growth:
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roughness

Characterization of growth:

Scale invariance: — Invariance of statistical
properties under scale transformation

w(t, t) ?



Universal scaling of surface
roughness

Characterization of growth:

Scale invariance: — Invariance of statistical
properties under scale transformation

¢ for £ < &(v),

f,t ~ t'BFw gt_l/z ~
w({, 1) ( ) {tﬂ for € > &(1),

with £(t) ~ t'% (z = a/B),



Universal scaling of surface

roughness

Characterization of growth:

%)

h(x,f)
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Scale invariance: — Invariance of statistical
properties under scale transformation

¢ for £ < &(v),

f,t ~ t'BFw gt_l/z ~
w({, 1) ( ) {,ﬂ for € > &(1),

with £() ~ t'% (z = a/B),

x> bx, t— bt, ohw— b%6h.
Oh(x,t) = h(x,t) —(h(x, 1))

a, 8, z: Universal exponents

— Universality classes of
kinetic roughening



Linear growth: Edwards-Wilkinson

Equation of motion for growing surface:

 Time translation invariance t — t + At

* Spatial translation invariance x — x + Ax

* Inversion/rotation in space x - —x, x - Rx
 Height translation translation h - h 4+ Ah

Edwards-Wilkinson
equation O

ot
White noise:  (n(x,1)) =0, (n(x,Hn(x’, ")) = D6(x — x")6(t — 1)

Steady accumulation (with random noise) + diffusion

h(x,t) = vo + vV2h + (x, 1).



Linear growth: Edwards-Wilkinson

Equation of motion for growing surface:

Time translation invariance t — t + At
Spatial translation invariance x — x + Ax
Inversion/rotation in space x - —x, x = Rx
Height translation translation h — h 4+ Ah

Edwards-Wilkinson - A
equation O /1 /2' /1
Eh(x, t) =vog+vV°h+n(x,t).
White noise:  (n(x,1)) =0, (n(x,Hn(x’, 1)) = D6(x — x)o(t — 1)
Equation is invariant under rescaling x> bx, t— bt, O6h+> b*6h.



Linear growth: Edwards-Wilkinson

Equation of motion for growing surface:

Time translation invariance t — t + At
Spatial translation invariance x — x + Ax
Inversion/rotation in space x - —x, x = Rx
Height translation translation h — h 4+ Ah

Edwards-Wilkinson il b ) o
equation O
ot
White noise:  (n(x,1)) =0, (n(x,Hn(x’, 1)) = D6(x — x)o(t — 1)
Equation is invariant under rescaling x— bx, tw— bt, 6hw b*6h.

h(x,t) = vo + vV2h + (x, 1).

A a0 A —> |e=5= B



Linear growth: Edwards-Wilkinson

Equation of motion for growing surface:

Time translation invariance t — t + At
Spatial translation invariance x — x + Ax
Inversion/rotation in space x - —x, x = Rx
Height translation translation h — h 4+ Ah

Edwards-Wilkinson - N oy aa

equation s 7 207 —>  o=2F p=f =2
Eh(x, t) =vog+vV°h+n(x,t).

White noise:  (n(x,1)) =0, (n(x,Hn(x’, 1)) = D6(x — x")6(t — 1)

Equation is invariant under rescaling x> bx, te bt, O6h+> b*Sh.

Checked by explicit solution of linear equation in Fourier space (caution: usually too naive, see KPZ)




Linear growth: Edwards-Wilkinson

Equation of motion for growing surface:

 Time translation invariance t — t + At
 Spatial translation invariance x — x + Ax

* Inversion/rotation in space x - —x, x — Rx
 Height translation translation h - h 4+ Ah

Edwards-Wilkinson Z_j Z_: (b=p=2)"* . o
equation s 7 207 —>  o=TF p=5 =2
ah(x, t) =vo +vV°h+n(x,1).

From Langevin (stochastic diff Eq) to Fokker Planck (evolution of noise-averaged probability):

0Xi
o - R0, — (PO =SE=X@)' 2




Fokker Planck from Langevin

- B(t) = / d(X)P(X,t)dX ot +dt) =7




Fokker Planck from Langevin

ot +dt) = /gb P(X,t+dt)d
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Fokker Planck from Langevin

- _t:/ngPXth ot + dt) =?

