The Kardar-Parisi-Zhang equation and universality class

M. Kardar, G. Parisi and YC Zhang (PRL 1986)

From randomly growing non-equilibrium surfaces to fluid dynamics and polymers in random media

Relations to random matrices, sequence alignment ...

Splendid recent progress in mathematical physics

References

• K. A. Takeuchi, "An appetizer to modern developments in the KPZ universality class", Physica A 504, (2018), 77

Briefer account:

- T. Sasamoto, Prog. Theor. Exp. Phys. (2016), 022A01, The 1d KPZ equation: height distribution and universality
- M. Kardar in Statistical Physics, "Directed paths in random media"

More mathematical / technical:

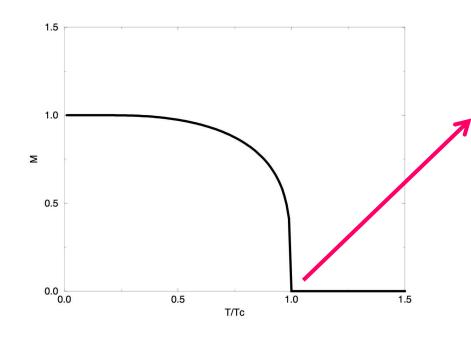
• T. Kriecherbauer and J. Krug, "A pedestrian's view on interacting particle systems, KPZ universality and random matrices", J. Phys. A 43 (2010), 403001

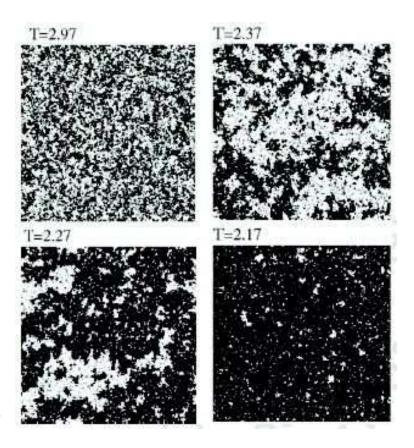
Universality, self-similarity and criticality beyond equilibrium phase transitions?

Second order phase transitions:

- Universality: at large scale: independence of microscopic details
- Self-similarity: critical exponents, scaling

2d Ising model



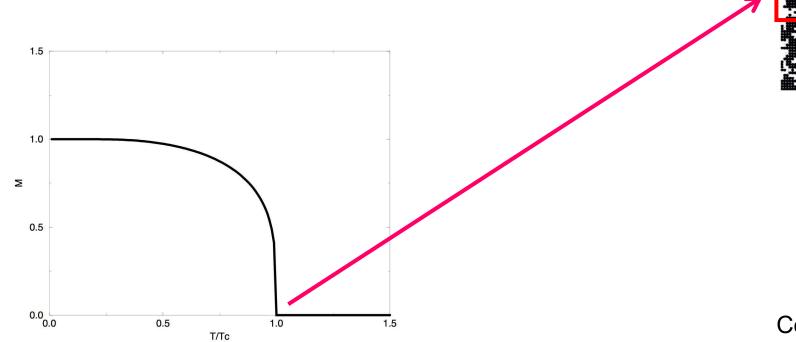


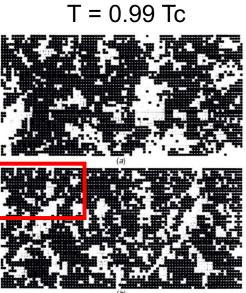
Fluctuations on all scales

Self-similarity:

(looks *statistically* the same after rescaling)

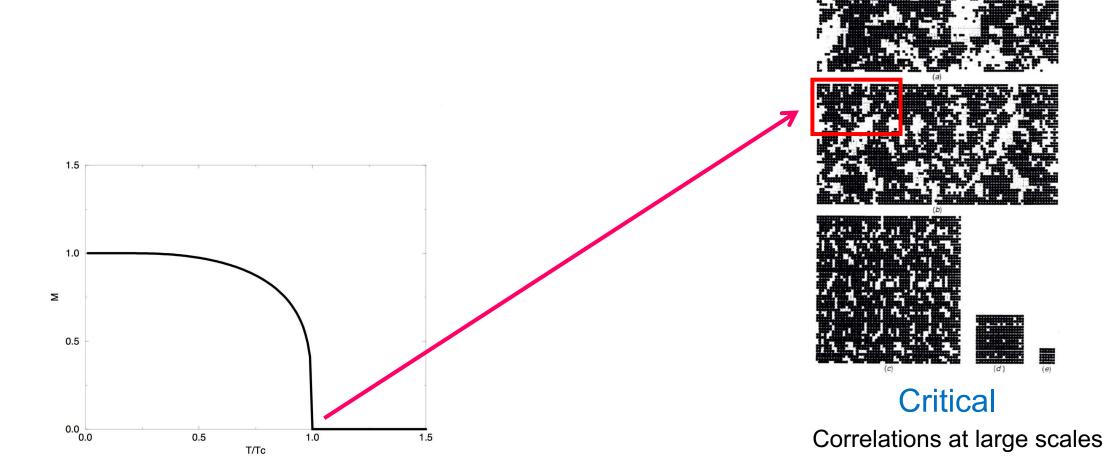
Self-similarity at criticality





Critical
Correlations at large scales

Self-similarity at criticality



T = 0.99 Tc

Universality, self-similarity and criticality beyond equilibrium phase transitions?

Second order phase transitions:

- Universality: at large scale: independence of microscopic details
- Self-similarity: critical exponents, scaling

Does this exist

- out of equilibrium?
- > in random, disordered systems?
- > Does disorder matter? How so?
- > Are there new aspects not present in clean systems?

Universality, self-similarity and criticality beyond equilibrium phase transitions?

Second order phase transitions:

- Universality: at large scale: independence of microscopic details
- Self-similarity: critical exponents, scaling

Does this exist

- out of equilibrium?
- > in random, disordered systems?

YES!

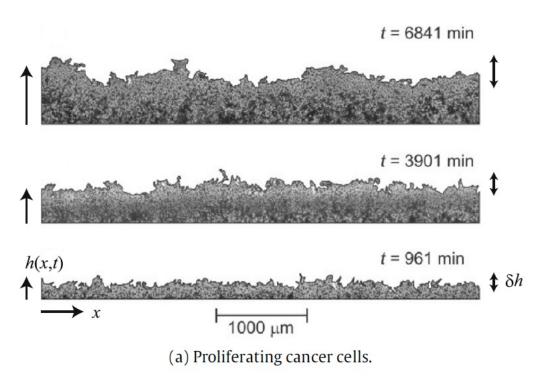
- > Does disorder matter? How so?
- > Are there new aspects not present in clean systems?

one of the simplest examples of this kind

(beyond simple diffusion / Brownian motion)

Rich and ubiquituos

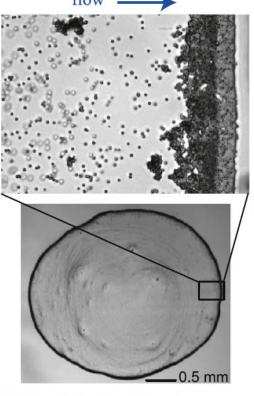
See Takeuchi Review for details



1d surface of cancer cells growing on a Petri dish

See Takeuchi Review for details

Coffee ring effect:

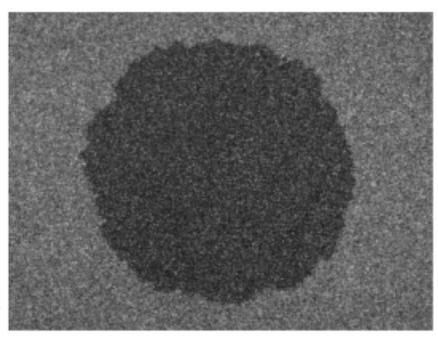


(b) Particle deposition in suspension droplet.

Colloid particles accumulating at the edge of a droplet inward growth of colloid layer: roughening with time

See Takeuchi Review for details

Boundary between two (turbulent) liquid crystal phases



500 μm

K. A. Takeuchi, M. Sano (J. Stat. Phys. 2012)

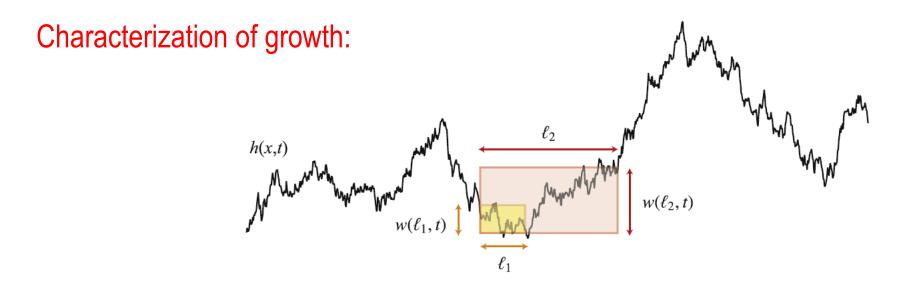
Physical examples:

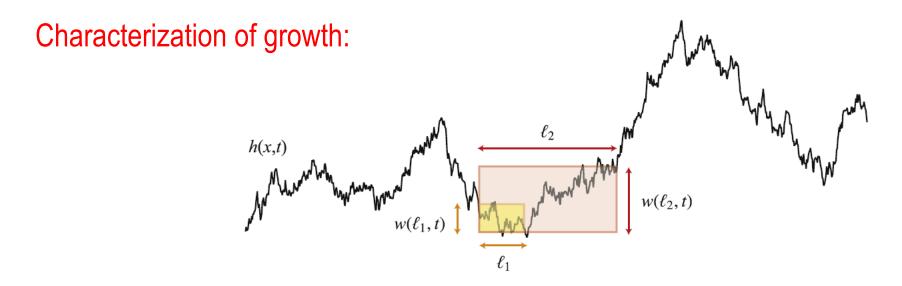
- Growth of bacteria colonies
- Interfaces between two liquids; ink spreading on paper
- Slow combustion of paper
- Forest fire fronts
- Front of chemical reaction
- Motion of the front of a thin liquid film on surface
- Crystal growth

Ingredients: Growth under noise (heterogeneity) and short range interactions

Nontrivial relations to:

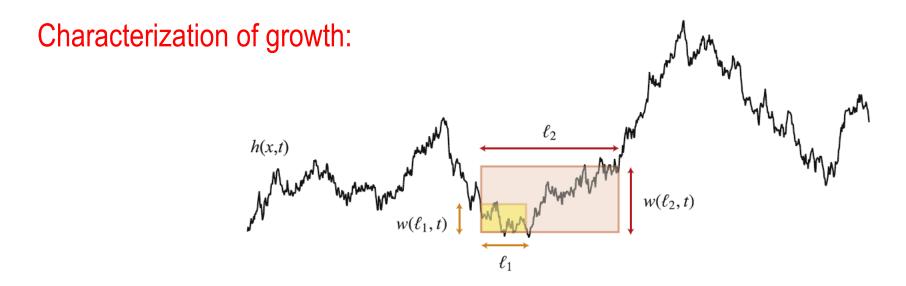
- Asymmetric simple exclusion process (hopping motion of hardcore particles)
- Longest growing subsequence in a random permutation, combinatorics





