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Week 2 solutions

1: The monochromator

(a) Exercise 9.P.1 in the neutron notes.

1.

2. Inserting d = n 2π
τ and λ = 2π

k in Bragg’s law yields:

nλ = 2d sin θ ⇒ n
2π

k
= 2n

2π

τ
sin θ ⇔ 1

k
= 2

1

τ
sin θ ⇔ τ = 2k sin θ

3. From momentum conservation shown we have τ = ki − kf . This is illustrated in Fig. 1. Now
consider the right-angled triangle shown with red in Fig. 1 and use that for diffraction ki = kf = k:

sin θ =
τ/2

k
⇔ τ = 2k sin θ

Figure 1: Sketch to help get to
Bragg’s law from momentum con-
servation.

4. First we need to convert the neutron energy to momentum:

E =
ℏ2k2

2m
⇒ k =

√
2mE

ℏ
.

The scattering angle can be found from Bragg’s law:

τ = 2k sin θ ⇒ 2θ = 2arcsin

(
τℏ

2
√
2mE

)
.

Then plugging in the numbers we get the scattering angle for PG (002) is 2θ = 74.2◦.

(b) Sometimes Si (111) is chosen instead of PG (002) for monochromating the neutron beam.
Calculate the structure factor for the Si (nnn) reflections for n = 1, 2, 3, 4.

Silicon has the diamond structure which is two interlaced face-centered cubic lattice with the
second lattice displaced by (1/4, 1/4, 1/4) with respect to the first one. That gives us 8 atoms per
unit cell with the following coordinates given in the basis of the cubic lattice:

∆1 = (0, 0, 0), ∆5 = (1/4, 1/4, 1/4),

∆2 = (1/2, 1/2, 0), ∆6 = (3/4, 3/4, 1/4),

∆3 = (0, 1/2, 1/2), ∆7 = (1/4, 3/4, 3/4),

∆4 = (1/2, 0, 1/2), ∆8 = (3/4, 1/4, 3/4).

1



The structure factor is then evaluated for reflections of the type q = (nnn) as given in reciprocal
lattice units:

F (nnn) =

8∑
j=1

bj e
i2π(n,n,n)·∆j

= bSi

(
1 + 3ei2πn + ei2πn(3/4) + 3ei2πn(7/4)

)
= bSi

(
1 + 3ei2πn + ei2πn(3/4) + 3ei2πn(3/4)ei2πn

)
,

where bj = bSi is the same for all atoms in the unit cell. Since n is an integer then ei2πn = 1 ∀ n
and we get:

F (nnn) = 4bSi

(
1 + ei(3/2)πn

)
,

and we can calculate the structure factor for n = 1, 2, 3, 4:

F (111) = 4bSi

(
1 + ei(3/2)π

)
= 4bSi(1− i),

F (222) = 4bSi
(
1 + ei3π

)
= 0,

F (333) = 4bSi

(
1 + ei(9/2)π

)
= 4bSi(1 + i),

F (444) = 4bSi
(
1 + ei6π

)
= 0.

For this family of planes we can recognise a pattern: F (nnn) = 0 for n even and F (nnn) =
4bSi (1 + in), i.e finite, for n odd.

(c) Can you think of why Si (111) is sometimes a better choice for the monochromator?

The λ/2 contribution to the beam is totally killed by the structure factor.

2: The crystal structure of Po and NaCl

(a) Calculate the structure factor for Po and NaCl.

Both have simple cubic structure but for NaCl it is necessary to define a basis with 8 atoms in the
unit cell:

∆Na
1 = (0, 0, 0), ∆Cl

5 = (1/2, 0, 0),

∆Na
2 = (1/2, 1/2, 0), ∆Cl

6 = (0, 1/2, 0),

∆Na
3 = (0, 1/2, 1/2), ∆Cl

7 = (0, 0, 1/2),

∆Na
4 = (1/2, 0, 1/2), ∆Cl

8 = (1/2, 1/2, 1/2).