St +dt) = | ¢(X)P(X,t+ dt)d

/ S(X + dtX) P(X,t)dX

/ &(X)9,P(X,1)dX = / Ox. (X)X, P(X,t)dX
- / %, 6(X)(FIX] +m) P(X,t)dX




Fokker Planck from Langevin

- B(t) = / d(X)P(X,t)dX ot +dt) =7

ot +dt) = /gb P(X,t+dt)d

/ g(X®)m(t)" =g (X(t — At) +/ N dt’X(t’)> n(t)

/ 5(X)0, P(X,1)dX / x. d(X)X; P(X,1)dX - t n

— X = 800 + Y o, 0(X (6= 80) [ dvny(¢)i(t)
/ Ox, P(X "P(X,t)dX D o
=0+ SOxg(X (¢ - A1) ~ 2 0x,g(X (1)

-/ [axi¢<X>F[ |+ 0%, 60)| P, X

S(X + dtX) P(X,t)dX

t n

/cb [ (F[X]P(X, ))+§8XiP(X,t)]dX



Fokker Planck from Langevin

- B(t) = / d(X)P(X,t)dX ot +dt) =7

ot +dt) = /gb P(X,t+dt)d

/ g(X®)m(t)" =g (X(t — At) +/ N dt’X(t’)> n(t)

/ 5(X)0, P(X,1)dX / x. d(X)X; P(X,1)dX - t n

— X = 800 + Y o, 0(X (6= 80) [ dvny(¢)i(t)
/ Ox, P(X "P(X,t)dX D .
=0+ SOxg(X (¢ - A1) ~ 2 0x,g(X (1)

-/ [am(X)F[ |+ 0%, 60)| P, X

S(X + dtX) P(X,t)dX

n n

/cb [ (F[X]P(X, ))+—8X‘P(Xt)}dX

—> —P[{X}] —ZaXF[{X}]P[{X}tHZZ P[{X}t]



Linear growth: Edwards-Wilkinson

Equation of motion for growing surface:

 Time translation invariance t — t + At
« Spatial translation invariance x — x + Ax
* Inversion/rotation in space x - —x, x - Rx

 Height translation translation h - h 4+ Ah
x> bx, t bt, Ohw— b%h.

Edwards-Wilkinson 2 d 52— d
4

equation P ESore WSSga 258

Eh(x, 1) = vo + vV2h + n(x, 1).

Langevin to
/ 52

2 _ [ ¢l W2 D f dy ~_ iy Y (Wh)?
o PIAx), 1] = f d'x— (VhPLA), 1+ = | d'x— Plh(x),1] Pyalh(x)] o exp [- f d'x = (Vh) ]

0 0 D o2
o PLUXh 1] = - Z ax; FILOGIPHX )1+ 5 Z @P[{x,-}, f].



Linear growth: Edwards-Wilkinson

Equation of motion for growing surface:

 Time translation invariance t — t + At
« Spatial translation invariance x — x + Ax
* Inversion/rotation in space x - —x, x — Rx

 Height translation translation h - h 4+ Ah
x> bx, t bt, oOhw— b*h.

Edwards-Wilkinson 2 d 52— d

(0 = === BzTy

equation >
| 2h(x, 1) = vo + vV2h + n(x, 1).

ot
Langevin to Fokker Planck _

(%P[h(x), f] = - f ddx—(vvzh)P[h(x) 1+ = f ddx—P[h(x) ] Pyalh(x)] ocexp[ f dx— (Vh)ﬂ

=




Non-linear growth: Kardar-Parisi-Zhang

Growth is typically non-linear!

Simple source of non-linearity: a sloped surface grows faster (in z) than a flat one:
because the surface per unit length (in x!) is larger (aggregeation is assumed prop. to surface!)
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Non-linear growth: Kardar-Parisi-Zhang

Growth is typically non-linear!

Simple source of non-linearity: a sloped surface grows faster (in z) than a flat one:
because the surface per unit length (in x!) is larger (aggregeation is assumed prop. to surface!)

(dh/dt) = vo/1 + (Vh)2

dh/dt—vo‘ rA A Q

. 0
KPZ equation: Eh(x, 1) = vo + VV2h + (X, 1). e gth(x, ) = vy + vV?h + %(Vh)z +7(x, 1)



Non-linear growth: Kardar-Parisi-Zhang

Growth is typically non-linear!
Simple source of non-linearity: a sloped surface grows faster (in z) than a flat one:
because the surface per unit length (in x!) is larger (aggregeation is assumed prop. to surface!)

