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Self-consistent theory of localization: I1. Localization
near the band edges
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Abstract. The solution of the integral equation which arises in the self-consistent theory of
localization has been explored for a Cauchy distribution of site energies, for a uniform
distribution, and for a binary alloy, with particular attention to the behaviour of the localiza-
tion edge in the case of weak disorder, when it is close to the unperturbed band edge. The
solution could be calculated because an exact solution is found in the limit of zero disorder,
and because the Fredholm expansion truncated after two terms gives a good approximation
in many cases. For the rectangular distribution at the band edge the results are similar to
those obtained by other workers, but for the Cauchy distribution and the binary alloy
localization occurs less easily than other theories predict.

1. Introduction

In a recent paper by Abou-Chacra et al (1973), which we refer to as I, a new approach
to the problem of localization of electrons in disordered systems was presented. This
approach was based on a self-consistent approximation, and was examined in some
detail for the centre of the band, where it was shown to give results very close to those of
Anderson (1958). It was pointed out that although the method gives only a somewhat
crude approximation for a real lattice, it is exact for the infinite Cayley tree (Bethe
lattice). In this paper we apply the same theory to the edge of the band, which was not
considered in Anderson’s (1958) work.
The method is based on a study of the equation for the self-energy

s=y Ul (L1)
CFE-€¢=5S) .

where the site energies €; are distributed randomly with some probability density p(e).
The matrix elements V}; are taken to be equal to a constant ¥ between neighbouring
sites and zero otherwise, but they could also be taken to be random without difficulty,
and the sum goes over K neighbouring sites, where K is a little less than one less than
the number of neighbours. The self-consistency problem is to find a probability dis-
tribution for S, which, when used on the right of this equation, will generate the same
probability distribution for S, For localized states the imaginary part of S, tends to
zero as the imaginary part of E tends to zero. and we found that the limit of stability
of the localized states is given by the existence of a solution A(x) of the homogeneous
integral equation
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where Q(x) is the probability density of the quantity
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Aly) = KVJ Q(y + dx 1.2)

(1.3)

where E is real and E; is the real part of S;; the sum in this expression goes over only
K — 1 terms. The eigenfunction A(x) is everywhere positive. If the probability density
p(e) depends on some parameter, W say, we can plot the value of W which gives a
solution of equation (1.2} as a function of E, and we will get a plot of the mobility edge
which separates localized from nonlocalized states.

It is an important feature of equation (1.2) that it can have a square integrable
solution A(x) only if K is greater than or equal to unity. With a change of variable we
have from equation (1.2)

fA(y)Zdy=K2V2”fQ(u)A< v )Q(WI( A ) W gy
u—y v—y)ju—yllv—yl

V2 5 dy V2 2 dz 1/2
< K*V? J‘J‘ Q) Q(v) {JA<14 = y) - y)ZJA<v - Z) (v - 2)2} dude

_ g f AQ) dy. (1.4)

since the integral of Q is unity. The Schwartz inequality gives equality only if Q is a
d-function so that there is no disorder. In this case the solution A(x) is proportional to
(x* — Ex + V*)~12 for |E| less than 2V. This shows once again that the mobility
edge for the linear chain, which has K = 1, is at zero disorder.

In §2 we show how an exact solution of this problem can be found in the limit of
vanishing disorder; the mobility edge should coincide with the band edge in this limit.
In §3 the use of a truncated Fredholm expansion for solving equation (1.2) is demon-
strated. In §4 the problem of the Cauchy distribution of site energies is solved, and in
§ 5 a narrow rectangular distribution of site energies is discussed; these two distributions
are examples of two different types of behaviour that are possible at the band edge.
In § 6 the binary alloy type of disorder is considered.

2. Limit of zero disorder

The degree of disorder of the system is determined by the width of the probability
density ple), and an exact condition for a solution of equation (1.2) can be found in the
limit of zero disorder, in which p(e) is a delta function. In this limit the value of S, deter-
mined by equation (1.1) is, for positive E

p=1E — YE* — 4KVH)1/%; 2.1
at the bottom of the band the negative sign must be taken for the square root. We
therefore have, from equation (1.3),

Q(X) = 5(x - a)a
a=E—(1-KYu 2.2)
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Equation (1.2) therefore gives

KV V2 >
Aly) = A . 2.3
) P (a_y (2.3)
This equation has a delta function type of solution, of the form
KV V2
Aly) = d(y — = — — 2.4
0) = & =30 = 17— (a_y y0> 24)
Kla —y| < V2)
= s (y—as ),
|4 Vo
which is satisfied by
Yo=20a— Vz/yoa
KV = |y,|. (2.9)
Combining this with equations (2.2) and (2.1) we get )
E=+ K+ 1V 2.6)

Since K + 1 is a little less than the coordination number Z this is a reasonably good
approximation for the limits of the band of the unperturbed system at 4 ZV, which is
the expected result for the limit of the mobility edge as the disorder goes to zero.

