
Chapter 4

The Random Field Ising Model on
Random Graphs

I think that I shall never see
A poem lovely as a tree.

Joyce Kilmer - 1913

We shall continue our exploration of Boltzmann-Gibbs distribution

PN,� (S = s) =
e��H(s)

ZN (�)
. (4.1)

For the random field Ising model, but we shall now look at a more complex, and more
interesting, topology. We assume the existence of a graph Gij that connects some of the nodes,
such that Gij = 1 if i and j are connected, and 0 otherwise. So far, the last chapters dealt only
with the case of fully connected graphs Gij = 18 i, j. Now our Hamiltonian can be written as:

HN,J,{h},G(s) = �J
X

i,j2G

sisj �

NX

i=1

hiSi (4.2)

where J is a scalar coupling constant.

4.1 The roots of all Cavity arguments

Let us assume we haveN spins i = 1, . . . , N , that are all isolated. In this case, their probability
distribution is simple enough, we have mi = tanh�hi. Imagine now we are connecting these
N spins to a new spin S0, in the spirit of the cavity method. Of course, themi are now changed!
Let us thus refer to the old values ofmi as the "cavity ones" and write:

mc

i ⌘ tanh�hi . (4.3)

With this definition, note that (1 + simc

i
)/2 = e�hisi/cosh(�hi). Our main question of interest

is: can we write the magnetization of the new spinm0 as a function of the {mc

i
}?
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Let us try! Clearly
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Using now the relation atanhx = 1

2
log 1+x

1�x
, and applying the atanh on both side, we reach,
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atanh (mc
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We can thus finally write the magnetization of the new spins as the function of the spin in the
"old" system as

m0 = tanh

 
�h0 +

X

i

atanh (mc

i tanh(�J))

!
(4.11)

4.2 Exact recursion on a tree

It is quite simple to repeat the same argument iteratively! Consider a tree, with initial conditions
then we can write, at any point of the graph

mi!j = tanh

0

@�hi +
X

k2@i 6=j

atanh (mk!i tanh(�J))

1

A (4.12)

What is we want to know the true marginal? This is easy, we just write

mi = tanh

0

@�hi +
X

k2@i

atanh (mk!i tanh(�J))

1

A (4.13)

This is the root of the so-called Belief propagation approach. We solve the problem for the
cavity marginals mi!j that has a convenient interpretation as a message passing problem.
Once we know them all, we can compute the true marginal!

This is a method that first appears in statistical physics with Bethe and Peierls as an approx-
imation of regular lattice. Indeed, we could iterate this method on a large infinite tree of
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connectivity, say c = 2d to approximate a lattice of dimension d. Consider for instance the
case in zero field, in this case, the magnetization at distance ` from the leaves follow

m`+1 = tanh
⇣
(c � 1)atanh

⇣
m` tanh(�J)

⌘⌘
(4.14)

We can look for a fixed point of this equation, and check for which value of the (inverse)
temperature a non-zero value for the magnetization is possible at the fixed point. This is the
same phenomenon as in the Ising model, with just a slightly more complicated fixed point. By
ploting this equation, one realizes that, assuming d = 2c, this happens at �BP = 1 for d = 1,
�BP = 0.346 for d = 2, �BP = 0.203 for d = 3, �BP = 0.144 for d = 4, and �BP = 0.112 for
d = 5. If we compare these numbers to the actual transition on a real hyper-cubic lattice, we
find �lattice = 1 for d = 1, �lattice = 0.44 for d = 2, �lattice = 0.221 for d = 3, �lattice = 0.149
for d = 4 and �lattice = 0.114 for d = 5. Not so bad, and in fact we see that the predictions
become exact as d grows! This approach is quite a good one to estimate a critical temperature
(in fact, one can show that it gives a rigorous upper bound on the ferromagnetic transition, in
any topology!).

4.2.1 Belief propagation on trees for pairwise models

The iterative approach we just discussed can be made completely generic on a tree graph! The
example that we have been considering so far reads, in full generality

H = �

X

(ij)2E

JijSiSj �

X

i

hiSi . (4.15)

This is an instance of a very generic type of model, those with pairwise interaction where the
probability of each configuration is given by

P ((S)) =
1
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and the connection is clear oncewedefine ij(Si, Sj) = exp(�JijSiSj) and i(Si) = exp(�hiSi).