Remarks:
 Many other possible sources of non-linearity (e.g. interactions)
 The square of the gradient is the leading symmetry-allowed non-linearity
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Growth is typically non-linear!

Simple source of non-linearity: a sloped surface grows faster (in z) than a flat one:
because the surface per unit length (in x!) is larger (aggregeation is assumed prop. to surface!)

Remarks:

 Many other possible sources of non-linearity (e.g. interactions)

 The square of the gradient is the leading symmetry-allowed non-linearity

* Vycan be eliminated by Galilean transformation; but non-linearity breaks the invariance under
h — -h. Genuine growth direction is singled out!
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Growth is typically non-linear!

Simple source of non-linearity: a sloped surface grows faster (in z) than a flat one:
because the surface per unit length (in x!) is larger (aggregeation is assumed prop. to surface!)

Remarks:

 Many other possible sources of non-linearity (e.g. interactions)

 The square of the gradient is the leading symmetry-allowed non-linearity
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Non-linear growth: Kardar-Parisi-Zhang

Growth is typically non-linear!

Simple source of non-linearity: a sloped surface grows faster (in z) than a flat one:
because the surface per unit length (in x!) is larger (aggregeation is assumed prop. to surface!)

Remarks:
 Many other possible sources of non-linearity (e.g. interactions)
 The square of the gradient is the leading symmetry-allowed non-Iineari}{
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* V,ycan be eliminated by Galilean transformation; but non-linearity breaksAhe invariance under
h — -h. Genuine growth direction is singled out!
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Non-linear growth: Kardar-Parisi-Zhang

Growth is typically non-linear!

Simple source of non-linearity: a sloped surface grows faster (in z) than a flat one:
because the surface per unit length (in x!) is larger (aggregeation is assumed prop. to surface!)

Remarks:
 Many other possible sources of non-linearity (e.g. interactions)
 The square of the gradient is the leading symmetry-allowed non-Iineari}{

— 7 v ﬁ:—a Z:2-

2—d 2—-d
2 4

* V,ycan be eliminated by Galilean transformation; but non-linearity breaksAhe invariance under
h — -h. Genuine growth direction is singled out!

d
» The non-linearity is relevant in the RG sense (for d<=2): 1 — A b**2=2= 1 p' 2
— EW fixed point (A = 0) is unstable; changes universality class!

. 0
KPZ equation: Eh(x, 1) = vo + VV2h + (X, 1). e a%h(x, 1) = vy +vV?h + %(Vh)z +n(x, 1)



Kardar-Parisi-Zhang universality class

KPZ equation %h(x, £) = vo + vVW2h + %(Vh)z +n(x, 1)

Universal exponents «, 5,z ?



Kardar-Parisi-Zhang universality class

KPZ equation gth(x, £) = vo + vV2h + %(Vh)z +n(x, £)

Universal exponents «, 5,z ?
* 4 terms, but only 3 exponents: naive scaling analysis does not work!

* Indeed: v and D flow under scale transformation (renormalization)



Kardar-Parisi-Zhang universality class

KPZ equation gth(x, £) = vo + vV2h + %(Vh)z +n(x, £)

Universal exponents «, 5,z ?

* 4 terms, but only 3 exponents: naive scaling analysis does not work!
* Indeed: v and D flow under scale transformation (renormalization)
 But: A does not flow : a symmetry protects it!

This is easiest to see from a mapping to fluid dynamics.



Relation to particle flows: stirred Burger’s equation

KPZ equaton  &:h = vV2h + Vh)?

Define: Velocity field v = —\Vh l

— Oyv = vViv — 5 — AVn
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Relation to particle flows: stirred Burger’s equation

KPZ equaton  &:h = vV2h + Vh)?

Define: Velocity field v = —\Vh l

— atV = VVQ — g )\Vn
% V) =(v - V)Iv+vx (Vxv)—= (v-V)v
Burger’s equation Ov + (v-V)v =vViv — A\Vp
(= Navier Stokes)
Shear viscosity (dissipation)

Convective derivative Random stirring force



Burgers vs Navier-Stokes

Burger’s equation O v + (V : V)V — VVZV — )\Vn
Identical to incompressible \V/ D

[p = cst.] Navier-Stokes atV + (V : V)V _ VVQV - f
equations, without pressure 14,

gradient)
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Burger’s equation O v + (V : V)V — VVZV — >‘V77
Identical to incompressible \V/ D

[p = cst.] Navier-Stokes atV + (V : V)V _ VVQV - f
equations, without pressure 14,
gradient)

But: in Navier Stokes one has incompressibility V -v =10

—> While here visa gradient: Vv = —AVh — No curl — no eddies!
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Burgers vs Navier-Stokes

Burger’s equation O v + (V : V)V — yVZV — )\Vn
Identical to incompressible \V/ D

[p = cst.] Navier-Stokes atV + (V : V)V _ VVQV - f
equations, without pressure 14,
gradient)

But: in Navier Stokes one has incompressibility V -v =10

While here vis a gradient: v = —AVh — No curl — no eddies!