Although this is a reasonable approximation for a real lattice, it is a surprising
result for the Bethe lattice, for which the band edges of the regular system are at +2,/KV
where the solutions of equation (1.1) with ¢, =0, S; = S, become real, so that the
limiting value of the mobility edge is outside the unperturbed band. In fact the deriva-
tion of equation (1.2) given in I is valid only if Q(0) is nonzero, so this result holds only
if there is always a tail of site energies spreading out as far as + KV until the §-function
limit is reached. It does not matter how low the concentration of these states is. A state
localized on one site of energy + KV has fallen off in amplitude by a factor K™ at a
site n steps away, but there are K" sites at this distance, so the exponential fall-off in
amplitude just balances the exponential increase with distance of the number of sites,
and this is sufficient to delocalize the state, according to the original arguments of
Anderson (1958).

3. Fredholm method

For fixed Q, equation (1.2) can be regarded as a homogeneous integral equation with
eigenvalue K™, and Fredholm theory can be applied (see Riesz and Nagy 1956). It
appears that under many conditions in which we are interested, for reasonably large
K, the kernel of equation (1.2) is close to being the sum of two separable terms; com-
parison with numerical integration of the equation bears this out. If this is the case we
can truncate the Fredholm series after two terms, and this gives the equation

1=y |2 V) J”x ’VZ/ gy — 122 (J Q0+ V) TXIVZ/ *) dx>2

+ 1KY J J Qx + V2 QU + V2hx) 4 61)
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If we make the further approximation of replacing x by zero in the argument of Q when
|x| < V and V?/x by zero when |x| > V we get

<1 —KVJ %dxf =K2V2Q(0)j f A+ My ay, (32)
|x|>V |x\ x>V JIy|>V fxy!

which is equation (7.5) of 1. This approximation is valid if Q varies slowly over a range
of width V. In later sections, equations (3.1) and (3.2) are applied to a number of examples
and compared with the results obtained by other methods.

4. Cauchy distribution of the site energies

In this section we consider a Cauchy distribution of the site energies

y/m
= . 4.1
pl&) =27 7 (4.1)
In this case the probability distribution Q(x) can be calculated exactly. From equation
(1.1) we find that E, the real part of S, has a Cauchy distribution peaked at E =p of
width T where
KVv?

iI" = . 42
bl E—1iy —pu-—ill @-2)

Consequently, from equation (1.3), we find that Q(x) is also a Cauchy distribution of
the form
b/n

Qx) = (x — a) + b2 (4.3)

where a and b are given by
a+ih=E—(1-KYHYu+iy+(1-KH). (4.4)

We have an exact solution of equation (1.2) in the limit y = 0, and so a perturbative
method of solution in this neighbourhood is appropriate. For E close to +(K + 1)V we
expect A(x) to be small for negative x, and so a reasonable approximation might be
found by replacing |x| by x in equation (1.2).

This gives the equation

2
K, 1AL = Vf Q <v + I-j;) A (x)x™'dx (4.5)
and its adjoint
V2
K. 2a,(x) = V7 ix J a,(y) @ (v + —x—) dy. (4.6)

These equations have solutions

(y - V//I<o)n—~1
A = U
) 0= VE,y
_ (x — VKO)"_1 VK, — Ko_l).

&(x) == VIK,) din 4.7
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for positive integer n with eigenvalue K} =" where K is the larger root of the equation
VK, + VK ' =a + ib. 4.8)

The complex conjugates of these solutions are also solutions with eigenvalue (K¥)' 2"
In the limit of y = 0 we get the d-function solution

(im) "' [4,() — A¥0)] (49)

When y is nonzero we must include the perturbation due to the difference between
|x|~* and x~*!, and so we use degenerate perturbation theory and look for a solution
which is a linear combination of the eigenfunctions corresponding to K ' and K¥ ™!