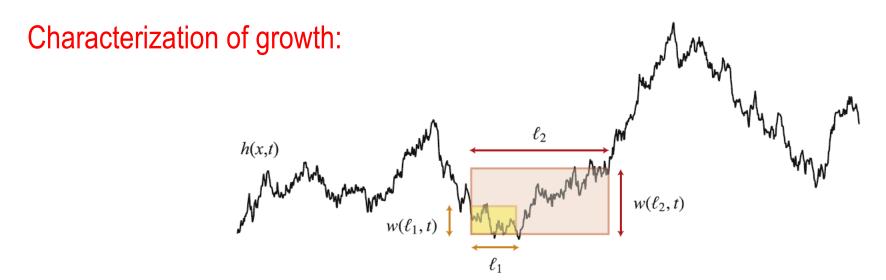
Scale invariance: → Invariance of statistical properties under scale transformation

$$w(\ell,t)$$



Scale invariance: → Invariance of statistical properties under scale transformation

$$w(\ell,t) \sim t^{\beta} F_w(\ell t^{-1/z}) \sim \begin{cases} \ell^{\alpha} & \text{for } \ell \ll \xi(t), \\ t^{\beta} & \text{for } \ell \gg \xi(t), \end{cases} \quad \text{with } \xi(t) \sim t^{1/z} \ (z \equiv \alpha/\beta),$$



Scale invariance: → Invariance of statistical properties under scale transformation

$$w(\ell,t) \sim t^{\beta} F_{w}(\ell t^{-1/z}) \sim \begin{cases} \ell^{\alpha} & \text{for } \ell \ll \xi(t), \\ t^{\beta} & \text{for } \ell \gg \xi(t), \end{cases} \quad \text{with } \xi(t) \sim t^{1/z} \ (z \equiv \alpha/\beta),$$

$$x \mapsto bx$$
, $t \mapsto b^z t$, $\delta h \mapsto b^\alpha \delta h$.

$$\delta h(x,t) \equiv h(x,t) - \langle h(x,t) \rangle$$

 α , β , z: Universal exponents

 Universality classes of kinetic roughening

Equation of motion for growing surface:

- Time translation invariance $t \rightarrow t + \Delta t$
- Spatial translation invariance $x \to x + \Delta x$
- Inversion/rotation in space $x \to -x$, $x \to Rx$
- Height translation translation $h \rightarrow h + \Delta h$

Edwards-Wilkinson

Steady accumulation (with random noise) + diffusion

equation

$$\frac{\partial}{\partial t}h(\boldsymbol{x},t) = v_0 + \nu \nabla^2 h + \eta(\boldsymbol{x},t).$$

White noise: $\langle \eta(x,t) \rangle = 0$, $\langle \eta(x,t) \eta(x',t') \rangle = D\delta(x-x')\delta(t-t')$

Equation of motion for growing surface:

- Time translation invariance $t \rightarrow t + \Delta t$
- Spatial translation invariance $x \to x + \Delta x$
- Inversion/rotation in space $x \to -x$, $x \to Rx$
- Height translation translation $h \to h + \Delta h$

Edwards-Wilkinson
$$\frac{b^{\alpha}}{b^{z}} \qquad \frac{b^{\alpha}}{b^{2}} \qquad (b^{-d}b^{-z})^{1/2}$$
 equation
$$\frac{\partial}{\partial t}h(x,t) = v_{0} + v\nabla^{2}h + \eta(x,t).$$

White noise: $\langle \eta(x,t) \rangle = 0$, $\langle \eta(x,t) \eta(x',t') \rangle = D\delta(x-x')\delta(t-t')$

Equation is invariant under rescaling $x \mapsto bx$, $t \mapsto b^z t$, $\delta h \mapsto b^\alpha \delta h$.

Equation of motion for growing surface:

- Time translation invariance $t \to t + \Delta t$
- Spatial translation invariance $x \to x + \Delta x$
- Inversion/rotation in space $x \to -x$, $x \to Rx$
- Height translation translation $h \to h + \Delta h$

Edwards-Wilkinson equation
$$\frac{b^{\alpha}}{\partial t}h(x,t) = v_0 + \nu \nabla^2 h + \eta(x,t).$$

$$\frac{b^{\alpha}}{b^2} \int_{0}^{b^2} (b^{-d}b^{-z})^{1/2} dt = \frac{2-d}{2}, \quad \beta = \frac{2-d}{4}, \quad z = 2.$$

$$\alpha = \frac{2-d}{2}, \quad \beta = \frac{2-d}{4}, \quad z = 2.$$

White noise: $\langle \eta(x,t) \rangle = 0$, $\langle \eta(x,t) \eta(x',t') \rangle = D\delta(x-x')\delta(t-t')$

Equation is invariant under rescaling $x \mapsto bx$, $t \mapsto b^z t$, $\delta h \mapsto b^\alpha \delta h$.

Equation of motion for growing surface:

- Time translation invariance $t \to t + \Delta t$
- Spatial translation invariance $x \to x + \Delta x$
- Inversion/rotation in space $x \to -x$, $x \to Rx$
- Height translation translation $h \to h + \Delta h$

Edwards-Wilkinson equation
$$\frac{b^{\alpha}}{\partial t}h(x,t) = v_0 + v\nabla^2 h + \eta(x,t).$$

$$\alpha = \frac{2-d}{2}, \quad \beta = \frac{2-d}{4}, \quad z = 2.$$

$$\alpha = \frac{2-d}{2}, \quad \beta = \frac{2-d}{4}, \quad z = 2.$$

White noise: $\langle \eta(\mathbf{x},t) \rangle = 0, \qquad \langle \eta(\mathbf{x},t) \eta(\mathbf{x}',t') \rangle = D\delta(\mathbf{x}-\mathbf{x}')\delta(t-t')$

Equation is invariant under rescaling $x \mapsto bx$, $t \mapsto b^z t$, $\delta h \mapsto b^\alpha \delta h$.

Checked by explicit solution of linear equation in Fourier space (caution: usually too naive, see KPZ)

Equation of motion for growing surface:

- Time translation invariance $t \rightarrow t + \Delta t$
- Spatial translation invariance $x \to x + \Delta x$
- Inversion/rotation in space $x \to -x$, $x \to Rx$
- Height translation translation $h \to h + \Delta h$

Edwards-Wilkinson equation
$$\frac{b^{\alpha}}{\partial t} h(\mathbf{x}, t) = v_0 + v \nabla^2 h + \eta(\mathbf{x}, t).$$

$$\frac{b^{\alpha}}{b^2} \int_{a}^{b^2} \left(b^{-d}b^{-z}\right)^{1/2} dt = \frac{2-d}{2}, \quad \beta = \frac{2-d}{4}, \quad z = 2.$$

From Langevin (stochastic diff Eq) to Fokker Planck (evolution of noise-averaged probability):

$$\frac{\partial X_i}{\partial t} = F_i[\{X_j\}] + \eta_i(t), \qquad \longrightarrow \qquad P(X,t) = \overline{\delta(X-X(t))}^{\eta}?$$

$$\frac{P(X,t) =}{\delta(X - X(t))}^{\eta} ?$$

$$\frac{P(X,t) = \overline{\phi}(t) = \int \phi(X)P(X,t)dX \qquad \overline{\phi}(t+dt) = ?$$

$$\frac{P(X,t) =}{\delta(X - X(t))}^{\eta} ?$$

$$\frac{P(X,t) = \overline{\phi}(t) = \int \phi(X)P(X,t)dX \qquad \overline{\phi}(t+dt) = ?$$

$$\overline{\phi}(t+dt) = \int \phi(X)P(X,t+dt)dX$$
$$= \int \overline{\phi(X+dt\dot{X})}^{\eta}P(X,t)dX$$

$$\frac{P(X,t) =}{\delta(X-X(t))^{\eta}?} \overline{\phi}(t) = \int \phi(X)P(X,t)dX \quad \overline{\phi}(t+dt) =?$$

$$\overline{\phi}(t+dt) = \int \phi(X)P(X,t+dt)dX$$

$$= \int \overline{\phi(X+dtX)}^{\eta}P(X,t)dX$$

$$\int \phi(X)\partial_t P(X,t)dX = \int \overline{\partial_{X_i}\phi(X)X_i}^{\eta}P(X,t)dX$$

$$= \int \overline{\partial_{X_i}\phi(X)(F_i[X]+\eta_i)}^{\eta}P(X,t)dX$$

$$\frac{P(X,t) =}{\delta(X - X(t))}^{\eta} ?$$

$$\overline{\phi}(t) = \int \phi(X)P(X,t)dX \qquad \overline{\phi}(t+dt) = ?$$

$$\overline{\phi}(t+dt) = \int \phi(X)P(X,t+dt)dX$$
$$= \int \overline{\phi(X+dt\dot{X})}^{\eta}P(X,t)dX$$

$$\int \phi(X)\partial_t P(X,t)dX = \int \overline{\partial_{X_i}\phi(X)\dot{X}_i}^{\eta} P(X,t)dX$$

$$= \int \overline{\partial_{X_i}\phi(X)(F_i[X] + \eta_i)}^{\eta} P(X,t)dX$$

$$= \int \left[\partial_{X_i}\phi(X)F_i[X] + \frac{D}{2}\partial_{X_i}^2\phi(X)\right] P(X,t)dX$$

$$= \int \phi(X) \left[-\partial_{X_i}(F_i[X]P(X,t)) + \frac{D}{2}\partial_{X_i}^2P(X,t)\right]dX$$

$$\overline{g(X(t))\eta_i(t)}^{\eta} = g\left(X(t - \Delta t) + \int_{t - \Delta t}^t dt' \dot{X}(t')\right) \eta(t)$$

$$= \overline{g(X(t - \Delta t))\eta(t)}^{\eta} + \sum_j \overline{\partial_{X_j} g(X(t - \Delta t))} \int_{t - \Delta t}^t dt' \eta_j(t') \eta_i(t)$$

$$= 0 + \frac{D}{2} \partial_{X_i} g(X(t - \Delta t)) \approx \frac{D}{2} \partial_{X_i} g(X(t))$$

$$\frac{P(X,t) =}{\delta(X - X(t))}^{\eta} ?$$

$$\overline{\phi}(t) = \int \phi(X)P(X,t)dX \qquad \overline{\phi}(t+dt) = ?$$

$$\overline{\phi}(t+dt) = \int \phi(X)P(X,t+dt)dX$$
$$= \int \overline{\phi(X+dt\dot{X})}^{\eta}P(X,t)dX$$

$$\int \phi(X)\partial_t P(X,t)dX = \int \overline{\partial_{X_i}\phi(X)\dot{X}_i}^{\eta} P(X,t)dX$$

$$= \int \overline{\partial_{X_i}\phi(X)(F_i[X] + \eta_i)}^{\eta} P(X,t)dX$$

$$= \int \left[\partial_{X_i}\phi(X)F_i[X] + \frac{D}{2}\partial_{X_i}^2\phi(X)\right] P(X,t)dX$$

$$= \int \phi(X) \left[-\partial_{X_i}(F_i[X]P(X,t)) + \frac{D}{2}\partial_{X_i}^2P(X,t)\right] dX$$

$$\overline{g(X(t))\eta_i(t)}^{\eta} = \overline{g\left(X(t - \Delta t) + \int_{t - \Delta t}^t dt' \dot{X}(t')\right) \eta(t)}^{\eta}$$

$$= \overline{g(X(t - \Delta t))\eta(t)}^{\eta} + \sum_j \overline{\partial_{X_j} g(X(t - \Delta t)) \int_{t - \Delta t}^t dt' \eta_j(t') \eta_i(t)}^{\eta}$$

$$= 0 + \frac{D}{2} \partial_{X_i} g(X(t - \Delta t)) \approx \frac{D}{2} \partial_{X_i} g(X(t))$$

$$\frac{\partial}{\partial t}P[\{X_j\},t] = -\sum_i \frac{\partial}{\partial X_i}F_i[\{X_j\}]P[\{X_j\},t] + \frac{D}{2}\sum_i \frac{\partial^2}{\partial X_i^2}P[\{X_j\},t].$$

Equation of motion for growing surface:

- Time translation invariance $t \rightarrow t + \Delta t$
- Spatial translation invariance $x \to x + \Delta x$
- Inversion/rotation in space $x \to -x$, $x \to Rx$
- Height translation translation $h \rightarrow h + \Delta h$

 $x \mapsto bx$, $t \mapsto b^z t$, $\delta h \mapsto b^\alpha \delta h$.

