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1: Neutron production

(a) Hydrogen as a moderator

Exercise 4.P.1 in the neutron notes.

The final energy of the neutron after the collision is:
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1

2
mnv

2
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1

2
mnv

2
i,n cos

2 φ.

Now to average we need to integrate over all possible take-off angles which means first evaluating
the average of cos2 φ:〈
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〉
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Plugging in that result and knowing the the initial neutron energy was Ei,n = 1
2mnv

2
i,n, we get:
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Do we have to consider the neutron as relativistic particles before the moderation process? What
about after?

Typical energies of neutrons right after production are in the MeV range. We can now use the
rest mass of the neutron, m0 = 939.6MeV/c2, to estimate the speed of the neutron. From special
relativity we have:

m =
m0√

1− v2/c2
→ v

c
=

√
1−m2

0/m
2 = 0.0461 ≈ 5%.

With the neutron travelling only at around 5% of the speed of light, we can safely use classical
kinematics. As the neutron is much slower (meV range) after the moderator, this will hold even
more. However, the neutron interaction with matter is far from classical and should be considered
a quantum mechanical process.

(b) Wavelength distribution

The wavelengths of the neutrons coming from a moderator in thermal equilibrium at a given
temperature, T , follow a Maxwell distribution as follows:

P (λ) ∝ 1

λ2
e

−h2

2kBmTλ2 ,

where λ is the neutron wavelength, h the Planck constant, kB the Boltzmann constant and m the
neutron mass.
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� Show that the most probable kinetic energy is E = kBT

� What is the most probable neutron wavelength at room temperature?

To find the most probable energy we need to find the maximum of P (λ) with respect to the energy.

So first we need to rewrite P in terms of the energy E = ℏ2k2

2m =
( h

2π )
2
( 2π

λ )
2

2m = h2

2mλ2 . We now see

that P (E) ∝ E e
− E

kBT and we can look for the maximum:

dP

dλ
= e

− E
kBT + Ee

− E
kBT

(
−1

kBT

)
=

(
1− E

kBT

)
e
− E

kBT = 0.

By definition e
− E

kBT is always finite and positive so it means that to solve the equation we must

have
(
1− E

kBT

)
= 0 and therefore the most probably energy is E = kBT .

To calculate the wavelength at this energy we simply solve kBT = h2

2mλ2 which gives λ = h√
2mkBT

.

Plugging in room temperature (T = 300 K) then results in λ = 1.78 Å.

2: Neutron interaction with matter

(a) Scattering cross section

Exercise 2.P.1 in the neutron notes.

1. The neutron flux is Ψ = N
A .

2. The situation is sketched in Fig. (a). The probability for one neutron to hit the nucleus is

P = 4πb2

A N where 4πb2 is the area of the nucleus.

3. To get the cross section we have to normalize with respect to the neutron flux: σ = P
Ψ = 4πb2.

Nucleus

(a) (b)

Figure 1: (a) A single
nucleus with radius
r = 2b sitting inside
the area A. (b) Neu-
trons hitting a mate-
rial and getting ab-
sorbed.

(b) Attenuation

Exercise 2.P.2 in the neutron notes.

1. The number of neutron absorbed or scattered in a small portion of the slab, dz, is Ψ(z)ΣtAdz.
This corresponds to the difference the number of neutrons at z and z + dz, −AdΨ(z). The minus
sign reflects the fact that the neutron flux decreases. We therefore end up with the following
differential equation:

dΨ(z)

dz
= −ΣtΨ(z) ⇒ Ψ(z) = Ψ0e

−Σtz

2. The volume specific cross section is given by the sum of the absorption and scattering cross
sections, Σt = Σs + Σa, which means that the number of neutrons absorped or scattering can be
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written as Ψ(z)(Σs +Σa)Adz leading to:

dΨ(z)

dz
= −(Σs +Σa)Ψ(z) ⇒ Ψ(z) = Ψ0e

−(Σs+Σa)z.

This means that the attenuation coefficient is also just simply a sum of the two contributions,
µ = Σs +Σa.

(c) Incoherent cross section

Exercise 2.P.4 in the neutron notes

First we evaluate the absolute square of the sum of the two exponential functions (assuming that
the scattering lengths are real) in Eq. (2.35) of the neutron notes:〈

dσ

dΩ

〉
=

〈∣∣bjeiq·rj + bj′e
iq·rj′

∣∣2〉
=

〈(
bje

iq·rj + bj′e
iq·rj′

) (
bje

−iq·rj + bj′e
−iq·rj′

)〉
=

〈
b2j + bjbj′e

iq·(rj−rj′) + bj′bje
iq·(rj′−rj) + b2j′

〉
=

〈
b2j + b2j′ + 2bjbj′ cos (q · (rj′ − rj))

〉
=

〈
b2j
〉
+
〈
b2j′

〉
+ 2 ⟨bjbj′⟩ cos (q · (rj′ − rj)) .

