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1: The energy resolution in a backscattering experiment

The uncertainty on the final energy of the detected neutron is governed by many factors but one
large factor is the scattering angle itself. Here we have a closer look at why that is.

(a) Use Bragg’s law, nλf = 2dana sin θf , and propagation of errors to find an expression for the

relative uncertainty
δλf

λf
. Here λf is the final wavelength of the neutron, dana is the lattice spacing

of the monochromator and 2θf is the scattering angle of the neutrons arriving at the detector.

Propagating the error gives:

(δλf )
2
=

(
∂(2dana sin θf )

∂dana

)2

(δdana)
2 +

(
∂(2dana sin θf )

∂θf

)2

(δθf )
2

= (2 sin θf )
2
(δdana)

2 + (2dana cos θf )
2(δθf )

2.

The relative uncertainty is then:(
δλf

λf

)2

=

(
δdana
dana

)2

+ (cot θf )
2(δθf )

2.

(b) At which scattering angle is
δλf

λf
at a minimum and what does that mean for the detector

position if you wish a very high energy resolution?

The term
(

δdana

dana

)2

refers to the quality of the analyzer crystal and does not depend on the scattering

angle. The other term, (cot θf )
2, has a minimum at θf = 90◦ which means a scattering angle of

2θf = 180◦. That means scattering back the way the neutrons came and is known as backscattering.

2: The Heisenberg ferromagnetic chain

Consider a Heisenberg ferromagnetic chain with the following spin Hamiltonian:

Ĥ =
∑
i

J Si · Si+1,

where the sum is only over the nearest neighbors distanced a from each other, see Fig. 1(a), and
we assume that all spin pairs interact with the same exchange coupling, J .

(a) Use the operators S+ = Sx + iSy and S− = Sx − iSy to arrive at the following form for the
Hamiltonian:

Ĥ =
∑
i

J

[
Sz
i S

z
i+1 +

1

2

(
S+
i S−

i+1 + S−
i S+

i+1

)]
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Figure 1: (a) The ferromagnetic chain with spins separated by the distance a and interacting with
exhange coupling J . (b) Spinwave spectrum of K2CuF4 measured by K. Hirakawa et al., J. Phys.
Soc. Jpn. 52, 4220-4230 (1983).

Using the expressions for S+ and S− we can write Sx and Sy as:

Sx =
1

2

(
S+ + S−) , Sy =

1

2i

(
S+ − S−) .

Plugging that into the Hamiltonian then yields:

Ĥ =
∑
i

J
[
Sz
i S

z
i+1 + Sx

i S
x
i+1 + Sy

i S
y
i+1

]
=

∑
i

J

[
Sz
i S

z
i+1 +

1

4

(
S+
i + S−

i

) (
S+
i+1 + S−

i+1

)
− 1

4

(
S+
i − S−

i

) (
S+
i+1 − S−

i+1

)]
=

∑
i

J

[
Sz
i S

z
i+1 +

1

4

(
S+
i S+

i+1 + S+
i S−

i+1 + S−
i S+

i+1 + S−
i S−

i+1

)
−1

4

(
S+
i S+

i+1 − S+
i S−

i+1 − S−
i S+

i+1 + S−
i S−

i+1

)]
=

∑
i

J

[
Sz
i S

z
i+1 +

1

2

(
S+
i S−

i+1 + S−
i S+

i+1

)]
.

(b) The operators S+
j and S−

j have the effect of respectively raising and lowering the spin value
at a site j. Sz

j works a bit like a number operator and measures the spin value on site j. Argue
that the state with all spins at their maximum value, S, is an eigenstate of the Hamiltonian and
determine the eigenvalue.

The term with Sz
i S

z
i+1 operating on a state with all spins up gives S2 for all pairs of i and i + 1

and leaves the state unchanged. The mixed terms, S+
i S−

i+1 and S−
i S+

i+1, are attempting to raise
the spins on sites i and i + 1, respectively, but since all spins already attain their maximum
value, these terms give zero per definition. Therefore, Ĥ |S, S, S, ..., S⟩ = NJS2 |S, S, S, ..., S⟩ and
therefore |S, S, S, ..., S⟩ is an eigenstate of the Hamiltonian with eigenvalue NJS2.

(c) Let us now consider a state with all spins at their maximum except the one at j which is now
lowered to S − 1, meaning |j⟩ = |S, S − 1, S, ..., S⟩. The operators S+

j and S−
j do the following to

the state |j⟩:
S+ |j⟩ =

√
2S |j + 1⟩ , S− |j⟩ =

√
2S |j − 1⟩
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Is |j⟩ an eigenstate of Ĥ?