Similarly, as what we did for the RFIM, to compute Z on a tree, the trick is to consider instead
the variableZi!j(Si), for each two adjacent sites i and j, defined as the partial partition function
for the sub-tree rooted at i, when excluding the branch directed towards j, with a fixed value
Si of the spin variable on the site i. We also need to introduce Zi(Si), the partition function
of the entire complete tree when, again, the variable i is fixed to a value Si. On a tree, these
intermediate variables can be exactly computed according to the following recursion

Zi!j(Si) =  i(Si)
Y

k2@i\j

0

@
X

Sk

Zk!i(Sk) ik(Si, Sk)

1

A , (4.18)
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Y
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Zj!i(Sj) ij(Si, Sj)
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A , (4.19)
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where @i 6= j denotes the set of all the neighbors of i, except spin j. In order to write these
equations, the only assumption that has been made was that, for all k 6= k0 2 @i \ j, Zk!i(Sk)
and Zk0!i(Sk0) are independent. On a tree, this is obviously true: since there are no loops, the
sites k and k0 are connected only through i andwe have “cut" this interaction when considering
the partial quantities. This recursion is very similar, in spirit, to the standard transfer matrix
method for a one-dimensional chain.

In practice, however, it turns out that working with partition functions (that is, numbers
that can be exponentially large in the system size) is somehow impractical, and we can thus
normalize eq. (4.18) and rewrite these recursions in terms of probabilities. Denoting ⌘i!j(Si)
as themarginal probability distribution of the variable Si when the edge (ij) has been removed,
we have

⌘i!j(Si) =
Zi!j(Si)P
S0 Zi!j(S0)

, ⌘i(Si) =
Zi(Si)P
S0 Zi(S0)

. (4.20)

So that the recursions (4.18-4.19) now read
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where the zi!j and zi are normalization constants defined by:

zi!j =
X

Si

 i(Si)
Y
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X
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@
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1

A . (4.24)

The iterative equations (4.21,4.22), and their normalization (4.23,4.24), are called the belief
propagation equations. Indeed, since ⌘i!j(Si) is the distribution of the variable Si when the
edge to variable j is absent, it is convenient to interpret it as the “belief” of the probability of Si

in absence of j. It is also called a “cavity" probability since it is derived by removing one node
from the graph. The belief propagation equations are used to define the belief propagation
algorithm

• Initialize the cavity messages (or “beliefs”) ⌘i!j(Si) randomly or following a prior
information  i(Si) if we have one.

• Update the messages in a random order following the belief propagation recursion eq.
(4.21,4.22) until their convergence to their fixed point.

• After convergence, use the beliefs to compute the complete marginal probability distri-
bution ⌘i(Si) for each variable. This is the belief propagation estimate on the marginal
probability distribution for variable i.
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Using the resulting marginal distributions, one can compute, for instance, the equilibrium
local magnetization via mi = hSii =

P
Si
⌘i(Si)Si, or basically any other local quantity of

interest.

At this point, sincewe have switched frompartial partition sums to partial marginals, the astute
reader could complain that it seems that we have lost out prime objective: the computation of
the partition function. Fortunately, one can compute it from the knowledge of the marginal
distributions. To do so, it is first useful to define the following quantity for every edge (ij):

zij =
X

Si,Sj

⌘j!i(Sj)⌘i!j(Si) ij(Si, Sj) =
zj

zj!i

=
zi

zi!j

, (4.25)

where the last two equalities are obtained by plugging (4.21) into the first equality and realizing
that it almost gives eq. (4.24). Using again eqs. (4.21-4.24), we obtain
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and along the same steps

zj!i =

P
Sj

Zj!i(Sj)
Q

k2@j\i

P
Sk

Zk!j(Sk)
. (4.27)

For any spin Si, the total partition function can be obtained using Z =
P

Si
Zi(Si). We can

thus start from an arbitrary spin i

Z =
X

Si

Zi(Si) = zi
Y

j2@i

0

@
X

Sj

Zj!i(Sj)

1

A = zi
Y

j2@i

0

@zj!i

Y

k2@j\i

X

Sk

Zk!j(Sk)

1

A , (4.28)

and we continue to iterate this relation until we reach the leaves of the tree. Using Eq. (4.25),
we obtain

Z = zi
Y
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We thus obtain the expression of the free energy in a convenient form, that can be computed
directly from the knowledge of the cavity messages, often called the Bethe free energy

fN = �T logZ =
X

i

fi �

X

(ij)

fij ,

fi = �T log zi , fij = �T log zij ,

(4.30)

where fi is a “site term” coming from the normalization of the marginal distribution of site i,
and is related to the change in Z when the site i (and the corresponding edges) is added to
the system. fij is an “edge” term that can be interpreted as the change in Z when the edge
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(ij) is added. This provides a convenient interpretation of the Bethe free energy eq. (4.30): it
is the sum of the free energy fi for all sites but, since we have counted each edge twice we
correct this by subtracting fij .

