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1 Introduction

This article provides a brief introduction to the basic theoretical concepts
used in the field of gravitational lensing. Since most of the ideas are well-
known to those who are active in this field, no attempt is made to cite
original references. For more details on individual issues, the reader is re-
ferred to the review articles by Blandford & Kochanek (1987a), Canizares
(1987), Refsdal & Kayser (1988), Fort (1990), Surdej (1990), Blandford &
Narayan (1992), and the forthcoming monograph by Schneider, Ehlers &
Falco (1992).

2 Rays and Deflections

Figure 1 shows a light ray from a source S being deflected through an angle
& by a deflector or lens L and being received by an observer O at an angle 6
with respect to some reference direction. The angular position of the image
6 is related to the source’s “true” position, 3, by the following lens equation,

— = —
6

F=7-3(7), w0)=20%

(D) M)
where ¢ is the impact parameter of the ray at the lens and Dgs, Dy are
angular diameter distances. In general, the angles 4, 8, «, and & will not
be coplanar. Therefore, (1) has been written in its vector form, where each
angle has two components in the plane of the sky.

Under most circumstances, the line-of-sight thickness of the gravitational
lens is much less than Dy, Dys, or D,. In this “thin lens” limit, the deflection

€
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Fig. 1. Basic geometry of gravitational lensing. A light ray from a source S5 at
redshift z, is incident on a deflector or lens L at redshift zg with impact parameter
¢ relative to some lens “center”. Assuming the lens is thin compared to the total
path length, the deflection angle of the ray is &(¢) in crossing the lens plane. The
deflected ray reaches the observer O, who sees the image of the source apparently
at position @ on the sky. The true direction of the source, i.e. its position on
the sky in the absence of the lens, is given by 8. The angular diameter distances
D, D, and Dy, separate the source, deflector, and observer.

~

angle @ depends only on the surface mass density of the lens X (?), and

is given by the two dimensional gradient of a potential 1,[)(_5_)),

@(T) = 5ep(€), where VIH(T) = 87G5(E). (2)

The Poisson equation on the right is in two dimensions and has an extra
factor of 2 relative to Newtonian gravity. Equation (2) may be equivalently
expressed through the Green’s function of the Poisson operator, viz.

3 2 4G2(E) (€-€)
(0= [ [ee = O

In general, the ray path corresponding to an observed image of a lensed
source has a time delay relative to the direct ray from the source to the
observer in the absence of the lens. This delay is given by

1+ Zd)D 1+ zd)

#(6) = [0 - B - w04 6), (4)

where 24 is the redshift of the deflector and D is an effective distance defined
by
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DaD;
D= :
Do (3)

N
The relative time delay between two images, t(_é?) — t( 6y ), is potentially

measurable if the source has intrinsic variations.
3 Simple Lens Models

Using (2) or (3) the ray deflection angle ?(?) can be determined for any
lens mass distribution, but this full generality is rarely employed. Instead,

— —
one often considers simple models for X( € ) [or ¥( £ )] where the deflection

~

law E}(—ﬁ_’) may be written down explicitly.
A particularly simple model is a mass sheet of constant density X. Here
& = (4rGX/c*)¢ and the lens equation gives

62

ﬁ:(1—§)95(1—n)9, Ecr%m- (6)

cr

The convergence k,which is proportional to X, describes the focusing power
of the sheet. As (6) shows, a mass sheet behaves like a perfect magnifying
lens, where the linear dimensions of a source are magnified by a factor of
(1—k)™1, and because surface brightness is conserved, the net flux received
from a source is magnified by p = (1 — «)~2. Thus the magnification is
infinite when X' is equal to the critical density X¢;.

If, in addition to the convergence due to a mass sheet, there is also an
external shear v due to tidal effects of distant masses, then in the appropriate
principal axes (6) becomes

B2 =(1—kFv)012,
_ﬁ_ (1-k—v)"1 0 (7)

[u] 97 0 (1-r+7y)7

The magnification tensor [g] is now anisotropic, but in general symmetric.
The determinant of this matrix gives the flux magnification,

po= el =1 - w) =77 (8)