To answer the question we need to evaluate Ĥ |j⟩. From question (b) we already know that the
S± part of the Hamiltonian only gives non-zero contributions to the sum when the lowered spin is
involved in a pair. That mean we have to look at the pairs (j − 1, j) and (j, j + 1):

S+
j−1S

−
j |j⟩ = S+

j−1

√
2S |S, S − 2, S, ..., S⟩ = 0,

S−
j−1S

+
j |j⟩ = S−

j−1

√
2S |S, S, S, ..., S⟩ = 2S |j − 1⟩ ,

S+
j S−

j+1 |j⟩ = S+
j

√
2S |S, S − 1, S − 1, ..., S⟩ = 2S |j + 1⟩ ,

S−
j S+

j+1 |j⟩ = 0.

The effect of Sz
i S

z
i+1 part of the Hamiltonian on |j⟩ is evaluated as follows:

Sz
j−1S

z
j |j⟩ = Sz

j−1(S − 1) |j⟩ = S(S − 1) |j⟩ ,
Sz
j S

z
j+1 |j⟩ = Sz

j S |j⟩ = (S − 1)S |j⟩ .

All remaining Sz
i S

z
i+1 pairs yield S2. In other words, this part of the sum gives us S2 for the N −2

pairs not involving the lowered spin and S(S − 1) for the 2 pairs that do. Putting it all together
we have:

Ĥ |j⟩ =
∑
i

J

[
Sz
i S

z
i+1 +

1

2

(
S+
i S−

i+1 + S−
i S+

i+1

)]
|j⟩ ,

= J
[
(N − 2)S2 + 2S(S − 1)

]
|j⟩+ 2JS |j − 1⟩+ 2JS |j + 1⟩ ,

= J
(
NS2 − 2S

)
|j⟩+ 2JS |j − 1⟩+ 2JS |j + 1⟩ .

So |j⟩ is not an eigenstate of Ĥ.

(d) Hopefully you found that a spin lowered on a single site is not an eigenstate of Ĥ. Instead we
try the Fourier transform of |j⟩:

|q⟩ = 1√
N

∑
j

eiq·rj |j⟩ .

We can also view this as a smearing of the lowered spin over all lattice sites. Evaluate Ĥ |q⟩ and show
that this is indeed an eigenstate of the Hamiltonian with eigenvalue E = JNS2+2JS [cos(qa)− 1].

To evaluate Ĥ |q⟩ we can use the result from question (c):

Ĥ |q⟩ = 1√
N

∑
j

eiq·rj Ĥ |j⟩ ,

=
JS√
N

∑
j

eiq·rj
[
(NS − 2) |j⟩+ 2 |j − 1⟩+ 2 |j + 1⟩

]
.

To go on, we write out the sum and rearrange the terms:

Ĥ |q⟩ = JS√
N

(
...+ e−i2qa

[
(NS − 2) |j − 2⟩+ 2 |j − 3⟩+ 2 |j − 1⟩

]
+ e−iqa

[
(NS − 2) |j − 1⟩+ 2 |j − 2⟩+ 2 |j⟩

]
+
[
(NS − 2) |j⟩+ 2 |j − 1⟩+ 2 |j + 1⟩

]
+ eiqa

[
(NS − 2) |j + 1⟩+ 2 |j⟩+ 2 |j + 2⟩

]
+ ei2qa

[
(NS − 2) |j + 2⟩+ 2 |j + 1⟩+ 2 |j + 3⟩

]
+ ...

)
,
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Ĥ |q⟩ = JS√
N

[
...+

(
2e−i2qa + e−iqa(NS − 2) + 2

)
|j − 1⟩

+
(
2e−iqa + (NS − 2) + 2eiqa

)
|j⟩

+
(
2 + eiqa(NS − 2) + 2ei2qa

)
|j + 1⟩+ ...

)
,

=
JS√
N

∑
j

(NS − 2)eiq·rj |j⟩

+
JS√
N

[
...+

(
2e−i2qa + 2

)
|j − 1⟩

= +
(
2e−iqa + 2eiqa

)
|j⟩++

(
2 + 2ei2qa

)
|j + 1⟩+ ...

]
,

= JS(NS − 2) |q⟩+ JS√
N

[
...+ 2e−iqa

(
e−iqa + eiqa

)
|j − 1⟩+ 2

(
e−iqa + eiqa

)
|j⟩

= +2eiqa
(
e−iqa + eiqa

)
|j + 1⟩+ ...

]
,

= JS(NS − 2) |q⟩+ 4JS√
N

∑
j

cos(qa)eiq·rj |j⟩ ,

= JS
[
(NS − 2) + 2 cos(qa)]

]
|q⟩ ,

=
[
JNS2 + 2JS (cos(qa)− 1)

]
|q⟩ .

This means that |q⟩ is in fact an eigenstate of Ĥ with eigenvalue E = JNS2 + 2JS (cos(qa)− 1).

