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1: The energy resolution in a backscattering experiment
The uncertainty on the final energy of the detected neutron is governed by many factors but one

large factor is the scattering angle itself. Here we have a closer look at why that is.

(a) Use Bragg’s law, nAy = 2danasinfy, and propagation of errors to find an expression for the

relative uncertainty 6’\—_f. Here A¢ is the final wavelength of the neutron, d,,, is the lattice spacing
by f

of the monochromator and 26y is the scattering angle of the neutrons arriving at the detector.

Propagating the error gives:
0(2dn, sin 0 2 0(2dan, sin 0 2
(6)‘1“)2 = ((E)df)> (5dana)2 + ((aaff)> (59f)2
= (25in67)° (6dana)? + (2dana cos 05)2(505)2.

The relative uncertainty is then:

(iﬁj) - (‘”) + (cot)2(567)°.

dana

(b) At which scattering angle is % at a minimum and what does that mean for the detector

position if you wish a very high energy resolution?

2
The term (‘Sj%) refers to the quality of the analyzer crystal and does not depend on the scattering

angle. The other term, (cot@y)?, has a minimum at 6y = 90° which means a scattering angle of
20¢ = 180°. That means scattering back the way the neutrons came and is known as backscattering.

2: The Heisenberg ferromagnetic chain

Consider a Heisenberg ferromagnetic chain with the following spin Hamiltonian:
H :ZJSi'SH-la
i

where the sum is only over the nearest neighbors distanced a from each other, see Fig. 1(a), and
we assume that all spin pairs interact with the same exchange coupling, J.

(a) Use the operators ST = S* 4 iSY and S~ = S* — iSY to arrive at the following form for the
Hamiltonian:

N 1 _ _
H= ZJ {Sf 1T By (S Si1 + 57 Sik)
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Figure 1: (a) The ferromagnetic chain with spins separated by the distance a and interacting with
exhange coupling J. (b) Spinwave spectrum of KoCuF4 measured by K. Hirakawa et al., J. Phys.
Soc. Jpn. 52, 4220-4230 (1983).

Using the expressions for ST and S~ we can write S* and SY as:

1 1
T _ + - Yy _— + _ q—
S 3 (S +S5 ) , S % (S S ) .
Plugging that into the Hamiltonian then yields:
H= Z T [87SF + ST ST + SV 8]

7

_ 1 _ -
=37 [s9SEa 4 (57 +57) (S5 Sia) = (57 = 57) (55— )
_ZJ[SZSf+1+ (SF Sty + ST Sy + S, S, + 5750

1 _ _ o
1 (S 81 =SSy — S S +5; Si+1)]

—ZJ [stfﬂ + 5 (S S +8785)

(b) The operators S;f and S have the effect of respectively raising and lowering the spin value
at a site j. S7 works a bit like a number operator and measures the spin value on site j. Argue
that the state with all spins at their maximum value, S, is an eigenstate of the Hamiltonian and
determine the eigenvalue.

The term with S7S7,; operating on a state with all spins up gives 5?2 for all pairs of 4 and i + 1
and leaves the state unchanged. The mixed terms, S Sy and S Sl '\ 1, are attempting to raise

the spins on sites 7 and @ + 1, respectively, but since all spins already attain their maximum
value, these terms give zero per definition. Therefore, # |5, 5,9, ...,S) = NJS?|S, S, S, ..., S) and
therefore |9, S, S, ..., S) is an eigenstate of the Hamiltonian with eigenvalue N.JS2.

(c) Let us now consider a state with all spins at their maximum except the one at j which is now
lowered to S — 1, meaning |j) = 5,5 — 1, 5,...,.5). The operators Sj and S} do the following to

the state |j):
St =v2s|i+1), STl =v2Si-1)



Is |5) an eigenstate of H?

To answer the question we need to evaluate 7 |7). From question (b) we already know that the
S* part of the Hamiltonian only gives non-zero contributions to the sum when the lowered spin is
involved in a pair. That mean we have to look at the pairs (j — 1,7) and (j,j5 + 1):

VS5 15y =81,V281(8,8-2,5,..,8) =0
SJ 1S+|]> - V2S51S,8,8,...,8) =25 |j — 1),
SES . 15) = S+F|s S—1,5§-1,..,8) =25+ 1),
SySfa i) =
The effect of 757, , part of the Hamiltonian on |5) is evaluated as follows:
S5 1) =571 (S =D ]5) =SS 1) [5),
S Sj+1 l7) = 55515) = (S =1)S|j)-

All remaining S7S7, | pairs yield S?. In other words, this part of the sum gives us S? for the N —2
pairs not mvolvmg the lowered spin and S(S — 1) for the 2 pairs that do. Putting it all together
we have:

| Z Qz 1 — — -
H|j) :ZJ |:Si I (8781 +5; S?'j—l):| 17}

:J[( 2)S2 +25(8 — )] ) +2JS 5 — 1) +2JS[j + 1),
=J(NS*>=28)|j)+2JS[j — 1)+ 2JS|j +1).

So |5) is not an eigenstate of H.

(d) Hopefully you found that a spin lowered on a single site is not an eigenstate of 7. Instead we
try the Fourier transform of |j):

1 S
) = 7 zj:e’q'r’ 1) -

We can also view this as a smearing of the lowered spin over all lattice sites. Evaluate H |¢) and show
that this is indeed an eigenstate of the Hamiltonian with eigenvalue F = JNS?+2.JS [cos(qa) — 1].