“‘Burger’s turbulence™ Does not describe real turbulence, but
Burger’s equation has applications to large scales of galaxies, and
interesting short scale singularities (shock wave generation)



Galilean invariance of fluid dynamics
Burger’s equation 0y v + (V : V)v — Vv — AV

For any physical fluid dynamics:
Invariance under Galilean transformation: For any relative velocity v,

View (X, 1) = v + v(x — vot, t)

also satisfies Burger’s equation!

Note: With a shifted noise realization, but having the same statistics:
(n(x, nx’, 1)) = n(x — vot, )n(x" —vot’, 1)) = Dé(x — x")o(t — t')

—> “statistical Galilean invariance”



Galilean invariance of fluid dynamics
Burger’s equation Oy v + (V : V)V — Vv — AV

For any physical fluid dynamics:
Invariance under Galilean transformation: For any relative velocity v,

View (X, 1) = v + v(x — vot, t) v =—-\Vh

Related symmetry for height model?



Galilean invariance of fluid dynamics
Burger’s equation 0y v + (V : V)v — Vv — AV

For any physical fluid dynamics:
Invariance under Galilean transformation: For any relative velocity v,

View (X, 1) = v + v(x — vot, t) v =—-\Vh
Related symmetry for height model: (Vo = —)s)
Pnew (X, 1) = h(x 4+ Ast, t) +s - X + %s%
also satisfies the KPZ growth equation O.h = vV2h + %(ﬁ h)? +n

— “Statistical tilt symmetry”



Galilean invariance of fluid dynamics
Implication of symmetries &gV@V : V)v — VVQV — )\Vn

Physical Galilean invariance always has prefactor 1.
This is obviously preserved under renormalization (integrating out small scales)



Galilean invariance of fluid dynamics
Implication of symmetries atV@V : V)v — VV2V — >‘V77

Physical Galilean invariance always has prefactor 1.
This is obviously preserved under renormalization (integrating out small scales)
But: growth model maps to Galilean invariant fluid model under A-dependent map

v = —A\Vh



Galilean invariance of fluid dynamics
Implication of symmetries atV@V : V)V — yvzv — )\Vn

Physical Galilean invariance always has prefactor 1.
This is obviously preserved under renormalization (integrating out small scales)
But: growth model maps to Galilean invariant fluid model under A-dependent map

v = —AVh

The mapping can be made before or after renormalization, and in both cases one should
get (the same!) Galilean invariant model.
— A cannot flow under scale transformation (as confirmed by explicit RG).
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Galilean invariance of fluid dynamics
Implication of symmetries atV@V : V)V — yVZV — )\Vn

Physical Galilean invariance always has prefactor 1.
This is obviously preserved under renormalization (integrating out small scales)
But: growth model maps to Galilean invariant fluid model under A-dependent map

v = —AVh

The mapping can be made before or after renormalization, and in both cases one should
get (the same!) Galilean invariant model.
— A cannot flow under scale transformation (as confirmed by explicit RG).

x> bx, t bt, O6hw— b*6h.

= 2 Scale invariance a—z __ p2a—2 -
‘ VNTh .+ I of KPZ equation b = — o+ z=2




KPZ exponents

A

= = bx, t b‘t, ohw— b*h.
O:h = vV2h + =(Vh)* + re s ’
t 2 ( ) 77 Sh ~ tﬁ — ta/z
2 =2 — % Statistical tilt symmetry
o o
5 — _— = (by definition)
2z 2 — o
d=1: exactly known a=1/2, B=1/3, z=3/2
d=2: a = 0.3869; 8 = 0.2398, z = 1.6131

d>2 : weak A — RG-irrelevant — flow to Edwards-Wilkinson
strong A: transition to a strong coupling fixed point!