To go further we need to figure out what is ⟨bj⟩ and ⟨bjbj′⟩. For the latter, we can immediately write
⟨bjbj′⟩ = ⟨bj⟩ ⟨bj′⟩ since the variation in scattering lengths on two sites is not correlated. From Eq.

(2.35) in the neutron notes, we have bj = ⟨bj⟩+δbj which means that b2j = ⟨bj⟩2+(δbj)
2
+2 ⟨bj⟩ δbj .

Now, bj and δbj are not correlated and ⟨δbj⟩ = 0 per definition. Therefore, we can write
〈
b2j
〉
=

⟨bj⟩2 + ⟨(δbj)2⟩. Putting all that together, the differential cross section becomes:〈
dσ

dΩ

〉
= ⟨bj⟩2 + ⟨(δbj)2⟩+ ⟨bj′⟩2 + ⟨(δbj′)2⟩+ 2 ⟨bj⟩ ⟨bj′⟩ cos (q · (rj′ − rj)) ,

which is then basically Eq. (2.36).

Now instead of just two nuclei, we put N of them and perform the same derivation:
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〉
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bje
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=
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)
+
(
b22 + b2b1e

iq·(r2−r1) + b2b3e
iq·(r2−r3) + ...

)
+
(
b23 + b3b1e

iq·(r3−r1) + b3b2e
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+ ...

〉
=

〈
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n=1

b2j + 2

N∑
j,j′

bjbj′e
iq·(rj−rj′)

〉
.

Using again
〈
b2j
〉
= ⟨bj⟩2 + ⟨(δbj)2⟩ and ⟨bjbj′⟩ = ⟨bj⟩ ⟨bj′⟩ yields:

〈
dσ

dΩ

〉
=

N∑
n=1

〈
(δbj)

2
〉
+

∣∣∣∣∣∣
N∑
j=1

⟨bj⟩ eiq·rj

∣∣∣∣∣∣
2

,

where the two terms correspond to incoherent and coherent scattering respectively.
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(d) Material selection

Exercise 2.P.5 in the neutron notes

1. The incoherent scattering cross section for hydrogen (1H) is σinc,1H = 80.27 barn whereas for
deuterium (2H) it is σinc,1H = 2.05. This means that using deuterated organic samples would
reduce the incoherent background significantly.

. Vanadium has incoherent scattering cross section σinc,V = 5.08 barn and almost no coherent
scattering cross section. This metal is therefore well suited for detector efficiency measurements.

3. The incoherent scattering from hydrogen is strong so any hydrogen-containing material also
works well. Of these plastics are easily accessible.

4. Cadmium and gadolinium have large absorption cross sections (σa,Cd = 2520 barn and σa,Gd =
49700 barn) so they would serve well for neutron shielding. Ignoring the scattering cross section
(which in both cases is much much smaller than the absorption) we can express the attenuation
coefficient as µ = nσa where the number density is given as n = 1

16Å3
(this number you can cal-

culate from the molar and mass densities but it will be in that order for metals). The penetration
depth is then d = 1

µ . Plugging in the numbers for cadmium and gadolinium we get dCd = 63.5µm
and dGd = 3.2µm.

5. The absorption cross sections for boron and nitrogen are σa,B = 1.90 barn and σa,B = 767 barn,
respectively. The unit cell volume is given as V0 = 11.81 Å3 so that n = 1

V0
assuming one boron and

one nitrogen atom per unit cell. That means the attenuation coefficient is µ =
σa,B+σa,N

V0
≈ σa,B

V0
.

Again we ignore the scattering cross sections and the boron absorption is by far dominating the
attenuation processes in the system. To find where the transmission is reduced to 10−6 of the
incoming beam flux we need to solve the following equation:

10−6 = e−µz ⇒ ln
(
10−6

)
= −µz ⇒ z =

− ln
(
10−6

)
µ

=
6V0 ln(10)

σa,B
= 2.1 cm.

This number is for 5 meV neutrons but since the absorption cross section scale with
√
E, that

number increases to 4.3 cm for 20 meV neutrons and 9.5 meV for 180 meV neutrons.

6. Aluminium is cheap, relatively strong as well as easy to shape and then it has weak incoherent
scattering (σinc,Al = 0.0082 barn) and weak absorption (σa,Al = 0.231 barn).
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