To evaluate H |¢) we can use the result from question (c):

Hlg) = \ﬁZe"”JHIJ
\erlqw[zvs 2) 1) +20i - ) +20j+1)].

To go on, we write out the sum and rearrange the terms:

7%|q>:j%(...+ei2qa[(zvs—2) j—2)+2|j—=3)+2|j—1)]

+e (NS —2) [ —1)+2]5 —2) +2]5)]
+[(NS=2) i) +2li—1)+2]j+1)]

+ e [(NS = 2) [+ 1) +2[5) + 2] +2) ]

+ e (NS = 2)[j+2) + 2|5+ 1)+ 2[5 +3) ] +)



[ + (27720 4 e (NS — 2) 4+ 2) |5 — 1)
+ (277 + (NS — 2) + 2€"%) |5)
+ (24 €99(NS — 2) + 26297 |j + 1) + )

5
VN

= + (2671 4 2€"%) |5) + 4 (2 + 2¢"9) |5 + 1) + ],
LIS

VN

_ +26iqa (efiqa + eiqa) |j + 1> + }’

4J8S -
=JS(NS-2)|q) + — cos(qa)e' I |5y |
( ) la) \/sz: (qa) 17)

= | Z s - ) |+ [ (e ) 1)

=JS(NS —2)|q) [ +2e71% (67199 4 €"%) |5 — 1) + 2 (eI + €"1%) |5)

=JS [(NS -2)+ 2cos(qa)]} lg),

— {JNSQ +2J5 (cos(qa) — 1)} lg) -

This means that |g) is in fact an eigenstate of # with eigenvalue E = JNS? + 2.J5 (cos(ga) — 1).
(e) Plot the spinwave spectrum for a ferromagnetic chain with S =2 and J = —5 meV.

The constant part of F is basically the ground state energy and does not contribute to the disper-
sion. With the given parameters, the dispersion is shown in Fig. 2.
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Figure 2: The spinwave dispersion for a ferromagnetic chain with S =2 and J = —5 meV.

(f) The spinwave spectrum of the ferromagnetic chain compound, KoCuFy, is shown in Fig. 1(b).
What is the value of J in this case?

To determine the height of the dispersion (also known as the bandwidth) we need to find the
maximum of E(q):
dE(q)
dq

= —2JSasin(qa) =0 = qa=0Vqga=m.



Here the solution ga = 0 is the minimum and ga = 7 is the maximum. The energy at the maximum
is then Eyax = —4JS. (The constant JNS? is not regarded as it is just an offset). We read the
maximum of the curve in Fig. 1(b) to be around 4meV. The magnetic ion in this case is Cu?*

which has spin S = % The exchange interaction is then J = —% = —% = —2meV.

3: Lattice vibrations in one dimension

Exercise 14.P.1 in the neutron notes.

1.
The force between ion j and j + 1 is:

Fjjia(t) = =K [u;(t) — uja (8]
For the pair j — 1 and j it is similarly:
Fjo1,3(t) = =K [uj 1 (t) — u; ()]
Now Fj ;1 = —F;_1; and with Newton’s second law we get the total forces on ion j:
Miij = Fj i1 (t) = Fj_1,5(t) = =K [2uj — uj—1 — uj4a] .

2.
We plug the trial function u;(t) = A,e'(979=“t) into the equation of motion (note that a = d):

M (—w?)Agellwoent) — [2 Ageitaia=wat) _ 4 eilali—Da—wqt) | Aqei<q<j+1>a—wqt>] o
ngei(qjaqut) - K |:26i(qja7wqt) - eiqaei(qjaqut) + 6iqa€i(qja7wqt):| PN
ng =K|[2- el 4 eiqa] .

ei% et

Now we use the definition of the sine using the complex exponential, sin(z) = 57—, to evaluate
sin?(z):
eir o e—iz eim _ e—iz ei2z —1-1= e—in 2 _ eiQm o e—i2:c
sin?(z) = , - = = :
24 21 —4 4

We can then substitute 2 — €4 4 ¢%4% by 4sin? (%) and we obtain the result:

4K
ng = 4K sin? (%) = w; =7 sin® (%) .

4: The direct-geometry time-of-flight spectrometer

An inelastic neutron scattering experiment is performed with a CeCug single crystal on a time-
of-flight spectrometer with direct geometry. The space group of CeCug is Pnma (orthorhombic)
with lattice parameters a = 5.03 A, b = 8.06 A and ¢ = 10.09 A. Suppose the sample is oriented
with (H,0,0) and (0,0, L) in the horizontal scattering plane. The incoming energy of the neutrons
is F; = 8 meV and the detectors cover a range of scattering angles of 10° — 100° in the forward
direction.

Calculate the q coverage for an energy transfer of £ = 0.3 meV when the crystal is rotated by 90°
in steps of 1°.

To calculate the coverage we need to use the Laue condition together with conservation of energy:



We also need to be able to convert between energy and momentum with k = Zm{E , where m,,

is the neutron mass and A the reduced Planck constant. To get the units to match, we need the
elementary charge, e.

2m, Ei

We assume that the incoming neutrons arrive along z such that k; = z and we place the
sample such that (H,0,0) is along = and (0,0, L) is along z as shown in Fig. 3(a). This is just one
choice of scattering geometry. If you want, you can play around with other choices. Figure 3(b)
shows the coverage for different values of energy transfer when rotating the crystal from 5° to 95°.
Again this is an arbitrary choice and you can try our other choices.
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Figure 3: (a) Experimental setup. (b) Coverage in q for different energy transfers.