The constant density sheet with shear is sometimes used to model large
smoothly varying lens mass distributions, e.g. the cluster in Q09574561
(cf Falco et al. 1991). However, the concepts introduced above have a wider
validity. For instance, the local magnification tensor associated with a lensed
quasar image can be decomposed into a convergence due to the local surface
density of the lens and a shear from the mass in the rest of the lens. It can
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Fig. 2. Multiple imaging of point sources at fixed redshift by a generic elliptical
lens. The solid lines in the left panels are caustics (cf sec. 5) that separate re-
gions in the source plane corresponding to different image multiplicities (1, 3, or
5). The inner, or tangential caustic has four cusps connected by fold lines. The
outer radial caustic is a pure fold. The outer dashed lines in the right panels are
tangential critical curves and the inner ones are radial critical curves. Critical
curves are the lines on which the two “extra” images merge and become infinitely
magnified before disappearing as the source crosses a caustic. The symbols show
representative source positions and the corresponding image locations. When the
source is close to a caustic, some of the images are strongly magnified, indicated
by large symbols in the image panels. One of the multiple images usually occurs
near the center of the lens and is strongly demagnified if the core radius of the
lens is small. This is indicated by a smaller symbol.
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Fig. 8. Representative arc and ring images of resolved, extended sources pro-
duced by an elliptical lens. In each set, the source planes are on the left and the
corresponding images are on the right.



Intro to Basic Concepts of Grav Lensing 17

also be shown that (barring some unusual exceptions), a lens can produce
multiple images only if its surface density exceeds X, at some point.

Consider next a point lens of mass M. In this case &(¢) = 4GM /¢,
and it is convenient to define

o ACM 1/2N1” M 1/2 D \"\/2 o
E=\"eD 1011M, 1Gpe '

The angle 0 is referred to as the Einstein radius of the lens. If a point
source is aligned exactly with the lens, then its image will consist of a ring
(an “Einstein ring”) of radius fg. While such a ring image of a point source
requires an extraordinary alignment and is quite unlikely to occur in prac-
tice, fg is nevertheless a useful quantity to characterize the properties of
the lens. If the source position S (measured with respect to the position
of the lens) is < g, then two comparably bright images of the source are
produced, with an angular separation ~ 26g. Equation (9) then shows that
galaxy lenses (M ~ 10''Mg) will produce multiple images with angular
separations ~ 1", while galaxy clusters (M210'*My) will produce separa-
tions ~ 1'. If # > 6, there will be a primary image of the source that is
hardly perturbed (either in position or intensity), and a secondary image
located close to the point lens and demagnified by a factor ~ (6g/S)*.

For modeling galaxy lenses, a somewhat better model than the point
lens is the singular isothermal sphere of one dimensional velocity dispersion
o. For such a lens,

0.2

&(6) = 47rc-27
10
bp = 47r£Dds ~ 1" (_;‘—_*Y "
¢ Dy 250 km s—1/

Here multiple imaging is possible if 8 < fg, in which case there are two
images, one at f+ 0 and the other at 8 — 6. A third image is technically
present at # = 0, but it is infinitely demagnified. The singularity at the origin
can be removed by giving the mass distribution a core radius £, such that,
for € < &, () deviates from its isothermal 1/¢ behavior and tends instead
to a constant. In this model, multiple imaging is possible only if (0) > X,
which requires £, $ Dgfg. If this condition is satisfied and if 8 < 0g, then
there are three images: two located approximately at ~ 8 + g and a third
superimposed on the lens core with a magnification ~ (£./Dafg)?.

The total cross-section for multiple imaging by a gravitational lens can
be defined as the angular area within which the source must be located in
order to be multiply imaged. In the case of the singular isothermal sphere
the cross-section is exactly 76%, while for the non-singular case it is less.

The singular and non-singular isothermal spheres are convenient mod-
els that are useful for approximate order-of-magnitude estimates of certain
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lensing properties. However, they suffer from being too symmetric and con-
sequently being unable to explain many of the observed cases of lensing. For
instance, they cannot produce four images, as seen often in multiply-imaged
quasars, or single giant arcs, as seen in cluster lensing. It turns out that by
breaking the circular symmetry of the lens and introducing a quadrupolar
distortion, the qualitative features of almost all the observed lenses can be
reproduced. Such a model is referred to as an elliptical lens. The particu-
lar manner in which the quadrupole term is introduced does not appear to
be important. The following bending law (Blandford & Kochanek 1987b),
which corresponds to a simple generalization of the non-singular isothermal
sphere, is a convenient model of an elliptical lens,

. 0 (I F )12
d10(81,62) = dm— 2+ (1 - +(1+e)e2/?