Edwards-Wilkinson

equation

$$\frac{\partial}{\partial t}h(\boldsymbol{x},t) = v_0 + v\nabla^2 h + \eta(\boldsymbol{x},t).$$

$$\frac{\partial}{\partial t}P[\{X_j\},t] = -\sum_i \frac{\partial}{\partial X_i}F_i[\{X_j\}]P[\{X_j\},t] + \frac{D}{2}\sum_i \frac{\partial^2}{\partial X_i^2}P[\{X_j\},t].$$
Ker Planck

$$\alpha = \frac{2-d}{2}, \quad \beta = \frac{2-d}{4}, \quad z = 2.$$

Langevin to Fokker Planck

$$\frac{\partial}{\partial t}P[h(\mathbf{x}),t] = -\int d^d\mathbf{x} \frac{\delta}{\delta h}(\nu \nabla^2 h)P[h(\mathbf{x}),t] + \frac{D}{2} \int d^d\mathbf{x} \frac{\delta^2}{\delta^2 h}P[h(\mathbf{x}),t]$$

$$P_{\text{stat}}[h(\boldsymbol{x})] \propto \exp\left[-\int \mathrm{d}^d \boldsymbol{x} \frac{\nu}{D} (\nabla h)^2\right].$$

Equation of motion for growing surface:

- Time translation invariance $t \rightarrow t + \Delta t$
- Spatial translation invariance $x \to x + \Delta x$
- Inversion/rotation in space $x \to -x$, $x \to Rx$
- Height translation translation $h \to h + \Delta h$

Edwards-Wilkinson

$$\frac{\partial}{\partial t}h(\boldsymbol{x},t) = v_0 + \nu \nabla^2 h + \eta(\boldsymbol{x},t).$$

Langevin to Fokker Planck

$$\frac{\partial}{\partial t}P[h(\mathbf{x}),t] = -\int d^d\mathbf{x} \frac{\delta}{\delta h}(\nu \nabla^2 h)P[h(\mathbf{x}),t] + \frac{D}{2} \int d^d\mathbf{x} \frac{\delta^2}{\delta^2 h}P[h(\mathbf{x}),t]$$

$$x \mapsto bx$$
, $t \mapsto b^z t$, $\delta h \mapsto b^\alpha \delta h$.

$$\alpha = \frac{2-d}{2}, \quad \beta = \frac{2-d}{4}, \quad z = 2.$$

Stationary state: "free Gaussian field"

1d: like Brownian motion with x as time

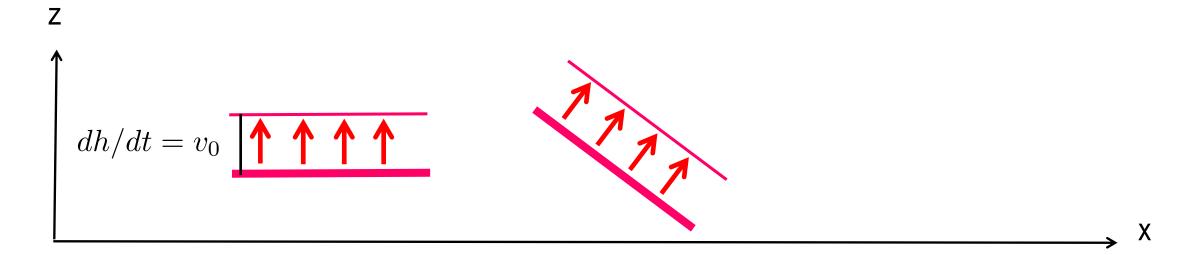
$$P_{\text{stat}}[h(\boldsymbol{x})] \propto \exp\left[-\int \mathrm{d}^d \boldsymbol{x} \frac{\nu}{D} (\nabla h)^2\right].$$

Growth is typically non-linear!

Simple source of non-linearity: a sloped surface grows faster (in z) than a flat one: because the surface per unit length (in x!) is larger (aggregeation is assumed prop. to surface!)

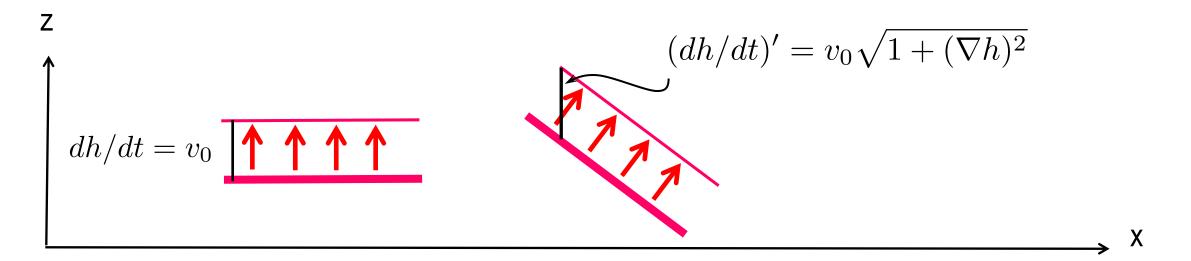
Growth is typically non-linear!

Simple source of non-linearity: a sloped surface grows faster (in z) than a flat one: because the surface per unit length (in x!) is larger (aggregeation is assumed prop. to surface!)



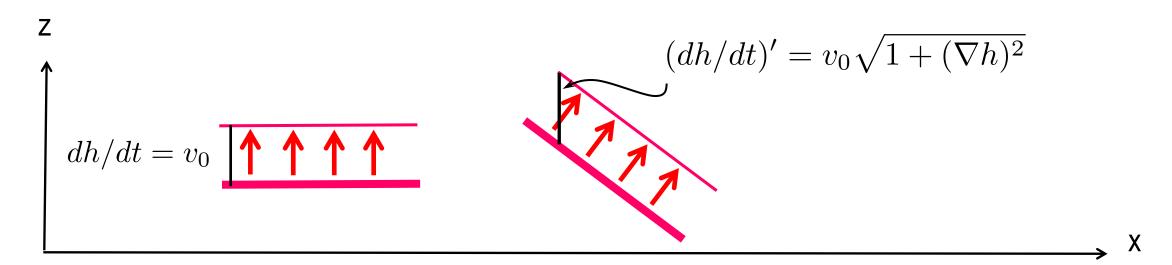
Growth is typically non-linear!

Simple source of non-linearity: a sloped surface grows faster (in z) than a flat one: because the surface per unit length (in x!) is larger (aggregeation is assumed prop. to surface!)



Growth is typically non-linear!

Simple source of non-linearity: a sloped surface grows faster (in z) than a flat one: because the surface per unit length (in x!) is larger (aggregeation is assumed prop. to surface!)



KPZ equation:
$$\frac{\partial}{\partial t}h(\mathbf{x},t) = v_0 + \nu \nabla^2 h + \eta(\mathbf{x},t)$$
. \longrightarrow $\frac{\partial}{\partial t}h(\mathbf{x},t) = v_0 + \nu \nabla^2 h + \frac{\lambda}{2}(\nabla h)^2 + \eta(\mathbf{x},t)$.

$$\frac{\partial}{\partial t}h(\boldsymbol{x},t) = v_0 + v\boldsymbol{\nabla}^2 h + \frac{\lambda}{2}(\boldsymbol{\nabla} h)^2 + \eta(\boldsymbol{x},t)$$

Growth is typically non-linear!

Simple source of non-linearity: a sloped surface grows faster (in z) than a flat one: because the surface per unit length (in x!) is larger (aggregeation is assumed prop. to surface!)

Remarks:

- Many other possible sources of non-linearity (e.g. interactions)
- The square of the gradient is the leading symmetry-allowed non-linearity

KPZ equation:
$$\frac{\partial}{\partial t}h(x,t) = v_0 + \nu \nabla^2 h + \eta(x,t)$$
. $\longrightarrow \frac{\partial}{\partial t}h(x,t) = v_0 + \nu \nabla^2 h + \frac{\lambda}{2}(\nabla h)^2 + \eta(x,t)$

$$\frac{\partial}{\partial t}h(\mathbf{x},t) = v_0 + v\nabla^2 h + \frac{\lambda}{2}(\nabla h)^2 + \eta(\mathbf{x},t)$$

Growth is typically non-linear!

Simple source of non-linearity: a sloped surface grows faster (in z) than a flat one: because the surface per unit length (in x!) is larger (aggregeation is assumed prop. to surface!)

Remarks:

- Many other possible sources of non-linearity (e.g. interactions)
- The square of the gradient is the leading symmetry-allowed non-linearity
- v_n can be eliminated by Galilean transformation; but non-linearity breaks the invariance under $h \rightarrow -h$. Genuine growth direction is singled out!

KPZ equation:
$$\frac{\partial}{\partial t}h(x,t) = v_0 + \nu \nabla^2 h + \eta(x,t)$$
. $\longrightarrow \frac{\partial}{\partial t}h(x,t) = v_0 + \nu \nabla^2 h + \frac{\lambda}{2}(\nabla h)^2 + \eta(x,t)$

$$\frac{\partial}{\partial t}h(\boldsymbol{x},t) = v_0 + v\nabla^2 h + \frac{\lambda}{2}(\nabla h)^2 + \eta(\boldsymbol{x},t)$$

Growth is typically non-linear!

Simple source of non-linearity: a sloped surface grows faster (in z) than a flat one: because the surface per unit length (in x!) is larger (aggregeation is assumed prop. to surface!)

Remarks:

- Many other possible sources of non-linearity (e.g. interactions)
- The square of the gradient is the leading symmetry-allowed non-linearity
- v₀ can be eliminated by Galilean transformation; but non-linearity breaks the invariance under h → -h. Genuine growth direction is singled out!
- The non-linearity is relevant in the RG sense (for d<= 2): $\lambda \to \lambda b^{\alpha+z-2}$

KPZ equation:
$$\frac{\partial}{\partial t}h(x,t) = v_0 + v\nabla^2 h + \eta(x,t)$$
. \longrightarrow $\frac{\partial}{\partial t}h(x,t) = v_0 + v\nabla^2 h + \frac{\lambda}{2}(\nabla h)^2 + \eta(x,t)$.

Non-linear growth: Kardar-Parisi-Zhang

Growth is typically non-linear!

Simple source of non-linearity: a sloped surface grows faster (in z) than a flat one: because the surface per unit length (in x!) is larger (aggregeation is assumed prop. to surface!)