We have now entirely solved the problem on a tree. There is, however, nothing that prevents
us from applying the same strategy on any graph. Indeed the algorithm we have described is
well defined on any graph, but we are not assured that it gives exact results nor that it will
converge. Using these equations on graphs with loops is sometimes referred to as loopy belief
propagation in Bayesian inference literature.

One may wonder if there is a connection between the BP approach and the variational one. We
may even wonder if this could be simply the same as using our bound with a better approach
than the naive mean field one! Sadly, the answer is no! We cannot prove in general that the BP
free entropy is a lower bound on any graph: indeed there are examples where it is larger than
logZ, and some where it is lower.

Two important remarks:

• There IS however a connection between the variational approach and the BP one. If one
writes the variational approach and uses the following parametrization for the guess:

Q(S) =

Q
ij
bij(Si, Sj)Q

i
bi(S)ci�1

(4.31)

then it is possible to show that optimizing on the function bij and bi one finds the BP
free entropy. The sad news, however, is that Q(S) does not really correspond to a true
probability density, it is not always normalizable, so one cannot apply the variational
bound.

• In the case of ferromagnetic models, or more exactly, on attractive potential  ij, and
only in this case then it can be shown rigorously, that BP DOES give a lower bound on
the free entropy, on any graph. For such models (thus including the RFIM!) it is thus
e�ectively equivalent to a variational approach. In fact, it can be further shown that
in the limit of zero temperature, BP finds the ground state of the RFIM on any graph
(through a mapping to linear programming).

4.3 Cavity on random graphs

4.3.1 Random graphs

We shall discuss now the basic properties of sparse Erd�s-Rényi (ER) random graphs.

An ER random graph is taken uniformly at random from the ensemble, denoted G(N,M),
of graphs that have N vertices andM edges. To create such a graph, one has simply to add
randomM edges to an empty graph. Alternatively, one can also define the so called G(N, p)
ensemble where an edge exists independently for each pair of nodes with a given probability
0 < c/N < 1. The two ensembles are asymptotically equivalent in the large N limit, when
M = c(N � 1)/2. The constant c is called the average degree. We denote by ci the degree
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�N,M= c
2 N �N+1,M= c

2 (N+1)
�N,M= c

2 N� c
2 �N+1,M= c

2 (N+1)� c
2

Random graphs, average degree c

Random graphs with cavities

Figure 4.3.1: Iterative construction of a random graph for the Cavity method. The average
degree of the graph is c.

of a node i, i.e. the number of nodes to which i is connected. The degrees are distributed
according to Poisson distribution, with average c.

Alternatively, one can also construct the so-called regular random graphs from the ensemble
R(N, c) withN vertices but where the degree of each vertex is fixed to be exactly c. This means
that the number of edges is also fixed toM = cN/2.

At the core of the cavity method is the fact that such random graphs locally look like trees, i.e.
there are no short cycles going trough a typical node. The key point is thus that, in this limit,
such random graphs can be considered locally as trees. The intuitive argument for this result
is the following one: starting from a random site, and moving following the edges, in ` steps
c` sites will be reached. In order to have a loop, we thus need c` ⇠ N to be able to come back
on the initial site, and this gives ` ⇠ log(N).

4.3.2 Cavity method

Let us now apply our beloved cavity method on a random graph with N links and on average
M = cN/2 links, this is called an Erdos-Renyi random graph. Let us try to see how this
method leads to free entropies using the same telescopic-sum trick as before. However, this
should be done with caution. If we apply our usual Cesaro-trick naively and write

ZN,M =
ZN,M

ZN�1,M�m1

ZN�1,M�m1

ZN�2,M�m1�m2

. . . Z1

and ask how we choose them at each time, we encounter a problem. We want the new spin
to have on average c neighbors, so we must add a Poissonian variable m with mean c at each
time so that the new guy has the correct numbers of neighbors. This however, add a +1
contribution to N spins in the previous graphs, so that, on average, we went fromM = cN
to M 0 = c/2N + c while we actually wanted to have M 0 = c(N + 1)/2. The di�erence is
�M = c/2 so we need to construct our sequence of graph such that we remove m/2 link
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on average every time we add one spin connected tom previous spins. Therefore, we write
instead

ZN,M =
ZN,M

ZN�1,M�m1

ZN�1,M�m1

ZN�1,M�m1+m2/2

ZN�1,M�m1+m2/2

ZN�2,M�m1+m
0
1/2�m2

. . . . . . Z1 (4.32)