(e) Plot the spinwave spectrum for a ferromagnetic chain with S = 2 and J = −5 meV.

The constant part of E is basically the ground state energy and does not contribute to the disper-
sion. With the given parameters, the dispersion is shown in Fig. 2.
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Figure 2: The spinwave dispersion for a ferromagnetic chain with S = 2 and J = −5 meV.

(f) The spinwave spectrum of the ferromagnetic chain compound, K2CuF4, is shown in Fig. 1(b).
What is the value of J in this case?

To determine the height of the dispersion (also known as the bandwidth) we need to find the
maximum of E(q):

dE(q)

dq
= −2JSa sin(qa) = 0 ⇒ qa = 0 ∨ qa = π.
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Here the solution qa = 0 is the minimum and qa = π is the maximum. The energy at the maximum
is then Emax = −4JS. (The constant JNS2 is not regarded as it is just an offset). We read the
maximum of the curve in Fig. 1(b) to be around 4meV. The magnetic ion in this case is Cu2+

which has spin S = 1
2 . The exchange interaction is then J = −Emax

4S = − 4meV
2 = −2meV.

3: Lattice vibrations in one dimension

Exercise 14.P.1 in the neutron notes.

1.
The force between ion j and j + 1 is:

Fj,j+1(t) = −K [uj(t)− uj+1(t)] .

For the pair j − 1 and j it is similarly:

Fj−1,j(t) = −K [uj−1(t)− uj(t)] .

Now Fj,j−1 = −Fj−1,j and with Newton’s second law we get the total forces on ion j:

Müj = Fj,j+1(t)− Fj−1,j(t) = −K [2uj − uj−1 − uj+1] .

2.
We plug the trial function uj(t) = Aqe

i(qja−ωqt) into the equation of motion (note that a = d):

M(−ω2
q )Aqe

i(qja−ωqt) = −K
[
2Aqe

i(qja−ωqt) −Aqe
i(q(j−1)a−ωqt) +Aqe

i(q(j+1)a−ωqt)
]
⇔

Mω2
qe

i(qja−ωqt) = K
[
2ei(qja−ωqt) − eiqaei(qja−ωqt) + eiqaei(qja−ωqt)

]
⇔

Mω2
q = K

[
2− eiqa + eiqa

]
.

Now we use the definition of the sine using the complex exponential, sin(x) = eix−e−ix

2i , to evaluate

sin2(x):

sin2(x) =

(
eix − e−ix

2i

)(
eix − e−ix

2i

)
=

ei2x − 1− 1− e−i2x

−4
=

2− ei2x − e−i2x

4
.

We can then substitute 2− eiqa + eiqa by 4 sin2
(
qa
2

)
and we obtain the result:

Mωs
q = 4K sin2

(qa
2

)
⇔ ωs

q =
4K

M
sin2

(qa
2

)
.

4: The direct-geometry time-of-flight spectrometer

An inelastic neutron scattering experiment is performed with a CeCu6 single crystal on a time-
of-flight spectrometer with direct geometry. The space group of CeCu6 is Pnma (orthorhombic)
with lattice parameters a = 5.03 Å, b = 8.06 Å and c = 10.09 Å. Suppose the sample is oriented
with (H, 0, 0) and (0, 0, L) in the horizontal scattering plane. The incoming energy of the neutrons
is Ei = 8 meV and the detectors cover a range of scattering angles of 10◦ − 100◦ in the forward
direction.

Calculate the q coverage for an energy transfer of E = 0.3 meV when the crystal is rotated by 90◦

in steps of 1◦.

To calculate the coverage we need to use the Laue condition together with conservation of energy:

q = ki − kf , ∆E = Ei − Ef .
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We also need to be able to convert between energy and momentum with k = 2mnE
ℏ , where mn

is the neutron mass and ℏ the reduced Planck constant. To get the units to match, we need the
elementary charge, e.

We assume that the incoming neutrons arrive along z such that ki = 2mnEi

ℏ ẑ and we place the
sample such that (H, 0, 0) is along x and (0, 0, L) is along z as shown in Fig. 3(a). This is just one
choice of scattering geometry. If you want, you can play around with other choices. Figure 3(b)
shows the coverage for different values of energy transfer when rotating the crystal from 5◦ to 95◦.
Again this is an arbitrary choice and you can try our other choices.

(H,0,0)

(0,0,L)

ki

kf

Detector array

kf

ki

q

0 0.5 1 1.5 2 2.5

(H,0,0) (r.l.u.)

-3

-2

-1

0

1

2

3

(0
,0

,L
) 

(r
.l

.u
.)

E = 0.3 meV

E = 2.0 meV

E = 5.0 meV

(a) (b)

2θ

Sample

Figure 3: (a) Experimental setup. (b) Coverage in q for different energy transfers.
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