The subscripts 1, 2 refer to components along the two principal axes of the
lens and € measures the “ellipticity” of the lens.

Figures 2 and 3 give an idea of the variety of image configurations pos-
sible with an elliptical lens. Figure 2 shows some possible configurations
for multiple imaging of point sources, and Figure 3 shows various results
of lensing extended sources. A comparison with the observed examples of
lensing shows that all of the observed morphologies seen in multiply-imaged
quasars, luminous arcs, and radio rings arise naturally in an elliptical lens.

(11)

4 Fitting a Lens Model to Observations

A successful model of a multiply-imaged quasar must fit the positions —6)_,) of

each of the n images of a source using the same source position —[f Since —[?
itself is unknown, this gives 2(n — 1) constraints. If the images are resolved,
each image pair provides a relative magnification tensor [uij] = [mi][p;] ™"
This leads to 4(n — 1) constraints. In the case of Q0957+561 (where n = 2),
four constraints have been obtained from VLBI observations (Falco et al.
1991). More generally, only flux ratios wi; = |[u;]] are measured; these pro-
vide (n — 1) constraints. If relative time delays between the images are
measured, e.g. Q0957+561 (Lehar et al. 1992, Press et al. 1992), then one
can have up to (n — 1) additional constraints. All of these constraints may
be used to fit a parameterized model of the lens. Some of the parameters
may also be determined through direct observations of the lens, e.g. the
velocity dispersion o in Q09574561 (Rhee 1991) and the surface bright-
ness distribution in Q223740305 (Schneider et al. 1988). Successful models
have been developed for all the well-observed multiple quasars including the
problematical Q2016+112 (though the model proposed by Narasimha et al.
1987 for this object seems a little contrived).
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In the case of resolved sources, a different strategy is employed. Since

—_
surface brightness is preserved in gravitational lensing, for each position j
in the source there are constraint equations of the form

— — —
160) = 169 = ... = 1(6™) = (7)), (12)
where IS(—E) is the surface brightness of the source at position —E and

—
I(69) is the observed surface brightness at the position of its i’th image.
With well-resolved sources, one can thus obtain many more constraints
than with multiply-imaged point sources. Indeed, with data at multiple
wavelengths/colors and with polarization, lens models should be quite well-
constrained. Kochanek et al. (1989) have developed a successful model for
the radio ring MG1131+40456 using this method.

5 Caustics

The lines in the source plane that separate regions of different image mul-
tiplicity are referred to as caustics. In Figs. 2 and 3, there are two caustics
separating the 1-, 3- and 5-image regions. The generic caustics in the two-

dimensional F plane are the fold (which has the topology of a line) and the
cusp (which is a singular point connecting two folds). An elliptical lens has
either two or four cusps. If the three-dimensional source space is considered,
where the third dimension is the source redshift, then folds occur in sheets,
cusps occur in lines, and higher-order caustics like swallowtasls and umbilics
could be present at isolated points.

Caustics are important because sources that are located in their vicinity
are highly magnified. If a source is located at a small angular distance Ag
from a fold caustic on the higher multiplicity side, the two extra images will
generically have magnifications that scale as u oc AB~1/2 (e.g. Blandford &
Narayan 1986). Thus the magnification diverges as Af — 0. However, the
two infinitely bright images vanish completely when the source crosses the
fold, producing a discontinuous change in p.

Let us define o(> p) as the cross-section in the § plane corresponding
to magnifications greater than u. It is straight-forward to show that the
high magnifications associated with a fold give a scaling o(> u) o =2 or
do/dp o« p=3, for large y. This result has been extensively used in theories
of microlensing and in discussions of magnification bias (see below).

In the case of a cusp three images are involved. For a source just in-
side the cusp there are three highly brightened images, while if the source
is just outside there is a single brightened image. A crucial feature that
distinguishes the cusp from the fold is that even the lower multiplicity re-
gion can have very large magnifications. The cross-section here scales as
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o(> p) o %% or dofdu o p~7/? for large p, which is steeper than the

scaling due to a fold.
@ |

Fig. 4. The evolution of the caustic structure with increasing core radius. Core
radius . increases from left to right in this diagram, and has values of £,/ D30 =
0.05,0.4,0.75, and 0.9 respectively. In each of the first three diagrams the most
central region is the area which produces 5 images, the area outside of all caustics
produces 1 image, and the intermediate areas produce 3. In the fourth configu-
ration the regions inside and outside the caustic produce 3 images and 1 image
respectively. Not shown here is a final transition at £./D4fg = 1 + ¢ when the
remaining double-cusped caustic shrinks to nothing and all source positions have
only one image.