For Po there is just a single atom in the unit cell positions at (0, 0, 0) so the structure factor
becomes:

FPo(τ) = bPo,

which means that FPo(τ) is in fact independent on τ . The structure factor for NaCl more involved:

FNaCl(τ) =

8∑
j=1

bj e
iτ ·∆j = bNa

(
1 + eiπ(H+K) + eiπ(K+L) + eiπ(H+L)

)
+ bCl

(
eiπH + eiπK + eiπH + eiπ(H+K+L)

)
.
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This is only finite if H,K,L are all odd or all even. Any other combination gives FNaCl(τ) = 0.

(b) What is the main difference between the two examples?

For the simple cubic Bravais structure of Po, all Bragg reflections are allowed. NaCl, other the
other hand, needs to be described using a basis and this leads to restrictions on the combination
of H, K and L.

(c) Index the powder diffraction pattern of NaCl in Fig. 2.

We know that only combinations of H,K,L all odd or all even will give intensity in the diffraction
pattern of NaCl. The first one of these would be (111) so we can use Bragg’s law to calculate the
corresponding scattering angle, 2θ. In general we have:

|τ | = 2k sin θ ⇒ 2π

a

√
H2 +K2 + L2 =

4π

λ
sin θ ⇒ sin θ =

λ

2a

√
H2 +K2 + L2, (1)

where we used k = 2π
λ and |τ | = 2π

a

√
H2 +K2 + L2 for a cubic system. For H = K = L = 1

and a = 5.59 Å yields a scattering angle of 2θ = 27.61◦. That corresponds very nicely to the first
peak observed in Fig. 2. Table 1 gives a list of allowed Bragg peaks and their calculated scattering
angles and they are all marked in Fig. 2.

Figure 2: Neutron powder diffraction pattern on NaCl measured at room temperature (RT) and
ambient pressure on the D20 diffractometer at the ILL. The wavelength used was λ = 1.54 Å.

(HKL) 2θ (◦)
(111) 27.61
(200) 31.98
(220) 45.86
(311) 54.37
(222) 57.00
(400) 66.87
(331) 73.80
(420) 76.05
(422) 84.88
(333) 91.41

Table 1: Calculated
scattering angles
for allowed Bragg
reflections for NaCl
measured with
λ = 1.54.

Figure 3: Sketch
to assist calculation
of the scattering
angle for momen-
tum transfers of the
type τ = (0K0) in
Exercise 3(c).

(d) NaCl is sometimes used as a pressure gauge when doing neutron scattering experiments under
pressure. Using the equation of state (EoS) published by Brown et al. (https://doi.org/10.1063/1.371596,
also on moodle), what is the change in scattering angle, 2θ, of the first Bragg peak when applying
3 GPa of hydrostatic pressure?
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First we need to know by how much the NaCl lattice is squeezed. Reading off Table II in the
paper by Brown et al. in the column for 300 K (room temperature) we see that the relative volume
change at 3.07 GPa is vr = (V0 − V )/V0 = 0.0944, meaning just short of 10%. With this we can
find the lattice constant under 3 GPa pressure:

vr =
V0 − V

V0
=

a30 − a3

a30
= 1−

(
a

a0

)3

⇒ a = a0
3
√
1− vr.

Plugging that into Eq. (1) and using a0 = 5.59 Å as and H = K = L = 1 for the first Bragg peak
yields a scattering angle of 2θ = 26.69◦. That is a change in the position of the (111) peak of 0.91◦

and that is detectable in neutron diffraction experiments.

3: Time-of-flight neutron Laue diffraction with LiFePO4

(a) Calculate the structure factor for LiFePO4 (atomic positions are uploaded on moodle). You
probably want to write a little script for this rather than doing it by hand. Which are suitable
Bragg peaks to use for aligning the sample in the (b, c)-plane?