A(x) = agA (x) + o, AF(x). 4.10)

Perturbation theory gives the conditions

V”a (y)Q<y+ VZ)A(x)lxl-ldxdy,

x
K”lJ.a’l’:(x)A(x)dx= J‘J‘a”(y)Q< +x >A(x)|x|_1dxdy. (4.11)

K! J a,(x) A(x) dx

If we write

K, =Re¢" 4.12)
we get from equations (4.6), {(4.7), (4.10) and (4.11) the quadratic equation
% _2_;2( 50 —2—:cos9 +2_S7‘I“_91 R) <%R8i—n_0;‘§>2 + <1 - %)2 = 0. (4.13)
From equations (4.12), (4.8), (4.4) and (4.2) we can get the relation
K YE+iy)?—(1+K YHE+iy(Re® + R™1e %) + R2e2 4 K

+ K '+ R 2e72 =9 (4.14)
so small y corresponds to small 8. For small 8 equation (4.13) reduces to
R 2 4R 40
<— — 1> = —0(1nR -+ 4.15)
K v/

and so the mobility edge is tangent to the axis at y = 0, moving outwards as y is in-
creased.

The solution of this equation for K = 3 is shown in figure 1 for y < V.

It is possible to extend this method to get an approximation valid for all E if K is
large, so that we can neglect all terms of order K~2 or R™2. Equation (4.14) gives to
this approximation,

E+iy = Re + (K/K)e . (4.16)

All the eigenvalues of equation (4.5) except for the first two are negligible, and it can
be shown that all terms of order higher than R~? are included if second-order perturba-
tion theory is used. In place of equation (4.13) we get

2 20 2
R_Z_Z—R[<1 20) cos @ +zsm61nR} <1 ———> — 25in? =0 (4.17)
K K T )
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Figure 1. Mobility edge E_ as a function of y. For K = 3, A represents the results of Fred-
holm Theory in the region y > V, and perturbation theory in the region y < V; B shows the
results of the numerical calculations; C numerical results of E_ for K = 2.

where the last term is the additional one produced by the second order. In the case
6 = 1n this agrees with equation (6.17) of L.

To use equation (3.1) of the Fredholm method, it is necessary to evaluate the integrals
involved. With some rather heavy work we got

O(x + Vz/x) _ 2R =R Y)(m —20)cosf + 4InR(R + R™!)sin
= Vf [x| dx = m(R* + R™% — 2cos 26) (4.18)
J= 2 J J QU+ V2N QU + V2 4 4
|xy]
V(R — R Ycosf{4bInR — 4ab + na) + (R + R Y)sinf(daln R + 4bh — nb)
T (@® + b*)(R* + R™% — 2¢o0s 26)
bIn[(1 + a/V)* + b*/V?] — 2atan" [b/(a + V)]}?
+ 4V 2@ 1 )
8b¥2 bIn[(3 + a/V)* + b¥/V?] - 2a + 2V) tan" ! [bf(a + 3V)] w19)
a* + b* 7(a + 2V)? + b?] '

where Q, a, b, R and 6 are defined by equations (4.3), (4.4), (4.12) and (4.8). The second-
order Fredholm approximation is

1 =KI —iK¥*I* - J) (4.20)

and solutions of this for K = 3 and y > V are shown in figure 1. It can be seen that they
join up smoothly with the results obtained from perturbation theory, although we
would not get a sensible answer in this way for small y. If terms of order R™2 and K2
are neglected we can recover equation (4.17) from equations (4.18), (4.19) and (4.20).

Figure 1 also shows a plot of E against y for K equal to 2 and 3 obtained by a numerical
iterative solution of equation (1.2). It can be seen that the departure of this solution
from the approximate solution is quite small.
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The behaviour near the band edge is qualitatively different from that found from
the theory of Economou and Cohen (1972), where the geometric mean of the energy
denominators is the quantity of most significance. As Bishop (1973) has shown, this
theory gives a mobility edge which moves inwards as 7 is increased from zero.