Concretely, this means that we must apply the Cesaro theorem to

AN = log
ZN,M=N

c
2
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= log
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� log
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. (4.33)

And we thus obtain

lim
N,M!1

E 1

N
logZN = lim

N!1

EAN = lim
N!1

E�(site)

N
� lim

N!1

E�(link)

N
(4.34)

so that we have two terms to compute: the shift in free entropy when one add one spin to
a graph connecting it to c spins with c cavities, and one when we add c/2 links to a graph
connecting it to 2 spins with cavities. This leads to

�(site)

N
= E logh

X

s0

e�h0s0+�J
P

i2@0
s0si

iN�1,M�c (4.35)

= E logh2 cosh (�h0 + �J
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= E logh

Y

(ij)

e�JJsisj iN,M�1 (4.36)

=
c

2
E loghe�JJsisj iN�1,M�c (4.37)

Interestingly, both these equations depend on the distribution of the joint cavitymagnetizations
in the graph so we can write

�(site) = E
Z

ddPe(d)

Z dY

i=1

dmiQ
c({mi}) logh2 cosh (�h0 + �J

X

i2@0

si)i{mi}
(4.38)

�(link) = E c

2

Z
dm1Q(m1,m2) loghe�JJsisj i{m1,m2}

(4.39)

At the level of rigor used in physics, these formulas can be easly further simplified! First,
we can first make the assumption that the distribution of cavity field converges to a limit
distribution, independent of the disorder. Secondly, the crucial point is now to assume the
distribution of these cavity marginals factorizes! This makes sense: the di�erent cavities {mi} are
all far from each other in the graph; If we are not exactly at a critical point (a phase transition)
then the correlations are not infinite range. This is case, our formula depends only on the
single point distribution Qc(m) and we thus write:

�(site) =

Z
ddPe(d)

Z dY

i=1

Z
dmiQ

c(mi) logh2 cosh (�h0 + �J
X

i2@0

si)i{mi}
(4.40)

�(link) =
c

2

Z
dm1Q(m1)dm2Q(m2) loghe�JJsisj i{m1,m2}

(4.41)
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where Pe(d) is the excess degree probability 1.

Our task is thus to find the asymptotic distribution Q(m). At the level of rigor used in physics,
this is easily done. We obviously assume that Q(m) is unique, and does not depend on the
realization of the disorder (this is not so trivial). Then we realize that the distribution of cavity
fields must satisfy a recursion such as

Qc

N+1(m) =

Z
dh0P (h0)

Z
ddPe(d)

dY

i=1

Z
dmiQ

c

N+1(mi)� (m � fBP({mi}, h0)) (4.42)

with

fBP({mi}, h0) = tanh

 
�h0 +

X

i

atanh (mi tanh(�J))

!
(4.43)

Obviously, oncewe find the fixed point, we can compute the distribution to total magnetization,
which reads almost exactly the same, except now we have to use the actual distribution of
neighbors:

Q(m) =

Z
dh0P (h0)

Z
ddP (d)

dY

i=1

Z
dmiQ

c(mi)� (m � fBP({mi}, h0)) (4.44)

1. Explain the population dynamic

2. Note that the free energy is the same as the one on graphs!!! Dictionary GRAPH to
POPULATION

3. Add discussion regular vs random, and excess degree

4.3.3 The relation between Loopy Belief Propagation and the Cavity method

tree-like etc....

Single graph vs POPULATION !

4.3.4 Can we prove it?

Well, we can try !!! First Qc(m) is not clearly self-averaging, but for sure

�  maxQc(m)

R
ddP (d)

dY

i=1

Z
dmiQ

c({mi}) logh2 cosh (�h0 + �J
X

i2@0

si)i{m}

�
c

2

Z
dm1Q

c({m1})dm2Q
c({m2}) loghe�JJsisj im1,m2 (4.45)

It is possible to show that the extremization leads to Q(m) being a solution of the cavity
recursion. This means that we obtain a bound! If we found a distribution Q(m) (or actually,
all of them) that satisfies eq., then we have a bound.

1For a regular graph with fixed connectivity c, Pe(d) = �(d� (c� 1))while for a Erdos-renyi random graph,
interestingly Pe(d) = P (d) again! See exercices section



68 F. Krzakala and L. Zdeborová

Can we get the converse bound easily? Sadly, no. The point is that BP is NOT a variational
method on a given instance, so we cannot use the mean-field technics! Fortunately, it can be
shown rigorously, that, for any ferromagnetic model, BP IS gives a lower bound on the free
entropy.