Remarks:

Many other possible sources of non-linearity (e.g. interactions)

$$\alpha = \frac{2-d}{2}, \quad \beta = \frac{2-d}{4}, \quad z = 2.$$

- The square of the gradient is the leading symmetry-allowed non-linearity
- v₀ can be eliminated by Galilean transformation; but non-linearity breaks the invariance under h → -h. Genuine growth direction is singled out!
- The non-linearity is relevant in the RG sense (for d<= 2): $\lambda \to \lambda \ b^{\alpha+z-2} = \lambda \ b^{1-\frac{d}{2}}$

KPZ equation:
$$\frac{\partial}{\partial t}h(\mathbf{x},t) = v_0 + v\nabla^2 h + \eta(\mathbf{x},t).$$
 \longrightarrow $\frac{\partial}{\partial t}h(\mathbf{x},t) = v_0 + v\nabla^2 h + \frac{\lambda}{2}(\nabla h)^2 + \eta(\mathbf{x},t).$

Non-linear growth: Kardar-Parisi-Zhang

Growth is typically non-linear!

Simple source of non-linearity: a sloped surface grows faster (in z) than a flat one: because the surface per unit length (in x!) is larger (aggregeation is assumed prop. to surface!)

Remarks:

Many other possible sources of non-linearity (e.g. interactions)

$$\alpha = \frac{2-d}{2}, \quad \beta = \frac{2-d}{4}, \quad z = 2.$$

- The square of the gradient is the leading symmetry-allowed non-linearity
- v₀ can be eliminated by Galilean transformation; but non-linearity breaks the invariance under h → -h. Genuine growth direction is singled out!
- The non-linearity is relevant in the RG sense (for d<= 2): $\lambda \to \lambda b^{\alpha+z-2} = \lambda b^{1-\frac{d}{2}}$ \to EW fixed point ($\lambda = 0$) is unstable; changes universality class!

KPZ equation:
$$\frac{\partial}{\partial t}h(x,t) = v_0 + v\nabla^2 h + \eta(x,t)$$
. \longrightarrow $\frac{\partial}{\partial t}h(x,t) = v_0 + v\nabla^2 h + \frac{\lambda}{2}(\nabla h)^2 + \eta(x,t)$.

Kardar-Parisi-Zhang universality class

KPZ equation

$$\frac{\partial}{\partial t}h(\boldsymbol{x},t) = v_0 + \nu \nabla^2 h + \frac{\lambda}{2} (\nabla h)^2 + \eta(\boldsymbol{x},t)$$

Universal exponents α , β , z?

Kardar-Parisi-Zhang universality class

KPZ equation

$$\frac{\partial}{\partial t}h(\boldsymbol{x},t) = v_0 + \nu \nabla^2 h + \frac{\lambda}{2}(\nabla h)^2 + \eta(\boldsymbol{x},t)$$

Universal exponents α , β , z?

- 4 terms, but only 3 exponents: naive scaling analysis does not work!
- Indeed: ν and D flow under scale transformation (renormalization)

Kardar-Parisi-Zhang universality class

KPZ equation

$$\frac{\partial}{\partial t}h(\boldsymbol{x},t) = v_0 + \nu \nabla^2 h + \frac{\lambda}{2}(\nabla h)^2 + \eta(\boldsymbol{x},t)$$

Universal exponents α , β , z?

- 4 terms, but only 3 exponents: naive scaling analysis does not work!
- Indeed: ν and D flow under scale transformation (renormalization)
- But: λ does not flow : a symmetry protects it!

This is easiest to see from a mapping to fluid dynamics.

Relation to particle flows: stirred Burger's equation

Relation to particle flows: stirred Burger's equation

KPZ equation

 $\partial_t h = \nu \vec{\nabla}^2 h + \frac{\lambda}{2} (\vec{\nabla} h)^2 + \eta$ $\mathbf{v} = -\lambda \nabla h$

Define: Velocity field

$$\mathbf{v} = -\lambda \nabla h$$

Burger's equation

(= Navier Stokes)

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \nu \nabla^2 \mathbf{v} - \lambda \nabla \eta$$

Relation to particle flows: stirred Burger's equation

KPZ equation

Define: Velocity field

$$\partial_t h = \nu \vec{\nabla}^2 h + \frac{\lambda}{2} (\vec{\nabla} h)^2 + \eta$$
$$\mathbf{v} = -\lambda \nabla h$$

$$\longrightarrow$$

Burger's equation (= Navier Stokes)

$$\partial_t {f v} + ({f v} \cdot {f \nabla}) {f v} =
u {f \nabla}^2 {f v} - \lambda {f \nabla} \eta$$
 Shear viscosity (dissipation)

Convective derivative Random stirring force

Burgers vs Navier-Stokes

Burger's equation

Identical to incompressible $[\rho=cst.]$ Navier-Stokes equations, without pressure gradient)

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \nu \nabla^2 \mathbf{v} - \lambda \nabla \eta$$

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \nu \nabla^2 \mathbf{v} - \frac{\nabla p}{\rho} + \mathbf{f}$$

Burgers vs Navier-Stokes

Burger's equation

gradient)

Identical to incompressible $[\rho=cst.]$ Navier-Stokes equations, without pressure

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \nu \nabla^2 \mathbf{v} - \lambda \nabla \eta$$

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \nu \nabla^2 \mathbf{v} - \frac{\nabla p}{\rho} + \mathbf{f}$$

But: in Navier Stokes one has incompressibility

$$\nabla \cdot \mathbf{v} = 0$$

→ While here *v* is a gradient:

$$\mathbf{v} = -\lambda \nabla h$$

No curl \rightarrow no eddies!

Burgers vs Navier-Stokes

Burger's equation

 $\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \nu \nabla^2 \mathbf{v} - \lambda \nabla \eta$

Identical to incompressible $[\rho=cst.]$ Navier-Stokes equations, without pressure gradient)

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \nu \nabla^2 \mathbf{v} - \frac{\nabla p}{\rho} + \mathbf{f}$$

But: in Navier Stokes one has incompressibility

$$\nabla \cdot \mathbf{v} = 0$$

→ While here *v* is a gradient:

$$\mathbf{v} = -\lambda \nabla h$$

No curl \rightarrow no eddies!

"Burger's turbulence": Does not describe real turbulence, but Burger's equation has applications to large scales of galaxies, and interesting short scale singularities (shock wave generation)

Burger's equation

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \nu \nabla^2 \mathbf{v} - \lambda \nabla \eta$$

For any physical fluid dynamics:

Invariance under Galilean transformation: For any relative velocity v_0

$$\mathbf{v}_{\text{new}}(\mathbf{x},t) = \mathbf{v}_0 + \mathbf{v}(\mathbf{x} - \mathbf{v}_0 t, t)$$

also satisfies Burger's equation!

Note: With a shifted noise realization, but having the same statistics:

$$\langle \eta(\mathbf{x},t)\eta(\mathbf{x}',t')\rangle_{\text{new}} = \langle \eta(\mathbf{x}-\mathbf{v}_0t,t)\eta(\mathbf{x}'-\mathbf{v}_0t',t')\rangle = D\delta(\mathbf{x}-\mathbf{x}')\delta(t-t')$$

--> "statistical Galilean invariance"

Burger's equation

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \nu \nabla^2 \mathbf{v} - \lambda \nabla \eta$$

For any physical fluid dynamics:

Invariance under Galilean transformation: For any relative velocity v₀

$$\mathbf{v}_{\text{new}}(\mathbf{x},t) = \mathbf{v}_0 + \mathbf{v}(\mathbf{x} - \mathbf{v}_0 t, t)$$
 $\mathbf{v} = -\lambda \nabla h$

Related symmetry for height model?

Burger's equation

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \nu \nabla^2 \mathbf{v} - \lambda \nabla \eta$$

For any physical fluid dynamics:

Invariance under Galilean transformation: For any relative velocity v₀

$$\mathbf{v}_{\text{new}}(\mathbf{x},t) = \mathbf{v}_0 + \mathbf{v}(\mathbf{x} - \mathbf{v}_0 t, t)$$

$$\mathbf{v} = -\lambda \nabla h$$

Related symmetry for height model:

$$h_{\text{new}}(\mathbf{x}, t) = h(\mathbf{x} + \lambda \mathbf{s}t, t) + \mathbf{s} \cdot \mathbf{x} + \frac{\lambda}{2} \mathbf{s}^2 t$$

also satisfies the KPZ growth equation

$$\partial_t h = \nu \vec{\nabla}^2 h + \frac{\lambda}{2} (\vec{\nabla} h)^2 + \eta$$

Implication of symmetries

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \nu \nabla^2 \mathbf{v} - \lambda \nabla \eta$$

Physical Galilean invariance always has prefactor 1.

This is obviously preserved under renormalization (integrating out small scales)

Implication of symmetries

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \nu \nabla^2 \mathbf{v} - \lambda \nabla \eta$$

Physical Galilean invariance always has prefactor 1.

This is obviously preserved under renormalization (integrating out small scales)

But: growth model maps to Galilean invariant fluid model under λ -dependent map

$$\mathbf{v} = -\lambda \nabla h$$

Implication of symmetries

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \nu \nabla^2 \mathbf{v} - \lambda \nabla \eta$$

Physical Galilean invariance always has prefactor 1.

This is obviously preserved under renormalization (integrating out small scales)

But: growth model maps to Galilean invariant fluid model under λ -dependent map

$$\mathbf{v} = -\lambda \nabla h$$

The mapping can be made before or after renormalization, and in both cases one should get (the same!) Galilean invariant model.

 $\rightarrow \lambda$ cannot flow under scale transformation (as confirmed by explicit RG).

Implication of symmetries

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \nu \nabla^2 \mathbf{v} - \lambda \nabla \eta$$

Physical Galilean invariance always has prefactor 1.

This is obviously preserved under renormalization (integrating out small scales)

But: growth model maps to Galilean invariant fluid model under λ -dependent map

$$\mathbf{v} = -\lambda \nabla h$$

The mapping can be made before or after renormalization, and in both cases one should get (the same!) Galilean invariant model.

 $\rightarrow \lambda$ cannot flow under scale transformation (as confirmed by explicit RG).

$$(\partial_t h) = \nu \vec{\nabla}^2 h + (\frac{\lambda}{2} (\vec{\nabla} h)^2) + \eta$$

Implication of symmetries

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \nu \nabla^2 \mathbf{v} - \lambda \nabla \eta$$

Physical Galilean invariance always has prefactor 1.

This is obviously preserved under renormalization (integrating out small scales)

But: growth model maps to Galilean invariant fluid model under λ -dependent map

$$\mathbf{v} = -\lambda \nabla h$$

The mapping can be made before or after renormalization, and in both cases one should get (the same!) Galilean invariant model.

 $\rightarrow \lambda$ cannot flow under scale transformation (as confirmed by explicit RG).

$$(\lambda h) = \nu \vec{\nabla}^2 h + (\lambda (\vec{\nabla} h)^2) + \eta \qquad \text{Scale invariance of KPZ equation} \qquad b^{\alpha - z} = b^{2\alpha - 2} \to \alpha + z = 2$$

KPZ exponents

$$\partial_t h =
u \vec{
abla}^2 h + rac{\lambda}{2} (\vec{
abla} h)^2 + \eta \qquad \qquad x \mapsto bx, \quad t \mapsto b^z t, \quad \delta h \mapsto b^{lpha} \delta h. \\ \delta h \sim t^{eta} \equiv t^{lpha/z}$$

$$x \mapsto bx$$
, $t \mapsto b^z t$, $\delta h \mapsto b^\alpha \delta h$
 $\delta h \sim t^\beta \equiv t^{\alpha/z}$

$$z=2-\alpha;$$

$$\beta = \frac{\alpha}{z} = \frac{\alpha}{2 - \alpha}$$

Statistical tilt symmetry

(by definition)

d=1 : exactly known

$$\alpha = 1/2$$
, $\beta = 1/3$, $z = 3/2$

$$d=2$$
:

$$\alpha = 0.3869; \beta = 0.2398, z = 1.6131$$

d>2: weak $\lambda \rightarrow RG$ -irrelevant \rightarrow flow to Edwards-Wilkinson strong λ: transition to a strong coupling fixed point!