5. Uniform distribution of the site energies

The problem of solving the integral equation (1.2) was particularly simplified in the case
of a Cauchy distribution of E, where the exact analytical expression of Q(x) was found.
The problem of finding Q(x) becomes more difficult when we are dealing with other
distributions. A typical short-tailed probability distribution is the uniform distribution

1
w
= 0 otherwise, (5.1

ple) = le| <iw

which we examine in detail in this section. In order to find Q(x) in this case two kinds
of approximation are considered according to the value of the energy parameter E in
the band. The first is when E is near the centre of the band, which implies that the width
W of p(e) is large compared with ¥ and we can ignore the sum in (1.3) so the probability
distribution Q(x) becomes

Q(x) = p(E — x). (5.2)

The second is when E is near the edge of the band; then W is small and hence we replace
the sum in (1.3) by its value at the edge which is obtained from (2.1) and (1 — K~ Yu =
(1 — K~ YV. Thus Q(x) in this approximation is taken to be

Qx)=pE—-V + K"V —x). (5.3)

By using these two approximations the position of the mobility edge can be found
either from the Fredholm method or by a direct numerical iteration of equation (1.2).
Consider first the second-order Fredholm method. For W small, the approximation
(5.3) is valid, and Q(0) is zero for E greater than W + V. We can use equation (3.2) in
place of equation (3.1) without serious error, and this gives

Q(x) _KV1 <E— V+K‘1V+§W>

B B e Vo ey v

(5.4)

Near the centre of the band, the second term is small, and equation (7.8) of I, which is
2KV iw? _ E2
= K In M —E

1
w v?

(5.5)

is given by the first-order term. In figure 2 is shown a curve of E_ against W obtained
from equations (5.4) and (5.5) for low and high values of W respectively, joined smoothly
near W = 2E.

Figure 2 also shows the results of a numerical iteration of equation (1.2) for Q given
by equations (5.2) or (5.3); these two curves are also joined smoothly in the neighbour-
hood of W = 2E. The discrepancy between the results obtained from numerical integra-
tion and from the Fredholm method is small, and we would expect the error to get less
for larger K. ‘
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The parabolic shape of the curve near W = 0 will be obtained for any probability
distribution that has a short tail, so that Q(0) is negligible, and so that equation (5.4) is
valid. If we ignore the term K ™'V in the argument of p in equation (5.3) we get the
localization edge correctly at

E,= (K + 1)V (5.6)

0 ST 485 SWAD
wi4

Figure 2. Mobility edge in the case of a uniform distribution of site energies for K = 3.
A results of Fredholm Theory; B: results of the numerical calculations.

in the limit of zero disorder. If p(x) is symmetrical about the origin we get

_ p(x) . KV e
I—KVJE_V_xdwa_V(l-i—(E__V)z%—...) (5.7)

so that
E~E, + /KV (5.8)

where €* is the mean square deviation of the site energy. A formula of this sort would
be obtained for the band edge in the limit of small disorder from the coherent potential
approximation (Soven 1967) or from a perturbative calculation of the energy of the
highest Bloch state. The coefficient would be different, being

N 1Y (E—-E)! (5.9)
k

the average over all Bloch states of a denominator, rather than (E — V)™, but this
difference is probably a result of the crudity of the fundamental approximation (1.1).
For the distributions with short tails the coherent potential approximation for the band
edge is probably a better approximation for the localization edge for small disorder,
and the qualitative results are very similar. The use of the coherent potential approxima-
tion near the band edge was discussed by Economou and Cohen (1972).

In the case of weak disorder there are localized states, associated with regions in
which the average site energy deviates from zero to a sufficient degree to form a bound
state. This phenomenon, considered by Lifshitz (1964), depends strongly on the di-
mensionality of the lattice and is not adequately described in the self-consistent theory.
The work of Abram and Edwards (1972) is devoted to a problem of this sort.
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6. The binary alloy

Consider a binary alloy formed from two types of atoms A and B. Suppose that there
is a concentration ¢ of sites of type A, with energy zero, and a concentration 1 — ¢ of
sites B, with energy W. We know that the eigenvalues of the alloy AB lie within the
bands of the pure lattice A and the pure lattice B (Thouless 1970, Kirkpatrick et al 1970).
Then, in order to examine the localization of eigenstates, we should examine the states
corresponding to the energies within the bands

W-ZVSESW+ZV
—-ZV<E< +ZV. (6.1)
The probability distribution of the site energies can be written in the form
ple) = cd(e) + (1 — ¢) 8(e — W) (6.2)

An approximate expression of Q(x) can be found in the case of small concentration of
sites A, (¢ < 1). In this case the real part of the self-energy
VZ
Ei—gE_ej_Ej (6.3)
can be approximated by taking the most probable value of the sum and solving this
equation consistently. Then, we obtain a quadratic equation for the real part R = E,
which gives

R=34E - W) +3[E - W) — 4KV]'? (64)

for E below the majority sub-band; the negative sign for the square root must be taken
above the majority sub-band. Thus the sum in the expression (1.3) was replaced by its
most probable value (1 — K™ 1)R, and the probability density Q(x) taken to be