It is also instructive to compare to what we had in the fully connected model. Indeed, if Q(m)
become a delta (which we expect as c grows) we obtain, using J = 1/N

�  maxmEh log 2 cosh (�h + �m) �
N

2
log e�m

2
/N = Eh log 2 cosh (�h + �m) � �

m2

2
(4.46)

which is indeed the result we add in the fully connected limit!

4.3.5 When do we expect this to work?

When do we expect belief propagation to be correct? As we have have discussed, random
graphs are locally tree-like: they are trees up to any finite distance. Further assuming that
we are in a pure thermodynamic state, we expect that we have short range correlations, so
that the large O(logN) loops should not matter in a large enough system, and these equations
should provide a correct description of the model.

Clearly, this must be a good approach for describing a system in a paramagnetic phase, or
even a system with a ferromagnetic transition (where we should expect to have two di�erent
fixed points of the iterations). It could be, however, that there exists a huge number of fixed
points for these equations: how to deal with this situation? Should they all correspond to a
given pure state? Fortunately, we do not have such worries, as the situation we just described
is the one arising when there is a glass transition. In this case, one needs to use the cavity
method in conjunction with the so-called “replica symmetry breaking” approach as was done
by Mézard, Parisi, and Virasoro.
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4.4 Exercises

E������� �.�: E����� ������ �� E����-R���� ������

Consider a Erdos-Renyi random graph with N nodes and M links in the asymptotic
regime where N ! 1, with c = 2M/N the average degree.

1. Consider one given node, what is the probability p that it is connected with
another given node, say j? Since it has N � 1 potential neighbors, show that the
probability distribution of the number of neighbors for each node follows

P(d = k) =
cke�c

k!
(4.47)

In the cavity method, we are often interested as well in the excess degree distribution,
that is, given one site i that has a neighbor j, what is its distribution of additional
neighbors d?

2 Argue that finding first a link (ij) and then looking to i is equivalent to sampling all
nodes with a probability that is proportional to their number of neighbors:

Pi =
di
c

(4.48)

2 Finally show that the probability distribution of having k + 1 neighbors when one
chose each sites with probability di

c
is

P(d = k + 1) =
ck+1e�c

k + 1!

k + 1

c
(4.49)

so that the probability distribution of excess degree reads

Pe(d = k) =
cke�c

k!
(4.50)

E������� �.�: T�� ������ ����� ����� ����� �� � ������� ������ �����

We have seen that the BP update equation for the RFIM is given by

fBP({mi}, h0) = tanh

 
�h0 +

X

i

atanh (mi tanh(�J))

!
(4.51)

and that the distribution of cavity fields follows (for a random graph with fixed connec-
tivity c � 1):

Qcav.(m) =

Z
dh0N (h0; 0,�)

c�1Y

i=1

Z
dmiQ

cav(mi)� (m � fBP({mi}, h0)) (4.52)

This can be solved in practice using the population dynamics approach where we
represent Qcav.(m) by a population of Npop elements. In this case, formally we iterate
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a collection, or pool, or elements. Starting from Qcav.
t=0

(m) =
⇥
m1,m2,m3, . . . ,mNpop

⇤

with, for instance all m = 1 or random initial conditions, we iterate as follows:

• For T steps:

• For all i = 1 ! Npop:

• Draw a random h0 ⇠ N (0,�), and c � 1 random {mi} from Qcav.
t .

• Computemnew = fBP({mi}, h0).

• Assign m to the i elements of the new population Qt+1i
= mnew.

IfNpop is large enough (say 105) then this is a good approximation of the true population
density, and if T is large enough, then we should have converged to the fixed point.
Once this is done, we can compute the average magnetization by computing the true
marginal as follows:

• Set m = 0

• For N steps:

• Draw c random {mi} from Qcav.
eq .

• Computemnew = fBP({mi}, h0) using this time the c values.

• m = m + mnew/Npop

1. Consider the RFIM on regular random graphs with connectivity c = 4. Compute
analytically the phase transition point in beta, denoted �c at zero disordered field
(� = 0).

2. Implement the population dynamics and find numerically the phase transition
point whenm(�,�) become non zero. Draw the phase diagram in (�,�) separat-
ing the phase wherem = 0 with the one where m 6= 0.

3. Now, let us specialize to the zero temperature limit. Argue that the iteration has
the following limit

f�=1

BP
({mi}, h0) = sign

 
h0 +

X

i

sign{mi}

!
(4.53)

and that Qc(m) admits a simple parametric form that depends on a single param-
eter mc as

Qc(m) =
1 + mc

2
�(m � 1) +

1 � mc

2
�(m + 1) (4.54)

4. Compute the critical value of � where a non zero magnetization appears.