The caustic configuration for elliptical lenses varies with the core radius
of the lens. Figure 4 shows the progression as a function of increasing core
radius in an € = 0.2 lens. At small angular core radii, i.e. £;/D; < g, there
is a four-cusped inner caustic which is wholly contained within an outer fold.
(This is the case shown in Figs. 2 and 3 and corresponds to a normal galaxy
lens with a linear core radius £ < 0.5 kpc at a cosmological distance.)
As the angular core radius increases, the inner caustic breaks through the
outer caustic, and the outer caustic shrinks. The two caustics eventually
penetrate each other (through a hyperbolic umbilic caustic), and separate
again, leaving two nested lips caustics, each with two cusps. The inner lips
caustic then continues to shrink until at £./Dg = (1 — €)0g it disappears
altogether, leaving only a single lips caustic with 1- and 3-image regions.
The remaining caustic, too, continues to shrink and finally disappears when
€:/ D4 = (1+€)8g. Beyond this core radius there can be no multiple imaging.

Clusters of galaxies tend to have values of ./ Dy0p ~ 1, and so the later
examples in the sequence shown in Fig. 4 are relevant for modeling them.
They are also needed for galaxy lenses that are close to either the source
or the observer. A feature of these caustic configurations is that they have
exposed cusps that directly adjoin the single image region of the source
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plane. Sources located on or close to such cusps make large arcs without
counter-images (Fig. 5). The majority of luminous arcs observed in clusters
do not have counter-images, as one might expect on the basis of their large
core radii. See the article by Kochanek in this volume for a more detailed
discussion of caustics and arcs.

Fig.5. Arc images of extended sources produced by a & = 0.4 elliptical lens.
Here we have two exposed cusps that directly adjoin the single-image region, in
contrast to the case shown in Fig. 3 where all the cusps are in the interior. When
an extended source is located on an exposed cusp, a large arc image is produced
without any counter-image. Even when the source is slightly off the caustic, a
moderately elongated image is still possible because of the tangential stretching
introduced by the nearby cusp.

6 Magnification Bias, Lensing Probabilities

Caustics and their scalings are particularly important for the phenomenon
of magnification bias. For simplicity, consider first a population of sources
at a fixed redshift, and a set of ny, foreground lenses. Let each lens have
a cross-section for multiple images described by o(> p) (steradians). The
probability that a given source will be multiply imaged is then
nyL

p= Ea(> 1). (13)
(We have used the fact that multiple-imaging is always accompanied by
a net magnification p > 1.) Suppose the sources have a range of intrinsic
luminosities described by the number counts Nq(< m) which gives the
number of sources with apparent magnitude brighter than m. When a source
is lensed, its apparent magnitude is modified to m — 2.5log . Hence, the
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number of lensed sources Nyq(< m) expected to be discovered in a flux-
limited survey is

dNQ(< m’)
]

— _ni * 0.4(m'~m)
Nig(< m) =pNo(< m)+ = [ al>10 1 2e =

m

dm'. (14)

Equations (13) and (14) are both easily generalized to include a range of
source and lens redshifts. Equation (14) consists of two parts: (1) a straight-
forward estimate, pNq(< m), which is the product of the number of sources
and the probablility of lensing, plus (ii) an additional contribution from
sources that are intrinsically fainter than the magnitude cut-off but that
are magnified above the limit by lensing. The occurrence of an excess of
lensed sources in flux-limited samples, over and above the naive estimate
given by the first term, is referred to as magnification bias (Turner et al.
1984). Since the bias is a consequence of high magnifications, it is strongly
influenced by the properties of the caustics. Magnification bias is quantified
by the following bias factor,

_ Nig(<m)

Bl<m) = o No(em)’

(15)
This factor can be quite large if the intrinsic counts Ng(< m) are sufficiently
steep.