Qx)=céla—x)+ (1 - c)déla —w — x), (6.5)
where
a=E—(1-K YR (6.6)
When this expression for Q(x) is substituted into equation (1.2) we get the functional
equation
KVe V2 KVl —¢ v?
A(y)=‘a_y|A<a — y>+.a_(w__)y’A<a_W_y>. (6.7)

The eigenvalue K was found numerically by an iterative solution of this equation for
¢ = 01 and varying E and by this method the value of E that gives a mobility edge for
a particular value of K can be found. Figure 3 shows the regions of nonlocalized states
for varying values of W. We notice that as W is increased the region of nonlocalized
states divides into two bands separated by a region of localized states for W/V approxi-
mately 2-5. As W increases further the minority band of nonlocalized states narrows, but
it does not disappear. This is in contrast to the result of Economou et al who found that
the minority band of nonlocalized states ceases to exist for W/V approximately 3.3.

The numerical iteration of equation (6.7) is difficult in this region of large W, as the
function A is sharply peaked, and so these results may contain numerical errors. If the
Fredholm method is applied to this problem—and it should be observed that it may
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not be justified for the singular form of Q given in equation (6.5} —the only term of
order ¢ comes from the third term on the right of equation (3.1). For small ¢ the Fredholm
method gives approximately

| _ (1= 0KVN* _ 2K*V2[4VAW/a - 1) + (W = 0]
— W —a - 4V2(W — a) + a(W — a)z .

(6.8)

W=05 = 5w L

Wol sty

w=3 : : 6" W L

WS g ——g -
w=1 < "6’ L % i

Figure 3. Localization regions (shaded) obtained numerically for a binary alloy with a
concentration ¢ = 01 of sites A and K = 2.

For small ¢ this equation has a solution with small positive a. and so the band of non-
localized states extends from a = 0 up to this value of g, and so, from equations (6.6)
and (6.8), the band of nonlocalized states has a width approximately equal to

c2K2V2< KV>_4

w9

(6.9)

This is considerably narrower than the band shown in figure 3.

In a binary alloy the minority carriers are coupled together by an effective coupling
whose strength is of order V"/W"~ %, where n is the number of steps needed to go from
one minority atom to another, and this should give the bandwidth of the nonlocalized
states. Since n is proportional to ¢ ™/ we expect the bandwidth to decrease exponenti-
ally with the concentration, and such a behaviour is not given either in this theory or in
the coherent potential approximation.

The case in which W becomes infinite, so that the sites B are completely impenetrable,
is very simple. In this case we have only the first term on the right of equation (6.5),
and equation (1.2) gives

KV [ V? |

This is the same as equation (2.3) for the pure system, with K replaced by cK, and there
is a solution if cK is greater-than unity. This is the percolation limit for the Cayley tree
(Fisher and Essam 1961), and, in so far as equation (6.5) is adequate, it says that there are
nonlocalized states until the percolation limit is reached. The inequality (1.4) shows
that for cK less than unity there are no nonsingular solutions of the equation.

In this case and in the other case of the dilute binary alloy the distribution of the
real part of the self-energy is more complicated that was assumed in the derivation
of equation (6.5), and there may be important effects that we have neglected.
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7. Discussion

We have shown how satisfactory solutions of the integral equation that was derived in
I for the self-consistent theory of localization can be obtained under a wide variety
of circumstances by combining the Fredholm expansion with our knowledge of the
limit of no disorder. We have paid particular attention to the behaviour of the mobility
edge when it is close to the band edge, which occurs when the disorder is weak. For
short-tailed distribution, such as the rectangular distribution or the normal distribution,
the results of this theory are similar to those of the coherent potential approximation
(Soven 1967) or the theory of Economou and Cohen (1972). For such distributions the
right side of equation (3.2) is zero or negligible. For long-tailed distributions, such as
a Cauchy distribution, the right side of equation (3.2) gives. close to the band edge,

4 2172 )
KEV Q(0) In (g) (71.1)

and it is this term which gives rise to the rapid increase in the width of the band of
nonlocalized states shown in figure 1. This term proportional to In (E/V) is reminiscent
of the term proportional to In(W/2V) which distinguishes the Anderson (1958) theory
in the centre of the band from other theories.

The results for the binary alloy are also different from those obtained by other means.
but the results and methods of calculation are not entirely satisfactory.
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