KPZ exact exponents ind = 1

- Ao x> bx, t bt, O6hw b%h
O:h = vV?h + =(Vh)? + ’ ’ |
t 2 ( ) 77 Sh ~ tﬁ — ta/z
d=1: exactly known a=1/2, B=1/3, z=3/2 (Huse-Henley-Fisher PRL '85)

How do we know?



KPZ in d=1 — exact exponents

Oth = V§2h + é (ﬁh)2 +n x> bx, t bt, 6h> b%h.
2 Sh ~ t8 = ¢*/?
a=1 - exactly known @=1/2, B=1/3, z=3/2  (Huse-Henley-Fisher PRL85)

Check: (—> Exercise): The Fokker-Planck equation for KPZ now reads
S 2

La — | 4l w2+ 2evny Qf 4,9
= Plh(x),1] = f d'x = [VW?h+ Z(Vh) ]P[h(x), N+ | d'x = Pla(o.0

Ind =1 (and only there)
Pstat[h(x)] oC €Xp {_ fddx%(Vh)zl

is still the stationary distribution for A = 0 : 0, P[{h(z)},t] =0



KPZ in d=1 — exact exponents
A

= — z @
Oh = vV2h+ S(VR)2 +n  Xobo 1o bL Shobh
2 Sh ~ t8 = /7
d=1: exactly known a=1/2, B=1/3, z=3/2  (HuseHenley-Fisher PRL 85)

Check: (—> Exercise):

dz (dh/dz)? isindeed scale invariant with -

In d=1 (and only there) ”
Pt [(x)]  exp [- f dde(Vh)zl

is still the stationary distribution for A = 0 : 9, P|{h(x)},t] =0



KPZ in d=1 — exact exponents

Oth = VﬁZh + é (ﬁh)2 +n x> bx, t bt, 6h> b%h.
2 Sh ~ t8 = ¢*/?
a=1 - exactly known @=1/2, B=1/3, z=3/2  (Huse-Henley-Fisher PRL85)

 Start from flat interface att=0

o At later times t: small scales
W~ 61/2

(0 < £(t) ~ t17 = t2/3)

h(x,t)

look like random walks!




KPZ in d=1 — exact exponents

Oth = VﬁZh + é (ﬁh)2 +n x> bx, t bt, 6h> b%h.
2 Sh ~ t8 = ¢*/?
a=1 - exactly known @=1/2, B=1/3, z=3/2  (Huse-Henley-Fisher PRL85)

 Start from flat interface att=0

o At later times t: small scales
W~ 61/2
o | (0 < £(t) ~ t17 = t2/3)
W(fz f) look like random walks!
o | » Atlarge scales (£ > £(t))

w ~ P = ¢1/3




KPZ in d=1 — exact exponents

Orh = V§2h + é(ﬁh)Q +n x> bx, te bt, J6hw b¥h.
2 Sh ~ tP = t/*

Alternative argument for exponent f = 1/3:

Microscopic lattice models (e.g. exclusion processes) lead to a non-linear fluid dynamics,
but do not contain fluctuating forces (D) / diffusion (v) a priori.
(They are often added phenomenologically in the spirit of fluctuating hydrodynamics,
obeying a fluctuation-dissipation relation)

D
Still they reflect the stationary distribution  {(h(z) — h(2))%) = —|v —2'| = Alz — 2

where only the ratio 4 = 22 enters as a parameter of the model.
1%

Typical fluctuation of h(x,t)? Independent of x, depends onlyon ¢, 1, A [A]
Only combination: Bt ~ (AAZ)V/3 5173

[x]? [h]?
= Al = —
[A][z] LAl [x]
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KPZ in d=1 — exact exponents

Orh = V§2h + é(ﬁh)Q +n x> bx, te bt, J6hw b¥h.
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Alternative argument for exponent f = 1/3:

Microscopic lattice models (e.g. exclusion processes) lead to a non-linear fluid dynamics,
but do not contain fluctuating forces (D) / diffusion (v) a priori.
(They are often added phenomenologically in the spirit of fluctuating hydrodynamics,
obeying a fluctuation-dissipation relation)

D
Still, they reflect the stationary distribution {(h(z) — h(2))%) = —|v —2'| = Alz — 2

where only the ratio 4 = 22 enters as a parameter of the model.
1% [ ]2

Typical fluctuation of h(x,t)? Independent of x; depends only on ¢, A, A M=
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KPZ in d=1 — exact exponents

Orh = V§2h + é(ﬁh)Q +n x> bx, te bt, J6hw b¥h.
2 Sh ~ tP = t/*

Alternative argument for exponent f = 1/3:

Microscopic lattice models (e.g. exclusion processes) lead to a non-linear fluid dynamics,
but do not contain fluctuating forces (D) / diffusion (v) a priori.