KPZ exact exponents in d = 1

$$\partial_t h = \nu \vec{\nabla}^2 h + \frac{\lambda}{2} (\vec{\nabla} h)^2 + \eta$$

$$x \mapsto bx$$
, $t \mapsto b^z t$, $\delta h \mapsto b^\alpha \delta h$. $\delta h \sim t^\beta \equiv t^{\alpha/z}$

d=1 : exactly known

$$\alpha = 1/2$$
, $\beta = 1/3$, $z = 3/2$

(Huse-Henley-Fisher PRL '85)

How do we know?

$$\partial_t h = \nu \vec{\nabla}^2 h + \frac{\lambda}{2} (\vec{\nabla} h)^2 + \eta$$
 $x \mapsto bx, \quad t \mapsto b^z t, \quad \delta h \mapsto b^\alpha \delta h.$ $\delta h \sim t^\beta \equiv t^{\alpha/z}$

$$x \mapsto bx$$
, $t \mapsto b^z t$, $\delta h \mapsto b^\alpha \delta h$
 $\delta h \sim t^\beta \equiv t^{\alpha/z}$

d=1 : exactly known

$$\alpha = 1/2$$
, $\beta = 1/3$, $z = 3/2$

(Huse-Henley-Fisher PRL '85)

Check: (→ Exercise): The Fokker-Planck equation for KPZ now reads

$$\frac{\partial}{\partial t}P[h(\mathbf{x}),t] = -\int d^d\mathbf{x} \frac{\delta}{\delta h} \left[\nu \nabla^2 h + \frac{\lambda}{2} (\nabla h)^2 \right] P[h(\mathbf{x}),t] + \frac{D}{2} \int d^d\mathbf{x} \frac{\delta^2}{\delta^2 h} P[h(\mathbf{x}),t]$$

In d = 1 (and only there)

$$P_{\text{stat}}[h(\mathbf{x})] \propto \exp\left[-\int d^d \mathbf{x} \frac{v}{D} (\nabla h)^2\right]$$

is still the stationary distribution for $\lambda \neq 0$: $\partial_t P[\{h(x)\}, t] = 0$

$$\partial_t h = \nu \vec{\nabla}^2 h + \frac{\lambda}{2} (\vec{\nabla} h)^2 + \eta$$
 $x \mapsto bx, \quad t \mapsto b^z t, \quad \delta h \mapsto b^\alpha \delta h.$ $\delta h \sim t^\beta \equiv t^{\alpha/z}$

$$x \mapsto bx$$
, $t \mapsto b^z t$, $\delta h \mapsto b^\alpha \delta h$
 $\delta h \sim t^\beta \equiv t^{\alpha/z}$

d=1 : exactly known

$$\alpha = 1/2$$
, $\beta = 1/3$, $z = 3/2$

(Huse-Henley-Fisher PRL '85)

Check: (→ Exercise):

$$\int dx \, (dh/dx)^2$$
 is indeed scale invariant with

$$2\alpha - 1 = 0$$

$$\rightarrow \alpha = 1/2$$

In d=1 (and only there)

$$P_{\rm stat}[h(\boldsymbol{x})] \propto \exp\left[-\int \mathrm{d}^d \boldsymbol{x} \frac{v}{D} (\boldsymbol{\nabla} h)^2\right]$$

is still the stationary distribution for $\lambda \neq 0$: $\partial_t P[\{h(x)\}, t] = 0$

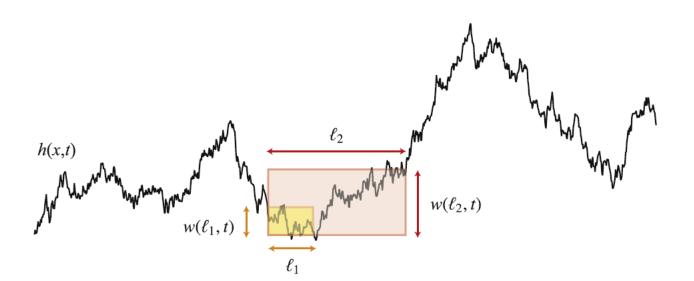
$$\partial_t h = \nu \vec{\nabla}^2 h + \frac{\lambda}{2} (\vec{\nabla} h)^2 + \eta$$

$$x\mapsto bx,\quad t\mapsto b^zt,\quad \delta h\mapsto b^\alpha\delta h.$$
 $\delta h\sim t^\beta\equiv t^{\alpha/z}$

d=1 : exactly known

$$\alpha = 1/2$$
, $\beta = 1/3$, $z = 3/2$

(Huse-Henley-Fisher PRL '85)



- Start from flat interface at t = 0
- At later times t: small scales $w \sim \ell^{1/2}$ $(\ell \ll \xi(t) \sim t^{1/z} = t^{2/3})$

look like random walks!

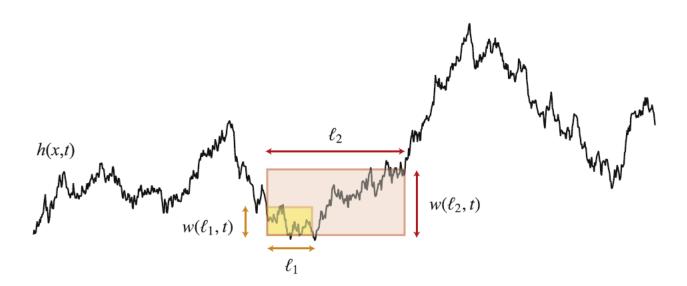
$$\partial_t h = \nu \vec{\nabla}^2 h + \frac{\lambda}{2} (\vec{\nabla} h)^2 + \eta$$

$$x\mapsto bx,\quad t\mapsto b^zt,\quad \delta h\mapsto b^\alpha\delta h.$$
 $\delta h\sim t^\beta\equiv t^{\alpha/z}$

d=1: exactly known

$$\alpha = 1/2$$
, $\beta = 1/3$, $z = 3/2$

(Huse-Henley-Fisher PRL '85)



- Start from flat interface at t = 0
- At later times t: small scales $w \sim \ell^{1/2}$ $(\ell \ll \xi(t) \sim t^{1/z} = t^{2/3})$

look like random walks!

• At large scales $(\ell \gg \xi(t))$

$$w \sim t^{\beta} = t^{1/3}$$

$$\partial_t h = \nu \vec{\nabla}^2 h + \frac{\lambda}{2} (\vec{\nabla} h)^2 + \eta$$
 $x \mapsto bx, \quad t \mapsto b^z t, \quad \delta h \mapsto b^\alpha \delta h.$ $\delta h \sim t^\beta \equiv t^{\alpha/z}$

$$x \mapsto bx$$
, $t \mapsto b^{z}t$, $\delta h \mapsto b^{\alpha}\delta h$
 $\delta h \sim t^{\beta} \equiv t^{\alpha/z}$

Alternative argument for exponent $\beta = 1/3$:

Microscopic lattice models (e.g. exclusion processes) lead to a non-linear fluid dynamics, but do *not* contain fluctuating forces (D) / diffusion (ν) a priori. (They are often added phenomenologically in the spirit of fluctuating hydrodynamics, obeying a fluctuation-dissipation relation)

Still they reflect the stationary distribution $\langle (h(x)-h(x'))^2\rangle = \frac{D}{2\nu}|x-x'| = A|x-x'|$ where only the ratio $A=\frac{D}{2\nu}$ enters as a parameter of the model.

Typical fluctuation of h(x,t)? Independent of x, depends only on t, λ , A $[\lambda] = \frac{[x]^2}{[h][t]}$ $[A] = \frac{[h]^2}{[x]}$ Only combination: $h(t) \sim (\lambda t A^2)^{1/3} \longrightarrow \beta = 1/3$

$$\partial_t h = \nu \vec{\nabla}^2 h + \frac{\lambda}{2} (\vec{\nabla} h)^2 + \eta$$
 $x \mapsto bx, \quad t \mapsto b^z t, \quad \delta h \mapsto b^\alpha \delta h.$ $\delta h \sim t^\beta \equiv t^{\alpha/z}$

$$x \mapsto bx$$
, $t \mapsto b^{z}t$, $\delta h \mapsto b^{\alpha}\delta h$
 $\delta h \sim t^{\beta} \equiv t^{\alpha/z}$

Alternative argument for exponent $\beta = 1/3$:

Microscopic lattice models (e.g. exclusion processes) lead to a non-linear fluid dynamics, but do *not* contain fluctuating forces (D) / diffusion (ν) a priori.

(They are often added phenomenologically in the spirit of fluctuating hydrodynamics, obeying a fluctuation-dissipation relation)

$$\partial_t h =
u \vec{\nabla}^2 h + rac{\lambda}{2} (\vec{\nabla} h)^2 + \eta$$
 $x \mapsto bx, \quad t \mapsto b^z t, \quad \delta h \mapsto b^{lpha} \delta h.$ $\delta h \sim t^{eta} \equiv t^{lpha/z}$

$$x \mapsto bx$$
, $t \mapsto b^z t$, $\delta h \mapsto b^{\alpha} \delta h$
 $\delta h \sim t^{\beta} \equiv t^{\alpha/z}$

Alternative argument for exponent $\beta = 1/3$:

Microscopic lattice models (e.g. exclusion processes) lead to a non-linear fluid dynamics, but do *not* contain fluctuating forces (D) / diffusion (ν) a priori.

(They are often added phenomenologically in the spirit of fluctuating hydrodynamics, obeying a fluctuation-dissipation relation)

Still, they reflect the stationary distribution $\langle (h(x)-h(x'))^2\rangle = \frac{D}{2\nu}|x-x'| = A|x-x'|$ where *only* the ratio $A=\frac{D}{2\nu}$ enters as a parameter of the model.

$$\partial_t h =
u \vec{\nabla}^2 h + rac{\lambda}{2} (\vec{\nabla} h)^2 + \eta$$
 $x \mapsto bx, \quad t \mapsto b^z t, \quad \delta h \mapsto b^{lpha} \delta h.$ $\delta h \sim t^{eta} \equiv t^{lpha/z}$

$$x \mapsto bx$$
, $t \mapsto b^z t$, $\delta h \mapsto b^\alpha \delta h$
 $\delta h \sim t^\beta \equiv t^{\alpha/z}$

Alternative argument for exponent $\beta = 1/3$:

Microscopic lattice models (e.g. exclusion processes) lead to a non-linear fluid dynamics, but do *not* contain fluctuating forces (D) / diffusion (ν) a priori. (They are often added phenomenologically in the spirit of fluctuating hydrodynamics, obeying a fluctuation-dissipation relation)

Still, they reflect the stationary distribution $\langle (h(x)-h(x'))^2\rangle = \frac{D}{2\nu}|x-x'| = A|x-x'|$ where *only* the ratio $A=\frac{D}{2\nu}$ enters as a parameter of the model.