An example of a script has been uploaded to moodle. The space group of LiFePO4 is Pnma which
has the following conditions for Bragg reflections:

� For (0KL) type reflections, H +K must be even

� For (H00), (0K0) and (00L) type reflections, H, K and L must be even

� For (HK0) type reflections, H must be even

Which peak that are suitable for aligning the sample depends on the wavelength used at the given
diffractometer but (020) and (002) would work on most instruments.

(b) Assume a (↑↑↓↓) arrangement of spins in the unit cell. Is this structure commensurate or
incommensurate? Which Bragg peak positions are suitable to look for this magnetic structure?

It is a commensurate structure since the magnetic unit cell is equal to the nuclear one. The
magnetic ion positions in one unit cell are:

∆1 = (1/4+δ, 1/4, 1−ϵ), ∆2 = (3/4−δ, 3/4, ϵ), ∆3 = (3/4+δ, 1/4, 1/2+ϵ), ∆4 = (1/4−δ, 3/4, 1/2−ϵ),

where δ = 0.0322 and ϵ = 0.0284. To simplify the calculations somewhat we can translate origo
by (1/4, 1/4, 0) such that instead the positions are:

∆1 = (δ, 0, 1− ϵ), ∆2 = (1/2− δ, 1/2, ϵ), ∆3 = (1/2 + δ, 0, 1/2 + ϵ), ∆4 = (−δ, 1/2, 1/2− ϵ),

and we recognise the almost face-centered arrangement of the ions. The magnetic structure factor
is then:

FM (τ) =

4∑
j=1

sj,⊥ eiτ ·∆j = S

(
ei2π

[
δH+(1−ϵ)L)

]
+ ei2π

[
(1/2−δ)H+1/2K+ϵL)

]
−ei2π

[
(1/2+δ)H+(1/2+ϵ)L)

]
− ei2π

[
−δH+1/2K+(1/2−ϵ)L)

])
.

We here assumed |sj,⊥| = S for all four sites. The minus sign on the two last terms then reflect the
fact that ions 3 and 4 are ”down”. Bragg peaks that would have intensity in case of this magnetic
structure would be for example (001) and (110). Here the former has zero nuclear intensity whereas
the latter is also a nuclear Bragg peak.

(c) In a time-of-flight Laue diffraction experiment performed on the NOBORU instrument at
J-PARC, the single crystalline sample is oriented as shown in Fig. 4(a)-(b). Show that Bragg
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Figure 4: (a) Scattering geometry of the time-of-flight Laue diffraction experiment. The crystal is
rotated an angle α with respect to the incoming beam. The scattered neutrons have a scattering
angle φy with respect the z-axis. (b) The Debye cone with opening angle 4θ. The angle of the
scattered neutrons with respect to the horizontal plane is φx. (c) Overall setup at NOBORU for
time-of-flight neutron diffraction.

reflections in the (0K0) direction scatter with the angle 2α in the horizontal plane.

The Bragg peaks of the type (0K0) are rotated α with respect to the y-axis as seen in Fig. 4(a).
Using the sketch shown in Fig. 3 and the isosceles triangle formed of τ , ki and −kf we immediately
see that:

180◦ = 2ϕ+ 2θ ⇒ 2θ = 180◦ − 2(90◦ − α) = 2α.

(d) The distance from the source to the sample is L1 = 14 m and from the sample to the detector
is L2 = 1.5 m, see Fig. 4(c), and the rotation of the crystal was α = 7◦. What is the flight times
for the nuclear Bragg reflection (020) and the magnetic Bragg reflection (010)?

We use first use Bragg’s law |τ | = 2k sin θ together with k = 2π
λ to find the necessary wavelength

to hit reflections along (0K0):

K
2π

b
=

4π

λ
sin θ ⇒ λ =

2b

K
sin θ

Then we can use t = αLλ with α = 252.7µs/m/Å (apologies for another α) to calculate the
time-of-flight:

t = αL
2b

K
sin θ.

Plugging in L = 14 + 1.5, b = 6.01 Å and θ = 7◦ we get t(010) = 5.74 ms and t(020) = 2.87 ms.
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