(They are often added phenomenologically in the spirit of fluctuating hydrodynamics,
obeying a fluctuation-dissipation relation)

Still, they reflect the stationary distribution ((k(z) — h(z"))?) = 2%|:c — 2| = Alz — 2|
where only the ratio 4 = D enters as a parameter of the model.

2v
| | [x]* [h]?
Typical fluctuation of h(x,t)? Independent of x; depends only on ¢, 4, A M=tm W

Only dimensionally correct combination: hit) ~ (A3 —s g =1/3
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Mathematical issue with the KPZ equation in the continuum:

White noise 7 is non-differentiable
— Vh becomes singular
— (Vh)? is a priori ill-defined



Mapping to directed polymers:
the Cole-Hopf transformation

_ A o
Oh = vV?h + 5(Vh)2 + 17
Mathematical issue with the KPZ equation in the continuum:

White noise 7 is non-differentiable
— Vh becomes singular
— (Vh)? is a priori ill-defined

Possible remedies:

« Work with finite-in-time correlated, colored noise

» Use discretized lattice models

 Or: Mapping that removes the non-linearity: Cole-Hopf transformation



Mapping to directed polymers:
The Cole-Hopf transformation

h From growing surface to a directed polymer
A

Fixed t

L~

>
X




Mapping to directed polymers:
The Cole-Hopf transformation

h From growing surface to a directed polymer
A
Fixed t
h(x,t) < F(x,/)
I~
t <> /L
>
X

Interpret height at time t as free energy of a directed
polymer starting at the origin and ending at lateral
displacement x after a longitudinal distance £ =t



Mapping to directed polymers:

The Cole-Hopf transformation ———
h From growing surface to a directed polymer )-S5
1 Fixed t :
h(x,t) < F(x,/) F  Fixed?
I~ A
t <>l
> S~
X

Interpret height at time t as free energy of a directed
polymer starting at the origin and ending at lateral
displacement x after a longitudinal distance £ =t




Mapping to directed polymers:
The Cole-Hopf transformation Eb
N2,
o

h From growing surface to a directed polymer
1 Fixed t
h(x,t) < F(x,/) F  Fixed?
/\_/\/\ A
t <> /L
X

Interpret height at time t as free energy of a directed
polymer starting at the origin and ending at lateral
displacement x after a longitudinal distance £ =t
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Mapping to directed polymers:
The Cole-Hopf transformation

h From growing surface to a directed polymer
1 Fixed t
h(x,t) < F(x,/) F  Fixed?
/\_/\/\ A
t <> /L
X

Interpret height at time t as free energy of a directed
polymer starting at the origin and ending at lateral
displacement x after a longitudinal distance £ =t

A
— Partition function:  Z(x, #) EeXplz—vh(x,t)l



Mapping to directed polymers:
The Cole-Hopf transformation Eb

h | E
A X N
Fixed t 2 N\ 2
Oth = vV=h + 5 (Vh)= + 1 F omieds
I~
) l
X

A
— Partition function:  Z(x, #) EeXplgh(x,t)]'



Mapping to directed polymers:
The Cole-Hopf transformation g»

h | E
A X N
Fixed t 2 N\ 2
Oth = vV=h + 5 (Vh)= + 1 F omieds
I~
) l
X

— Stochastic, linear diffusion or heat equation, but with multiplicative noise!



Mapping to directed polymers:
The Cole-Hopf transformation g»

h |
1 A
Fixed t . =2
ath vVoh+ 5 ) ( Fixed ¢
/V\/\
l

— Stochastic, linear diffusion or heat equation, but with multiplicative noise!

Rem: Well-defined with 1t6’s prescription for _

“Evaluate noise at slightly later time” — avoid correlation btw Zand n !