Typical fluctuation of h(x,t)? Independent of x; depends only on t, λ, A

$$[\lambda] = \frac{[x]^2}{[h][t]}$$
 $[A] = \frac{[h]^2}{[x]}$

$$\partial_t h = \nu \vec{\nabla}^2 h + \frac{\lambda}{2} (\vec{\nabla} h)^2 + \eta$$
 $x \mapsto bx, \quad t \mapsto b^z t, \quad \delta h \mapsto b^\alpha \delta h.$ $\delta h \sim t^\beta \equiv t^{\alpha/z}$

$$x \mapsto bx$$
, $t \mapsto b^{z}t$, $\delta h \mapsto b^{\alpha}\delta h$
 $\delta h \sim t^{\beta} \equiv t^{\alpha/z}$

Alternative argument for exponent $\beta = 1/3$:

Microscopic lattice models (e.g. exclusion processes) lead to a non-linear fluid dynamics, but do *not* contain fluctuating forces (D) / diffusion (ν) a priori. (They are often added phenomenologically in the spirit of fluctuating hydrodynamics, obeying a fluctuation-dissipation relation)

Still, they reflect the stationary distribution $\langle (h(x)-h(x'))^2\rangle = \frac{D}{2\nu}|x-x'| = A|x-x'|$ where *only* the ratio $A=\frac{D}{2\nu}$ enters as a parameter of the model.

Typical fluctuation of h(x,t)? Independent of x; depends only on t, λ , AOnly dimensionally correct combination:

$$[\lambda] = \frac{[x]^2}{[h][t]}$$
 $[A] = \frac{[h]^2}{[x]}$

$$h(t) \sim (\lambda t A^2)^{1/3} \longrightarrow \beta = 1/3$$

Mapping to directed polymers: the Cole-Hopf transformation

Mapping to directed polymers: the Cole-Hopf transformation

$$\partial_t h = \nu \vec{\nabla}^2 h + \frac{\lambda}{2} (\vec{\nabla} h)^2 + \eta$$

Mathematical issue with the KPZ equation in the continuum:

White noise η is non-differentiable

- → ∇h becomes singular
- \rightarrow $(\nabla h)^2$ is a priori ill-defined

Mapping to directed polymers: the Cole-Hopf transformation

$$\partial_t h = \nu \vec{\nabla}^2 h + \frac{\lambda}{2} (\vec{\nabla} h)^2 + \eta$$

Mathematical issue with the KPZ equation in the continuum:

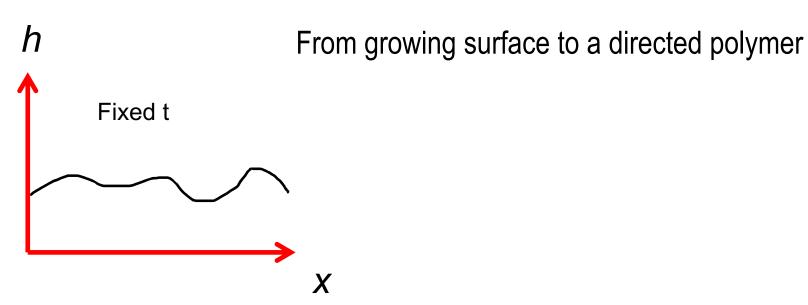
White noise η is non-differentiable

- → ∇h becomes singular
- \rightarrow $(\nabla h)^2$ is a priori ill-defined

Possible remedies:

- Work with finite-in-time correlated, colored noise
- Use discretized lattice models
- Or: Mapping that removes the non-linearity: Cole-Hopf transformation

Mapping to directed polymers: The Cole-Hopf transformation



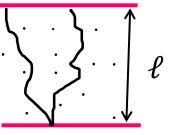
Mapping to directed polymers: The Cole-Hopf transformation

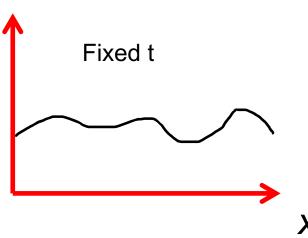
From growing surface to a directed polymer $h(x,t) \leftrightarrow F(x,\ell)$ $t \leftrightarrow \ell$

Interpret height at time t as free energy of a *directed* polymer starting at the origin and ending at lateral displacement x after a longitudinal distance $\ell \equiv t$

Mapping to directed polymers: The Cole-Hopf transformation

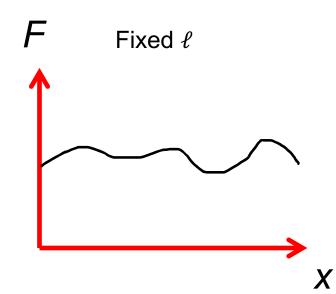
From growing surface to a directed polymer



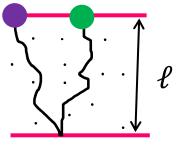


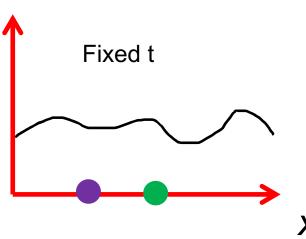
$$h(x,t) \leftrightarrow F(x,\ell)$$
$$t \leftrightarrow \ell$$

Interpret height at time t as free energy of a *directed* polymer starting at the origin and ending at lateral displacement x after a longitudinal distance $\ell \equiv t$



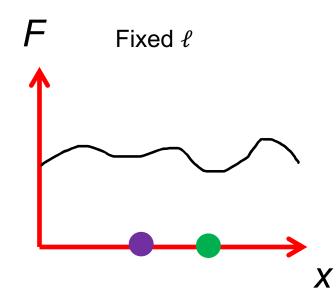
From growing surface to a directed polymer



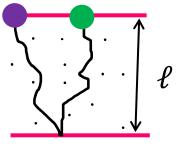


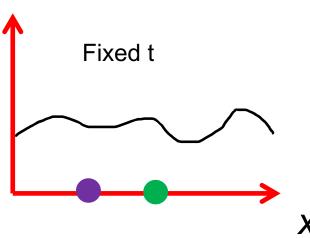
$$h(x,t) \leftrightarrow F(x,\ell)$$
$$t \leftrightarrow \ell$$

Interpret height at time t as free energy of a *directed* polymer starting at the origin and ending at lateral displacement x after a longitudinal distance $\ell \equiv t$



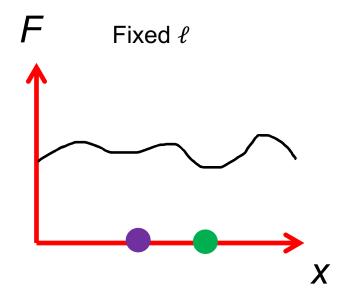
From growing surface to a directed polymer



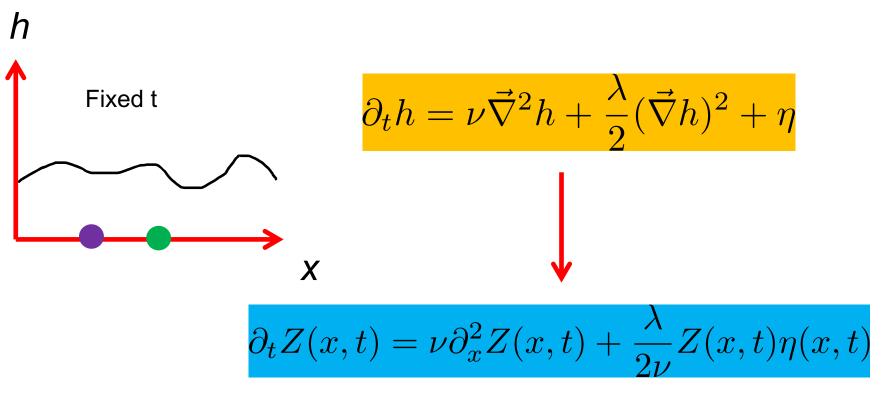


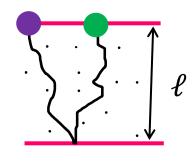
$$h(x,t) \leftrightarrow F(x,\ell)$$
$$t \leftrightarrow \ell$$

Interpret height at time t as free energy of a *directed* polymer starting at the origin and ending at lateral displacement x after a longitudinal distance $\ell \equiv t$

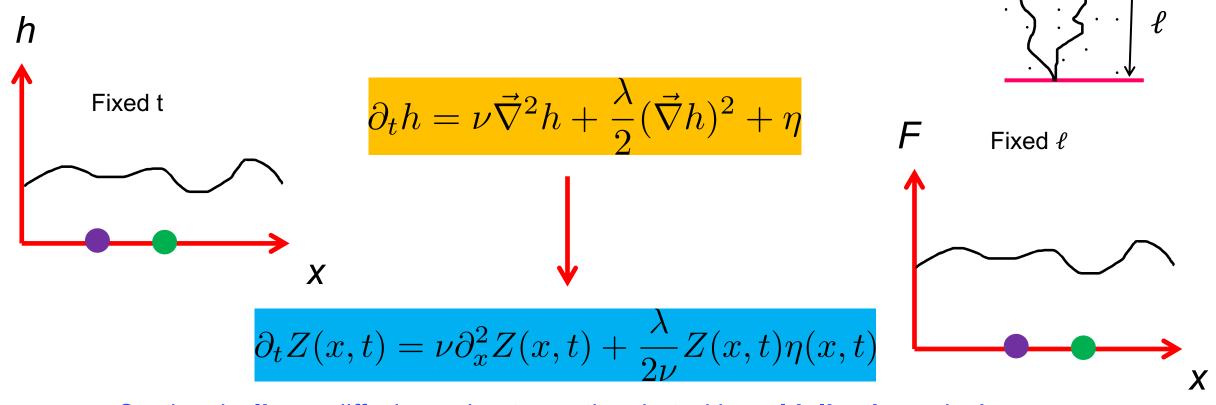


$$Z(x, t) \equiv \exp\left[\frac{\lambda}{2\nu}h(x, t)\right]$$

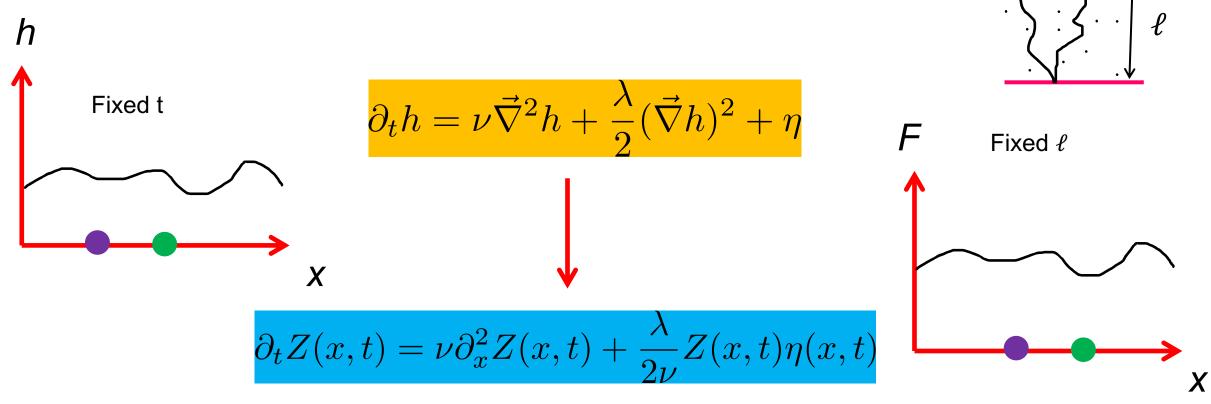




$$\rightarrow$$
 Partition function: $Z(x, t) \equiv \exp \left[\frac{\lambda}{2\nu}h(x, t)\right]$



→ Stochastic, linear diffusion or heat equation, but with multiplicative noise!



