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What is this about?

List of open problems that will be looked at in the framework of the doctoral
course in spring 2023. All of these problems can be readily addressed with the
techniques covered in the lecture (or the master lecture Statistical Physics of
Computation) and most of them can easily lead to a publication if sufficient
work is put in.



Problem A: Distance L vertex cover

Vertex cover is a combinatorial problem where nodes of a graph are either full
or empty. The rule is such that every edge needs to have at least one of its
nodes full. A typical question is the size of the smallest vertex cover, i.e. how
many nodes have to be full? The problem is often motivated by the guard in the
museum that sits in the crossroads and guards the corridors. This problem has
been studied quite extensively in the statistical physics literature on random
graphs, see e.g. [3] and references therein.

Consider a distance-2 version of the vertex cover problem where an edge is
considered covered if one of its nodes or one of their neighbors are full. The
question is the same, what is the minimal number of nodes one needs to make
full? Considering the problems on d-regular random graphs is the simplest case.

A paper where a related (corresponding to distance L vertex cover) problem
is treated is [7].

Problem B: Distance L independent set

An Independent set is a combinatorial problem where nodes of a graph are either
full or empty in such a way that two full nodes cannot be neighbors. As such
the problem of independent sets and vertex cover are dual to each other, it is
enough to switch between full and empty nodes.

Here we consider a distance-2 version of the independent set where if a node
is full then its neighbors and also second neighbors have to be empty. What is
the maximum number of nodes one can fill in a random d-regular graph? This
problem can be solved in a way related to the model of [4, 12].

A distance L version is then related to the problem is treated in [7].



Problem C: Mixture of linear regression models

This is a variant of the classical linear regression where there are k possible
ground truth functions (teachers) producing the output labels. Let us denote
the corresponding teachers weights w};, where [ = 1,...,k, and i =1,...,d is
the dimensionality. Input data X,; with p=1,...,n,¢=1...,d are assumed
to be iid Gaussian to enable analysis. For each sample p we have a one-hot
encoded vector v, =1 if for sample p the teacher vector [ is chosen, and
v;,; = 0 otherwise. The labels are then generated as
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, where §, is Gaussian additive noise of variance A. The prior on the teacher
vectors P(w;;) can be Gaussian or sparse Gauss-Bernoulli. The prior on the v,
is uniform.

The goal is to estimate w*, and v* from the observations on n pairs X, €
R, Yu €R.

This is a generalization of the generalized linear model [2] that structurally
resembles the committee machine [1]. The calibration in compressed sensing [6]
is also mathematically related.

Problem D: Randomly sparse linear regression

This is another variant of the classical sparse linear regression where the sparsity
pattern is different for every sample.

Let us denote the corresponding teachers’ weights w;, where i =1,...,d is
the dimensionality. Let us denote s,; € {0,1} the sparsity pattern for sample
1, assume that these numbers are drawn iid from the Bernoulli distribution of
density p. We assume the input data X,; with p =1,...,n,7=1...,d to be
iid Gaussian to enable analysis. The labels are then generated as
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where £, is Gaussian additive noise of variance A. The prior on the teacher
vectors P(w;;) is Gaussian.

The goal is to estimate w*, from the observations on n pairs X, € R?, Yyu € R.
The matrix s,,; is not given.

This is a generalization of the generalized linear model [2]. The sparsity
pattern s,; can be seen as a type of intrinsic noise, thus already the version with
A = 0 should be non-trivial. One interesting question is whether there is enough
information in the labels to estimate something about s,; for the training set
to improve the estimation of the teacher vector beyond the accuracy obtained
if the sparsity is replaced by an effective noise.



Problem E: Random satisfiability modulo theory

The random K-satisfiability problem is one of the classical problems studied
with the tools of statistical physics [10]. Consider the classical random sat
formula with a twist where the Boolean satisfying assignment y must be in the
range of a simple generative neural network y = sign(Xw) where X € R"*P is a
random Gaussian matrix and w € RP is a vector or real-values latent variables.
The SAT formula is then constructed in the standard manner over y.

In theoretical computer science, this variant of the K-satisfiability problem
where variables are in fact inequalities (half-spaces) is known as the satisfiability
modulo theories.

Problem F: Graph-fused LASSO

The standard LASSO (aka compressed sensing) that was studied using tools
of statistical physics considered random Gaussian matrix X and observations
y = XW where w is sparse.

A graph-fused LASSO is a variant where the sparsity is structured and there
is a graph constructed over the element of w with edges being more likely be-
tween two elements that have similar values.

One simple case is when the element of w are binary and the graph is then
an instance of the stochastic block model (sparse or dense) with one group much
smaller than the other.

Problem G: Sampling with Stochastic Localiza-
tion

Stochastic Localization is an amazing tool (very close to the diffusion model
in machine learning) when coupled with message passing. In fact, it has the
potential to be an alternative to MCMC (Monte-Carlo sampling).

Say that our goal is to sample from the Boltzmann mesure p(x) = %e’ﬁH(x).
The idea is to consider instead the tilted measure
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where the vector y just follow a Brownian motion y;y1 = y: + m(t)d; + £0;
and the vector m is the marginal of the tilded measure m(t) = [ dxxu(x).
Stochastic localisation (ELDAN 2013) insure that as ¢ — oo the vector p
converge to a perfect random sample of the measure p(x).

The project is to implement this sampling method! Can one use it to sample
from sample uniformly in simple models such as Curie-Weiss, the RFIM, or
even diluted systems such as ferromagnet in a random field? In these cases
the computation of m(t) = [dxxp(x) can be done with BP or mean-field
techniques.



Problem H: How many samples to recognize two
Gaussians

Consider two d-dimensional Gaussian clowds N (£x/v/d, 1) with random cen-
troid p. It is well-known how large the norm of the centroids must be for the
two clouds to be distinguishable from a single one N'(0,1) [8]. Now consider
that we want to use a perceptron classifier to classify points generated from the
mixture of two Gaussians y = 1, from the one generated by a single Gaussian
y = —1. How many samples are needed for that? This paper may be useful
[11]. Compare to the Bayes optimal performance.

Problem I: Prove the finite temperature replica
equation for linear models in machine learning

The paper [9] proves a very generic replica equation at zero temperature for
linear models. However, the finite temperature case is open. This should be
doable by the rigorous cavity method (adding one variable at a time) and is an
interesting and direct application of our methods to a simple Bayesian machine
learning problem. The problem is presented in [5].
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