Solution of the stochastic heat equation |
N

Solving the linear stochastic heat equation?
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Solution of the stochastic heat equation |

.1

Like in QM: i0p(x,t) = _%85@&(33, t)+ V(x)y(x,t)

Feynman-Kac




Solution of the stochastic heat equation |

1

Like in QM:  j9,4)(x, £) = —%8%@:,@ V() (x, t)

Feynman-Kac
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Solution of the stochastic heat equation

-1




Solution of the stochastic heat equation |
N

T =2v
(u(t)za:) B 1 1 t t
—_—> Z(a:,t):/ Dlu(t)] exp | —= (—/ u2dt—/ )\n(u(t),t))]
(u(0)=0) ARG 0
(u(t)=) -
= [ Du()es —T<E61+Epot>]
(u(0)=0) .

Z: partition function of an elastic string (=dir. polymer) in the random potential V(x,t) = —An(x, t)!



chtlonary DPRM - KPZ

[ maml 1 o0 o] (5]
(u(t)=2) - N

/( (00) Dlu(t)] exp 7 (Eel + Epot)]

—_>

Z(x,t)




Dictionary DPRM - KPZ

(u(t)=2) .
2= [ oo |-+ (3 [ @ [ )
(u(0)=0) ! 0 0
(u(t)=) -
E/ Dlu(t)] exp _T(Eel+Epot)]
(u(0)=0) !
KPZgrowth | Directed polymer

Time t Longitudinal direction £ =t
Heighth &k ~ tP=1/3 Free energy F §F ~ ¢9=1/3
Spatial position x Typical lateral displacement of

1/2=2/3 =2/3
v~ =2 the polymer T ™~ 6=2/



Dictionary DPRM - KPZ

/(::;j)ﬂ[u@)]exp -2 (3 / it / wi(u(t), 1))

(u(t)=mx) 1
/( D[U(t)] EXP | — = (Eel + Epot)]

Z(x,t)

1 (0)=0) T
KPZgrowth | Directed polymer
Time t Longitudinal direction £ =t

Heighth  §h ~ tP=1/3 Free energy F §F ~ ¢9=1/3

Spatial position x Typical lateral displacement of
1/2z=2/3 =2/3
v~ =2 the polymer T ™~ 6=2/

Roughness exponent of the polymer: _ _



chtlonary DPRM - KPZ

(u(t)=x) 1
2= [ oo |-+ (3 [ @ [ )
(1(0)=0) 1T\ 2 /o 0
(u(t)=x) Cq
= / Dlu(t)] exp — (Fel + Epot)]
(u(0)=0) I
KPZgrowth _|Directed polymer
Time t Longitudinal direction £ =t
Heighth  §h ~ 1B=1/3 Free energy F §F ~ ¢9=1/3
Spatial position x Typical lateral displacement of
1/2=2/3 =2/3
v~ =2 the polymer T ™~ 6=2/
e a 2—z
Statistical tilt symmetry: o4+ 2=2 = = — = Ny 2¢ — 1

Z Z



Dictionary DPRM - KPZ

Simple interpretation:

o 2 — z
z

Statistical tilt symmetry: o +2 =2 — 8 =



Directed polymers in physics

Vortices in superconductors




Directed polymers in physics

Domain walls in random bond Ising ferromagnets




Directed polymers in physics

Spin-spin correlators
iIn random magnets

Decay of strongly
localized quantum
wavefunctions

etc



Exact solutions and universality of KPZ

Several exact solutions of solvable models:
 Replica approach to directed polymers
* Polynuclear growth model

* Asymmetric exclusion processes
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Several exact solutions of solvable models:
 Replica approach to directed polymers
* Polynuclear growth model

* Asymmetric exclusion processes

They allow to compute specific quantities of interest, that are universal for all
models in the KPZ class:

Like Onsager’s 2d Ising solution , but now for KPZ!
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Several exact solutions of solvable models:
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* Asymmetric exclusion processes

They allow to compute specific quantities of interest, that are universal for all
models in the KPZ class:
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 Two point correlation function (Sh(x,t)oh(x’,t")) (explicit but complicated)



Exact solutions and universality of KPZ

Several exact solutions of solvable models:
 Replica approach to directed polymers
* Polynuclear growth model

* Asymmetric exclusion processes

They allow to compute specific quantities of interest, that are universal for all
models in the KPZ class:
h(x,t)—tv,

* Height distribution P (“2772) : Tracy Widom distribution!
Like the maximal eigenvalue of a Gaussian random matrix! -- WHY??