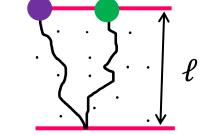
→ Stochastic, linear diffusion or heat equation, but with multiplicative noise!

Rem: Well-defined with Itô's prescription for

$$Z(x,t)\eta(x,t) = Z(x,t) \lim_{dt\to 0^+} \frac{1}{dt} \int_0^{at} \eta(x,t+\delta) d\delta$$

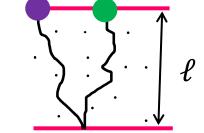
"Evaluate noise at slightly later time" \rightarrow avoid correlation btw Z and η !

$$\partial_t Z(x,t) = \nu \partial_x^2 Z(x,t) + \frac{\lambda}{2\nu} Z(x,t) \eta(x,t)$$



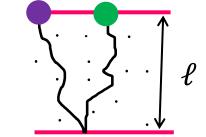
Solving the linear stochastic heat equation?

$$\partial_t Z(x,t) = \nu \partial_x^2 Z(x,t) + \frac{\lambda}{2\nu} Z(x,t) \eta(x,t)$$



Like in QM:
$$i\partial_t \psi(x,t) = -\frac{1}{2m} \partial_x^2 \psi(x,t) + V(x) \psi(x,t)$$

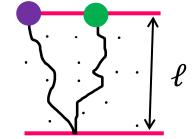
$$\partial_t Z(x,t) = \nu \partial_x^2 Z(x,t) + \frac{\lambda}{2\nu} Z(x,t) \eta(x,t)$$



$$i\partial_t \psi(x,t) = -\frac{1}{2m} \partial_x^2 \psi(x,t) + V(x)\psi(x,t)$$
$$\partial_t \psi(x,t) = \frac{i}{2m} \partial_x^2 \psi(x,t) - iV(x)\psi(x,t)$$

$$\partial_t \psi(x,t) = \frac{i}{2m} \partial_x^2 \psi(x,t) - iV(x)\psi(x,t)$$

$$\partial_t Z(x,t) = \nu \partial_x^2 Z(x,t) + \frac{\lambda}{2\nu} Z(x,t) \eta(x,t)$$



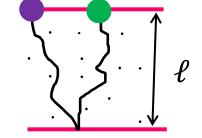
$$i\partial_t \psi(x,t) = -\frac{1}{2m} \partial_x^2 \psi(x,t) + V(x)\psi(x,t)$$
$$\partial_t \psi(x,t) = \frac{i}{2m} \partial_x^2 \psi(x,t) - iV(x)\psi(x,t)$$

$$\partial_t \psi(x,t) = \frac{i}{2m} \partial_x^2 \psi(x,t) - iV(x)\psi(x,t)$$

Feynman-Kac

$$\psi(x,t) = \int_{(u(0)=0)}^{(u(t)=x)} \mathcal{D}[u(t)] \exp\left[i\frac{m}{2} \int_0^t \dot{u}^2 dt - i \int_0^t V(u(t))\right] = \int_{(u(0)=0)}^{(u(t)=x)} \mathcal{D}[u(t)] \exp\left[i \int_0^t \mathcal{L}(u(t))\right]$$

$$\partial_t Z(x,t) = \nu \partial_x^2 Z(x,t) + \frac{\lambda}{2\nu} Z(x,t) \eta(x,t)$$



$$Z(x,t) = \int_{(u(0)=0)}^{(u(t)=x)} \mathcal{D}[u(t)] \exp\left[-\frac{1}{4\nu} \int_0^t \dot{u}^2 dt + \frac{\lambda}{2\nu} \int_0^t \eta(u(t),t)\right]$$

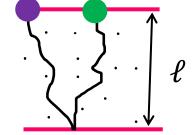
$$i\partial_t \psi(x,t) = -\frac{1}{2m} \partial_x^2 \psi(x,t) + V(x)\psi(x,t)$$
$$\partial_t \psi(x,t) = \frac{i}{2m} \partial_x^2 \psi(x,t) - iV(x)\psi(x,t)$$

$$\partial_t \psi(x,t) = \frac{i}{2m} \partial_x^2 \psi(x,t) - iV(x)\psi(x,t)$$

Feynman-Kac

$$\psi(x,t) = \int_{(u(0)=0)}^{(u(t)=x)} \mathcal{D}[u(t)] \exp\left[i\frac{m}{2} \int_0^t \dot{u}^2 dt - i \int_0^t V(u(t))\right] = \int_{(u(0)=0)}^{(u(t)=x)} \mathcal{D}[u(t)] \exp\left[i \int_0^t \mathcal{L}(u(t))\right]$$

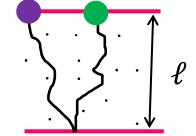
$$\partial_t Z(x,t) = \nu \partial_x^2 Z(x,t) + \frac{\lambda}{2\nu} Z(x,t) \eta(x,t)$$



$$Z(x,t) = \int_{(u(0)=0)}^{(u(t)=x)} \mathcal{D}[u(t)] \exp\left[-\frac{1}{4\nu} \int_0^t \dot{u}^2 dt + \frac{\lambda}{2\nu} \int_0^t \eta(u(t),t)\right]$$

$$T \equiv 2\nu$$

$$\partial_t Z(x,t) = \nu \partial_x^2 Z(x,t) + \frac{\lambda}{2\nu} Z(x,t) \eta(x,t)$$



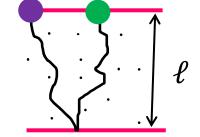
$$Z(x,t) = \int_{(u(0)=0)}^{(u(t)=x)} \mathcal{D}[u(t)] \exp\left[-\frac{1}{4\nu} \int_0^t \dot{u}^2 dt + \frac{\lambda}{2\nu} \int_0^t \eta(u(t),t)\right]$$

$$T \equiv 2\nu$$

$$Z(x,t) = \int_{(u(0)=0)}^{(u(t)=x)} \mathcal{D}[u(t)] \exp\left[-\frac{1}{T} \left(\frac{1}{2} \int_{0}^{t} \dot{u}^{2} dt - \int_{0}^{t} \lambda \eta(u(t),t)\right)\right]$$

$$\equiv \int_{(u(0)=0)}^{(u(t)=x)} \mathcal{D}[u(t)] \exp\left[-\frac{1}{T} \left(E_{\text{el}} + E_{\text{pot}}\right)\right]$$

$$\partial_t Z(x,t) = \nu \partial_x^2 Z(x,t) + \frac{\lambda}{2\nu} Z(x,t) \eta(x,t)$$



$$Z(x,t) = \int_{(u(0)=0)}^{(u(t)=x)} \mathcal{D}[u(t)] \exp\left[-\frac{1}{4\nu} \int_0^t \dot{u}^2 dt + \frac{\lambda}{2\nu} \int_0^t \eta(u(t),t)\right]$$

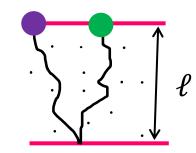
$$Z(x,t) = \int_{(u(0)=0)}^{(u(t)=x)} \mathcal{D}[u(t)] \exp\left[-\frac{1}{T} \left(\frac{1}{2} \int_{0}^{t} \dot{u}^{2} dt - \int_{0}^{t} \lambda \eta(u(t),t)\right)\right]$$

$$\equiv \int_{(u(0)=0)}^{(u(t)=x)} \mathcal{D}[u(t)] \exp\left[-\frac{1}{T} \left(E_{\text{el}} + E_{\text{pot}}\right)\right]$$

Z: partition function of an elastic string (=dir. polymer) in the random potential $V(x,t) = -\lambda \eta(x,t)$!

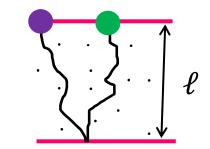
$$Z(x,t) = \int_{(u(0)=0)}^{(u(t)=x)} \mathcal{D}[u(t)] \exp\left[-\frac{1}{T} \left(\frac{1}{2} \int_{0}^{t} \dot{u}^{2} dt - \int_{0}^{t} \lambda \eta(u(t),t)\right)\right]$$

$$\equiv \int_{(u(0)=0)}^{(u(t)=x)} \mathcal{D}[u(t)] \exp\left[-\frac{1}{T} \left(E_{\text{el}} + E_{\text{pot}}\right)\right]$$



$$Z(x,t) = \int_{(u(0)=0)}^{(u(t)=x)} \mathcal{D}[u(t)] \exp\left[-\frac{1}{T} \left(\frac{1}{2} \int_{0}^{t} \dot{u}^{2} dt - \int_{0}^{t} \lambda \eta(u(t),t)\right)\right]$$

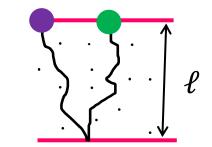
$$\equiv \int_{(u(0)=0)}^{(u(t)=x)} \mathcal{D}[u(t)] \exp\left[-\frac{1}{T} \left(E_{\text{el}} + E_{\text{pot}}\right)\right]$$



KPZ growth	Directed polymer
Time t	Longitudinal direction ℓ = t
Height h $\delta h \sim t^{\beta=1/3}$	Free energy F $\delta F \sim \ell^{\theta=1/3}$
Spatial position x $x \sim t^{1/z=2/3}$	Typical lateral displacement of the polymer $x \sim \ell^{\zeta=2/3}$

$$Z(x,t) = \int_{(u(0)=0)}^{(u(t)=x)} \mathcal{D}[u(t)] \exp\left[-\frac{1}{T} \left(\frac{1}{2} \int_{0}^{t} \dot{u}^{2} dt - \int_{0}^{t} \lambda \eta(u(t),t)\right)\right]$$

$$\equiv \int_{(u(0)=0)}^{(u(t)=x)} \mathcal{D}[u(t)] \exp\left[-\frac{1}{T} \left(E_{\text{el}} + E_{\text{pot}}\right)\right]$$



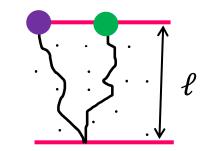
KPZ growth	Directed polymer
Time t	Longitudinal direction ℓ = t
Height h $\delta h \sim t^{\beta=1/3}$	Free energy F $\delta F \sim \ell^{\theta=1/3}$
Spatial position x $x \sim t^{1/z=2/3}$	Typical lateral displacement of the polymer $x \sim \ell^{\zeta=2/3}$

Roughness exponent of the polymer:
$$\zeta=2/3>\zeta_{\mathrm{RW}}=1/2$$

Disorder dominates over elastic entropy!

$$Z(x,t) = \int_{(u(0)=0)}^{(u(t)=x)} \mathcal{D}[u(t)] \exp\left[-\frac{1}{T} \left(\frac{1}{2} \int_{0}^{t} \dot{u}^{2} dt - \int_{0}^{t} \lambda \eta(u(t),t)\right)\right]$$

$$\equiv \int_{(u(0)=0)}^{(u(t)=x)} \mathcal{D}[u(t)] \exp\left[-\frac{1}{T} \left(E_{\text{el}} + E_{\text{pot}}\right)\right]$$

