Neutron and X-ray Scattering
of

Quantum Materials

PHYS-640

Week 5 exercises

1: The small angle neutron scattering experiment
(a) Exercise 7.P.2 in the neutron notes.

1.
The general formula for the form factor is:

2

1 )
P(q) = ‘V / dVe'ar

The volume of a sphere with radius, R, is V = %ﬂ'RS. The volume integral is evaluated using

spherical coordinates and the Debye formula <eiq""> = sin(ar),
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Combing everything we get:
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2.
Figure ?7?(a) shows the form factor obtained in 1. for R = 20,40, 60 and 80 A as a function of q.
The larger particle, the more dips in the form factor.

3.

Figure ??(b) shows the effect of 1 and 10% width of a uniform size distribution. The features are
smeared out with the particles have different sizes. For fun I did it also for a Gaussian distribution
— see Fig. ??(c) — which is probably a more realistic distribution of particle sizes.

(b) Exercise 7.P.4 in the neutron notes.

1.
A sketch of the setup is shown in Fig. ??. The range of scattering angles is given by the diameter

of the PSD as well as the beamstop with the lowest angle at 20,,;, = tan™! (dbij#“’p) and the

largest angle at 20,.x = tan™! (dQPTSf) We have ¢ = 2ksinf where k = 27” This means that
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Figure 1: (a) The form factor for dilute spherical particles, P(q) a function of ¢ for different
particle radii. (b)-(c) Same as in (a) but now for different particle size distributions with mean
size Ry = 40 A and standard deviations (or width) o = 0.4 and 4.0 A using uniform and Gaussian
size distributions.

largest scattering angle together with the smallest wavelength gives the largest value of ¢. Likewise,
the smallest scattering angle together with the longest wavelength gives the smallest value of g.
Concretely we find the following lower and upper limit of the length of the scattering vector, ¢:
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2.
The divergence between the two pinholes can be expressed as follows:

d ds
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where dy = 20 mm and dy = 10 mm are the diameters of the two pinholes, respectively (see also
Fig. ??7). Plugging in R, = 1 and 20 m yields a range of divergence of §6 = 0.86° = 51’ for
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Figure 2: Sketch of the SANS setup described in the collimation exercise.



R.=1m and 60 = 0.043° = 2.6’ for R, = 20m.

3.
The uncertainty in ¢ = 4{ sin @ can be found as follows:
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If we then divide through by ¢? we get the relative uncertainty:

(5;,)2 = (5;)2 + (cot 0 66)°.

Assuming 57)‘ is small we have 24 ~ cot# 60 which means that the relative uncertainty in ¢ is
directly proportional to the beam divergence, 6. Since we are generally dealing with small angles
cot @ is a rather large number and this means the beam divergence becomes a very important factor
for the uncertainty in ¢ in SANS experiments.

For the setup with R, = R4y = 1 m, we have a range of scattering angles 26 € [1.15°,26.6°] which

together with the divergence of 460 = 0.86° gives a relative uncertainty ranging from %‘1 = 1.5 for

the smallest angles to %q = 0.064 for the largest angles.

For the setup with R. = R4 = 20 m, the corresponding scattering angle range is 26 € [0.029°,0.72°]

and the divergence is 66 = 0.043°. The relative uncertainty then ranges from %q = 1.5 for the

smallest angles to %q = 0.060 for the largest angles. Thus it seems that with this R, = Ry setup,
the relative uncertainty in ¢ is independent on the choice of collimation tightness but of course the
accessible g range changes with R, (R4). Let us have a closer look at this postulate.

For small angles we have tan(26) ~ 26, tan(66) ~ 60 and cot 6 ~ 4. The relative uncertainty is
then for the smallest possible scattering angle:

Gmin dbcamstop 2Rc dbcamstop

Likewise for the largest possible scattering angles we have:
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and we see that these expressions are independent on the choice of R. and Ry and long as they
are equal.

2: The neutron reflectometry experiment

A time-of-flight reflectometer with a wavelength range of [0.5, 6.5] A is used to study the surface of
a dilute solution of molecules in deuterated water, DoO. Calculate the critical wavevector transfer
g of D2O and suggest a suitable incident angle to use.

The critical scattering vector is given by ¢q. = \/167r (,0252 — plgl), where p; 2 and 5172 are the
number density and average scattering length for medium 1 and 2, respectively. In our case, the
medium 1 is vacuum which means p1b; = 0.

The molar mass of heavy water is M = 20 mile which means that one formula unit of D;O
M

has a mass of m = ~, Wwith Ny the Avogadro’s number. The mass density of heavy water is




M
APm

and hence the atomic

m3

number density is pp,0 = 1/V = &2 = 3.3332 x 102 L;

m3 *

pm = 1107 ke 50 the volume of one formula unit is then V = pﬂ =%

The scattering length of deuterium is bp = 6.671 fm and that for natural oxygen is bo = 5.803
barn. Therefore, the average scattering length density per DoO unit is by = % (2bp + by) = 6.382
fm.

Putting all these numbers together then yields:

1 1 1
qc = 4\/7r © 33332 x 108 — - 6.382 X 107" m = 1.034 x 108 = =1.034 x 1072 —.
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For the wavelength interval [0.5,6.5] A results in 6, € [0.024°,0.31°].

3: The beamtime proposal

Imagine that you have discovered a new mineral, magnificite. It is a strong ferromagnet and
superconducting simultaneously. Now, you would like to characterize the magnetic structure in
the compound as a function of temperature and magnetic field using neutron diffraction. Find a
suitable instrument and write a beamtime proposal to perform the experiment. Some potentially
helpful questions:

- Why is it important to do this experiment?

- In which form is the sample? (powder, crystal, liquid?)

How did you characterize the sample already?

- Which temperature and field range do you need?
- Which scattering plane are you planning to use?
- How much time do you think is needed?

We will discuss this exercise in class.



