Neutron and X-ray Scattering
of

Quantum Materials

PHYS-640

Week 1 solutions

1: Neutron production

(a) Hydrogen as a moderator
Exercise 4.P.1 in the neutron notes.

The final energy of the neutron after the collision is:
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Now to average we need to integrate over all possible take-off angles which means first evaluating
the average of cos? ¢:
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Plugging in that result and knowing the the initial neutron energy was E; ,, = %mnvin, we get:
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Do we have to consider the neutron as relativistic particles before the moderation process? What
about after?

Typical energies of neutrons right after production are in the MeV range. We can now use the
rest mass of the neutron, mg = 939.6 MeV /c?, to estimate the speed of the neutron. From special
relativity we have:
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With the neutron travelling only at around 5% of the speed of light, we can safely use classical
kinematics. As the neutron is much slower (meV range) after the moderator, this will hold even
more. However, the neutron interaction with matter is far from classical and should be considered
a quantum mechanical process.

(b) Wavelength distribution

The wavelengths of the neutrons coming from a moderator in thermal equilibrium at a given
temperature, T', follow a Maxwell distribution as follows:
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where A is the neutron wavelength, A the Planck constant, kg the Boltzmann constant and m the
neutron mass.



e Show that the most probable kinetic energy is £ = kT
e What is the most probable neutron wavelength at room temperature?

To find the most probable energy we need to find the maximum of P(\) with respect to the energy.
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So first we need to rewrite P in terms of the energy F = %% = o = 5,5z We now see

that P(E) Ee %7 and we can look for the maximum:
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By definition e *57T is always finite and positive so it means that to solve the equation we must

have (1 — kB%) = 0 and therefore the most probably energy is £ = kgT.

To calculate the wavelength at this energy we simply solve kgT = % which gives A = ﬁ

Plugging in room temperature (7" = 300 K) then results in A = 1.78 A
2: Neutron interaction with matter
(a) Scattering cross section
Exercise 2.P.1 in the neutron notes.
N

1. The neutron flux is ¥ = X

2. The situation is sketched in Fig. (a). The probability for one neutron to hit the nucleus is
P= ‘“;szN where 47b? is the area of the nucleus.

3. To get the cross section we have to normalize with respect to the neutron flux: o = g = 47b2.
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Nucleus Figure 1: (a) A single
r=2b nucleus with radius
\I/(Z) r = 2b sitting inside

> > 2z  the area A. (b) Neu-
trons hitting a mate-
A rial and getting ab-
sorbed.

(b) Attenuation
Exercise 2.P.2 in the neutron notes.

1. The number of neutron absorbed or scattered in a small portion of the slab, dz, is U(z)¥;Adz.
This corresponds to the difference the number of neutrons at z and z + dz, —Ad¥(z). The minus
sign reflects the fact that the neutron flux decreases. We therefore end up with the following
differential equation:

d¥(z)

dz

2. The volume specific cross section is given by the sum of the absorption and scattering cross
sections, ¥; = Xg + X, which means that the number of neutrons absorped or scattering can be

=-%U(z) = U(z)=Ppe F*



written as W(z)(Xs 4+ X,)Adz leading to:
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This means that the attenuation coefficient is also just simply a sum of the two contributions,
=35+ X,

(c) Incoherent cross section
Exercise 2.P.4 in the neutron notes

First we evaluate the absolute square of the sum of the two exponential functions (assuming that
the scattering lengths are real) in Eq. (2.35) of the neutron notes:
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To go further we need to figure out what is (b;) and (b;b;/). For the latter, we can immediately write
(bjbjr) = (b;) (bj’) since the variation in scattering lengths on two sites is not correlated. From Eq.

(2.35) in the neutron notes, we have b; = (b;)+06b; which means that b3 = (0;) +(6b;)* +2 (b;) 6b;.
Now, b; and 6b; are not correlated and (db;) = 0 per definition. Therefore, we can write <b§> =
(b;)* + ((6b;)?). Putting all that together, the differential cross section becomes:
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which is then basically Eq. (2.36).

Now instead of just two nuclei, we put N of them and perform the same derivation:
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Using again (b2) = (b;)” + ((6b;)*) and (b;b;) = (b;) (b;) yields:
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where the two terms correspond to incoherent and coherent scattering respectively.



(d) Material selection
Exercise 2.P.5 in the neutron notes

1. The incoherent scattering cross section for hydrogen (*H) is oj,c1 7 = 80.27 barn whereas for
deuterium (*H) it is oy 1y = 2.05. This means that using deuterated organic samples would
reduce the incoherent background significantly.

Vanadium has incoherent scattering cross section oi,c,v = 5.08 barn and almost no coherent
scattering cross section. This metal is therefore well suited for detector efficiency measurements.

3. The incoherent scattering from hydrogen is strong so any hydrogen-containing material also
works well. Of these plastics are easily accessible.

4. Cadmium and gadolinium have large absorption cross sections (oa,cq = 2520 barn and 0, g4 =
49700 barn) so they would serve well for neutron shielding. Ignoring the scattering cross section
(which in both cases is much much smaller than the absorption) we can express the attenuation
coefficient as 1 = n o, where the number density is given as n = 133 (this number you can cal-
culate from the molar and mass densities but it will be in that order for metals). The penetration
depth is then d = i Plugging in the numbers for cadmium and gadolinium we get dog = 63.5 pm
and dgq = 3.2 pm.

5. The absorption cross sections for boron and nitrogen are o, g = 1.90 barn and o, g = 767 barn,

respectively. The unit cell volume is given as Vy = 11.81 A3 so that n = Vio assuming one boron and

one nitrogen atom per unit cell. That means the attenuation coefficient is p = % Vo
Again we ignore the scattering cross sections and the boron absorption is by far dominating the
attenuation processes in the system. To find where the transmission is reduced to 1075 of the
incoming beam flux we need to solve the following equation:
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This number is for 5 meV neutrons but since the absorption cross section scale with v/E, that
number increases to 4.3 cm for 20 meV neutrons and 9.5 meV for 180 meV neutrons.

6. Aluminium is cheap, relatively strong as well as easy to shape and then it has weak incoherent
scattering (oinc, a1 = 0.0082 barn) and weak absorption (o, a1 = 0.231 barn).