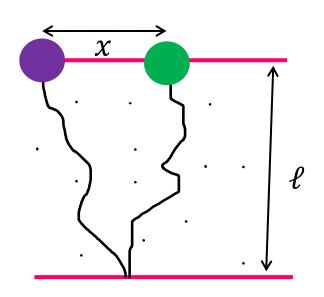


KPZ growth	Directed polymer
Time t	Longitudinal direction ℓ = t
Height h $\delta h \sim t^{\beta=1/3}$	Free energy F $\delta F \sim \ell^{\theta=1/3}$
Spatial position x $x \sim t^{1/z=2/3}$	Typical lateral displacement of the polymer $x \sim \ell^{\zeta=2/3}$

Statistical tilt symmetry: $\alpha + z = 2 \to \beta \equiv \frac{\alpha}{z} = \frac{2-z}{z} \to \theta = 2\zeta - 1$

$$=\frac{z-z}{z} \rightarrow \theta = 2\zeta - 1$$

Simple interpretation:



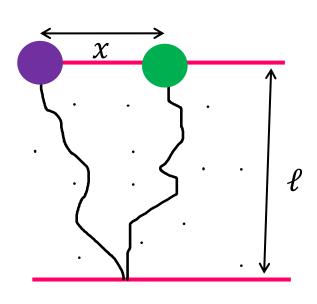
$$E_{\rm el} \sim \ell \cdot (x/\ell)^2 \sim x^2/\ell \sim \ell^{2\zeta-1} \leftrightarrow \delta F \sim \ell^{\theta}$$

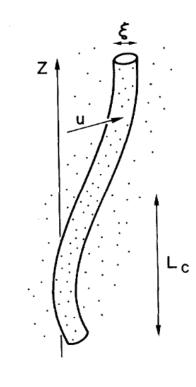
Disorder deforms the polymer until the elastic energy starts competing with gained potential energy

Statistical tilt symmetry: $\alpha+z=2 \to \beta \equiv \frac{\alpha}{z} = \frac{2-z}{z} \to \theta = 2\zeta-1$

Directed polymers in physics

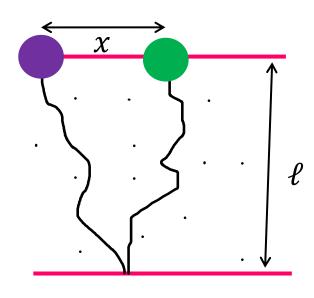
Vortices in superconductors

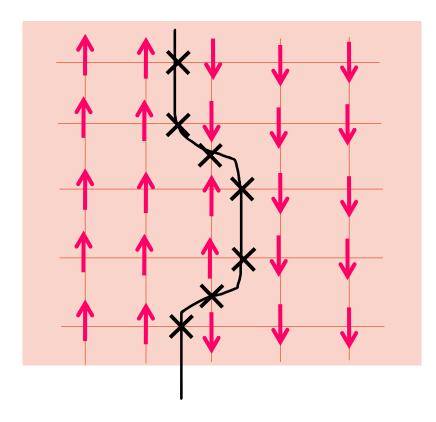




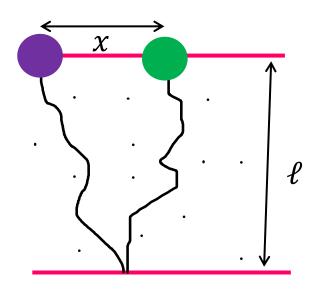
Directed polymers in physics

Domain walls in random bond Ising ferromagnets





Directed polymers in physics



- Spin-spin correlators in random magnets
- Decay of strongly localized quantum wavefunctions
- etc

Several exact solutions of solvable models:

- Replica approach to directed polymers
- Polynuclear growth model
- Asymmetric exclusion processes

Several exact solutions of solvable models:

- Replica approach to directed polymers
- Polynuclear growth model
- Asymmetric exclusion processes

They allow to compute specific quantities of interest, that are universal for all models in the KPZ class:

Like Onsager's 2d Ising solution, but now for KPZ!

Several exact solutions of solvable models:

- Replica approach to directed polymers
- Polynuclear growth model
- Asymmetric exclusion processes

They allow to compute specific quantities of interest, that are universal for all models in the KPZ class:

- Height distribution $P\left(\frac{h(x,t)-tv_0}{t^{1/3}}\right)$
- Two point correlation function $\langle \delta h(x,t) \delta h(x',t') \rangle$ (explicit but complicated)

Several exact solutions of solvable models:

- Replica approach to directed polymers
- Polynuclear growth model
- Asymmetric exclusion processes

They allow to compute specific quantities of interest, that are universal for all models in the KPZ class:

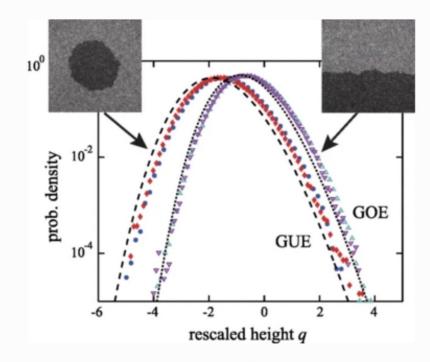
- Height distribution $P\left(\frac{h(x,t)-tv_0}{t^{1/3}}\right)$: Tracy Widom distribution! Like the maximal eigenvalue of a Gaussian random matrix! -- WHY??
- Two point correlation function $\langle \delta h(x,t) \delta h(x',t') \rangle$ (explicit but complicated)

Tracy-Widom distribution of height

Fig. 8

K. A. Takeuchi, M. Sano (J. Stat. Phys. 2012)

Evidence for Geometry-Dependent Universal Fluctuations of the Kardar-Parisi-Zhang Interfaces in Liquid-Crystal Turbulence



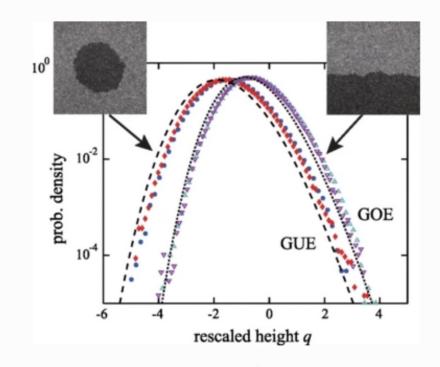
Histogram of the rescaled local height $q=(h-v_{\infty}t)/(\Gamma t)^{1/3}$ for the circular (solid symbols) and flat (open symbols) interfaces. The blue circles and red diamonds display the histograms for the circular interfaces at t=10 s and 30 s, respectively, while the turquoise up-triangles and purple down-triangles are for the flat interfaces at t=20 s and 60 s, respectively. The dashed and dotted curves show the GUE and GOE TW distributions, respectively, defined by the random variables $\chi_{\rm GUE}$ and $\chi_{\rm GOE}$. (Color figure online)

Tracy-Widom distribution of height

Fig. 8

K. A. Takeuchi, M. Sano (J. Stat. Phys. 2012)

Evidence for Geometry-Dependent Universal Fluctuations of the Kardar-Parisi-Zhang Interfaces in Liquid-Crystal Turbulence



Mirror symmetry
of flat surface

Time reversal
symmetry of
random matrix GOE

Histogram of the rescaled local height $q=(h-v_{\infty}t)/(\Gamma t)^{1/3}$ for the circular (solid symbols) and flat (open symbols) interfaces. The blue circles and red diamonds display the histograms for the circular interfaces at t=10 s and 30 s, respectively, while the turquoise up-triangles and purple down-triangles are for the flat interfaces at t=20 s and 60 s, respectively. The dashed and dotted curves show the GUE and GOE TW distributions, respectively, defined by the random variables $\chi_{\rm GUE}$ and $\chi_{\rm GOE}$. (Color figure online)

KPZ: symmetry and exponents

- Check the invariance of the KPZ Equation under tilt symmetry
- Derive the Fokker Planck equation from the Langevin equation. First for a discrete set of variables h_i, then for a function h(x). Apply this to the KPZ equation.
- Show that the free Gaussian field is the stationary solution of the FokkerPlanck equation for $\lambda=0$. Show that in d=1 it is also stationary for any nonlinearity $\lambda>0$.

Flory exponents for pinned elastic manifolds

Consider the generalization of the directed polymer problem (elastic line (d=1)) with D transverse dimensions (d = dimension of the space in KPZ growth).

Now let us look at a more general elastic manifold $M = \mathbb{R}^d$ (surface d=2, crystalline solid (d=3)), where each point z has a displacement field $u(z) \in \mathbb{R}^D$). (The standard D=1 KPZ Eq. maps to the d=1, D=1 directed polymer).

This system is subject to elastic energy

$$H_{\rm el} = \int \mathrm{d}^d z \, \frac{c}{2} (\nabla \mathbf{u})^2$$

and a random disorder pinning energy

$$H_{\rm pin} = \int \mathrm{d}^d z \, V(\mathbf{u}(\mathbf{z}), \mathbf{z})$$

We assume Gaussian correlated disorder of variance and zero mean.

$$\overline{V(\mathbf{u}, \mathbf{z})V(\mathbf{u}', \mathbf{z}')} = K(|\mathbf{u} - \mathbf{u}'|)\delta^d(\mathbf{z} - \mathbf{z}')$$

• Show that in the absence of disorder the manifold has "thermal roughness"

$$\langle [\mathbf{u}(\mathbf{z}) - \mathbf{u}(\mathbf{z}')]^2 \rangle_{\text{th}} \sim |\mathbf{z} - \mathbf{z}'|^{2\zeta_{\text{th}}}$$
 $\zeta_{\text{th}} = \frac{2 - d}{2}$ $(d \le 2)$

 Replicate the system m times and average the partition function over the disorder to obtain the replicated Hamiltonian for m copies:

$$H_m = \int d^d z \left[\frac{c}{2} \sum_{a=1}^m (\nabla \mathbf{u}_a)^2 - \frac{1}{2T} \sum_{a,b=1}^m K(|\mathbf{u}_a(\mathbf{z}) - \mathbf{u}_b(\mathbf{z})|) \right]$$

• Assume the correlator decays as a power law $K(u) \sim u^{-\beta}$ Argue that a short range correlator would naively correspond to $\beta = D$.

- Assume that at large scale a self-similar regime exists where on the longitudinal distance L transverse fluctuations scale as L^{ζ} . Determine how one should rescale the temperature, $T \sim L^{\theta}$, to keep the term H_{el}/T invariant!
- Demand now that the replicated disorder term also remain scale invariant to obtain an expression for $\zeta(d, D)$.

This kind of estimate is similar to Flory's on polymer physics. It assumes that the correlator *K* does not flow with the scale *L*.

• Discuss your result for D = 1. For which d is your expression meaningful, and in which dimension is disorder perturbatively relevant? (compare to KPZ!)

- The above estimate is expected to be exact for small enough β (fat power law tail). An analysis of the renormalization of K (next time) suggests that this only holds up to the critical value $\beta_c = D/2$ (not until $\beta = D$!) For faster decaying correlators with $\beta > \beta_c$ one expects the roughness as for $\beta > \beta_c$.
- Compare the obtained estimate $\zeta(d=1,D=1,2)$ with the exact value

$$\zeta(d = 1, D = 1) = 2/3$$

and the numerical value

$$\zeta(d = 1, D = 2) = 0.62$$

as well as for 2d interfaces (D = 1):

$$\zeta(d=2, D=1) \approx 0.3126$$

This line of reasoning is due to T. Halpin-Healey (1990)