Figures 6 and 7 show the results of model calculations we have carried
out for a population of elliptical lenses described by the deflection law given
in (11). The lenses were assumed to have ellipticity ¢ = 0.2, a Schechter
luminosity function appropriate for galaxies, and velocity dispersions fol-
lowing the Faber-Jackson relation, L oc 0. The core radius £, was assumed
to scale as 02, with £, = 100 pc for an L* galaxy with o = 220 km s~!. The
number density of galaxies was selected such that the parameter F' defined
by Turner et al. (1984),

. 1673 4
F= C—H_E)‘—<nLa- ), (16)

o

has a value of F' = 0.025. This is approximately a factor of 2 lower than the
value used by Fukugita & Turner (1991) and Kochanek (1991).

The dashed line in Fig. 6 shows the cumulative number counts of quasars
as computed using model B of Boyle et al. (1988) for the quasar luminos-
ity function. The slope of this curve is 0.18 for mp > 19 and 1.12 for
bright magnitudes, corresponding to power-law indices of -0.44 and -2.79
respectively when expressed in terms of luminosity rather than magnitude.
(Equivalently, the slopes of the differential luminosity function d¢/dL are
-1.44 and -3.79.) The solid lines labeled 3 and § show the calculated number
counts of multiply-imaged quasars with 3 and 5 images respectively. The
line labeled 1 refers to sources that are not multiply-imaged but magnified
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log No(<mjg), log Nio(<mg)

Fig. 6. Cumulative number counts of lensed and unlensed quasars. The dotted
line shows the number of quasars per square arcsecond of the sky brighter than a
given magnitude, mp. The solid lines give the predicted numbers of lensed quasars
broken down by image multiplicity. Notice the different slopes of the solid curves
at bright magnitudes due to differences in the influence of caustics on the 1-, 3-,
and 5-image regions of the source plane.
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log B(<mg)

0—|L1JLI¢||1||l1|
12 14 16 18 20
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Fig. 7. The magnification bias factor B(< m) due to an elliptical lens. This
quantity describes the tendency to overcount lensed sources in a magnitude limited
survey. The effect arises because lensing brightens intrinsically fainter objects
past the magnitude cut-off. Five image cases have particularly high bias at bright
magnitudes. Even at faint magnitudes, they are overrepresented by a factor of 5.

by more than a factor of 2. These results are similar to those obtained by
Kochanek (1991).

In this model, the intrinsic probability p (cf (13)) associated with the
three cases of lensing are p; = 6.0 x 107%,p3 = 1.1 x 1074, ps = 1.2 x 1075,
The actual fractions of lens candidates predicted in a flux-limited sample
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are, however, significantly greater than this, particularly at bright magni-
tudes. This is because of magnification bias as indicated by the plots of the
respective bias factors in Fig. 7. Note the extraordinary bias at bright mag-
nitudes, particularly for 5 image cases. The most reliable optically selected
lensed quasars all have m < 17, which makes them unusually bright. This
is doubtless largely a consequence of magnification bias. Note also that al-
though ps ~ 0.1ps, we still expect to find as many 5 image as 3 image lensed
quasars at mp ~ 16.5. This is roughly in agreement with the observations.

An interesting point to note in Fig. 6 is that the three solid curves have
different slopes at bright magnitudes. The 5 image statistics are dominated
by fold-caustics and hence have a slope of 0.8, whereas the 3 image lenses
in this case happen to be dominated by the exteriors of cusps and so have
a slope of 1.0 (power-law indices of -2 and —5/2). The brightened single
image quasars are not dominated by caustics and have the same slope as
the intrinsic counts. ‘

One final point of interest is that none of the observed cases of lensing
(except the puzzling Q20164112 ) have 3 or 5 images. Instead, in every case,
we see either 2 or 4 images. Observational limits indicate the odd image is
typically at least 10 to 100 times fainter than the observed bright images.
One explanation for the missing images is that the lenses may have small
core radii. Using the above model, we find that the core radius of an L*
galaxy must be & < 200 pc in order to explain the universal absence of
the central image. This limit is consistent with recent high resolution ob-
servations of the cores of nearby galaxies (Lauer et al. 1991). It is, however,
in conflict with lower limits, £, 2 1 kpc, obtained by Narayan & Schneider
(1990) for foreground galaxies in front of the BL Lac objects AO 02354164
and PKS 0537-441 .

This work was supported by the National Science Foundation under
grant AST-9109525.
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