 Two point correlation function (Sh(x,t)oh(x’,t")) (explicit but complicated)



Tracy-Widom distribution of height

Fig. 8

K. A. Takeuchi, M. Sano
(J. Stat. Phys. 2012)

Evidence for Geometry-Dependent Universal
Fluctuations of the Kardar-Parisi-Zhang Interfaces in
Liquid-Crystal Turbulence

rescaled height ¢

Histogram of the rescaled local height g=(h—v o, t)/(I't)"/3 for the circular (solid symbols) and flat (open
symbols) interfaces. The blue circles and red diamonds display the histograms for the circular
interfaces at t=10 s and 30 s, respectively, while the turquoise up-triangles and purple down-triangles
are for the flat interfaces at t=20 s and 60 s, respectively. The dashed and dotted curves show the GUE
and GOE TW distributions, respectively, defined by the random variables y gyg and ¥ gog. (Color
figure online)



Tracy-Widom distribution of height

Fig. 8

K. A. Takeuchi, M. Sano
(J. Stat. Phys. 2012)

Evidence for Geometry-Dependent Universal
Fluctuations of the Kardar-Parisi-Zhang Interfaces in
Liquid-Crystal Turbulence

Histogram of the rescaled local height g=(h-v ., t)/(I't)/3 for the circular (solid symbols) and flat (open
symbols) interfaces. The blue circles and red diamonds display the histograms for the circular
interfaces at t=10 s and 30 s, respectively, while the turquoise up-triangles and purple down-triangles
are for the flat interfaces at t=20 s and 60 s, respectively. The dashed and dotted curves show the GUE
and GOE TW distributions, respectively, defined by the random variables y guyg and x gog. (Color
figure online)



Exercises

KPZ : symmetry and exponents
* Check the invariance of the KPZ Equation under tilt symmetry

* Derive the Fokker Planck equation from the Langevin equation. First for
a discrete set of variables h, , then for a function h(x). Apply this to the
KPZ equation.

« Show that the free Gaussian field is the stationary solution of the
FokkerPlanck equation for A = 0. Show that in d = 1 it is also stationary
for any nonlinearity A4 > 0.



Exercises

Flory exponents for pinned elastic manifolds

Consider the generalization of the directed polymer problem (elastic line (d=1)) with D
transverse dimensions (d = dimension of the space in KPZ growth).

Now let us look at a more general elastic manifold M = RY (surface d=2, crystalline solid
(d=3)), where each point z has a displacement field u(z) € RP). (The standard D=1 KPZ
Eq. maps to the d=1, D=1 directed polymer).

( C ‘
This system is subject to elastic energy He = / d%z §(th)‘2

and a random disorder pinning energy  Hpin = / A2V (u(z), z)

We assume Gaussian correlated disorder of variance  V(u,z)vV (u/,2/) = K(ju — u'|)0%(z — )
and zero mean.



Exercises

 Show that in the absence of disorder the manifold has “thermal roughness”

~ ‘Z o Z/|2Cth Cth o 2 = (i (d < 2)

2

([u(z) - u(z)]?)

th

 Replicate the system m times and average the partition function over the disorder to obtain
the replicated Hamiltonian for m copies:

m m
1

Hy = [ dt [g > (Vua) = 5= 3 K(ua(2) - w(2))

a=1 a,b=1

» Assume the correlator decays as a power law K (1) ~ u=#
Argue that a short range correlator would naively correspondto f = D.



Exercises

« Assume that at large scale a self-similar regime exists where on the
longitudinal distance L transverse fluctuations scale as L¢. Determine how

one should rescale the temperature, T~L?, to keep the term H,; /T
invariant!

 Demand now that the replicated disorder term also remain scale invariant
to obtain an expression for {(d, D).

This kind of estimate is similar to Flory’s on polymer physics.
It assumes that the correlator K does not flow with the scale L.

« Discuss your result for D = 1. For which d is your expression meaningful,

and in which dimension is disorder perturbatively relevant? (compare to
KPZ!)



Exercises

* The above estimate is expected to be exact for small enough g (fat power
law tail). An analysis of the renormalization of K (next time) suggests that
this only holds up to the critical value . = D/2 (not until 8 = D!) For faster
decaying correlators with § > . one expects the roughness as for > ..

« Compare the obtained estimate {(d = 1,D = 1,2) with the exact value
{((d=1,D=1)=2/3
and the numerical value
((d=1,D=2)=0.62
as well as for 2d interfaces (D = 1):

{(d=2,D=1)~ 0.3126
This line of reasoning is due to T. Halpin-Healey (1990)



