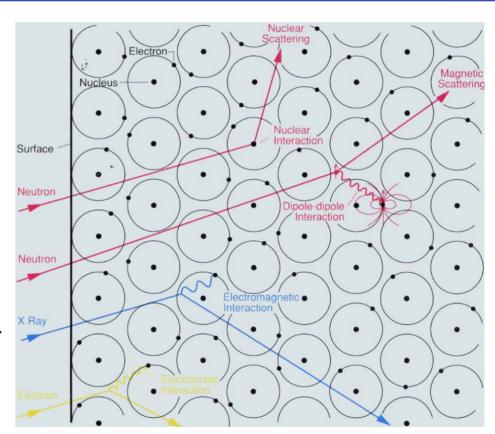
Neutron and X-ray Scattering of Quantum Materials

Ellen Fogh

Laboratory for Quantum Magnetism École Polytechnique Fédérale de Lausanne

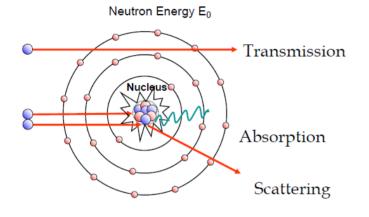
Thorsten Schmitt

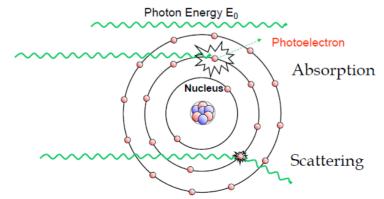
Spectroscopy of Quantum Materials
Paul Scherrer Institute

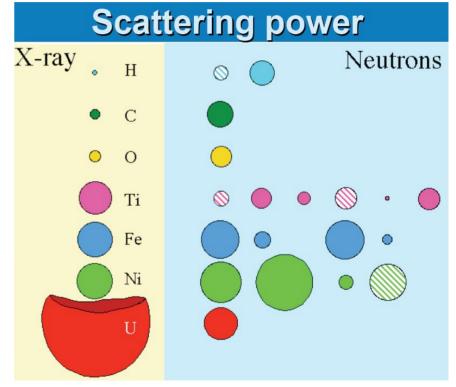

Outline for today

- Introduction to scattering as an experimental tool in general
- Information about the course:
 - Format
 - Contents
 - Expectations
- Introduction to neutron scattering (Chapters 1-2 + 4.1)
 - History
 - How to generate neutrons
 - Facilities
 - Basic scattering theory

Particles as probes in experimental physics

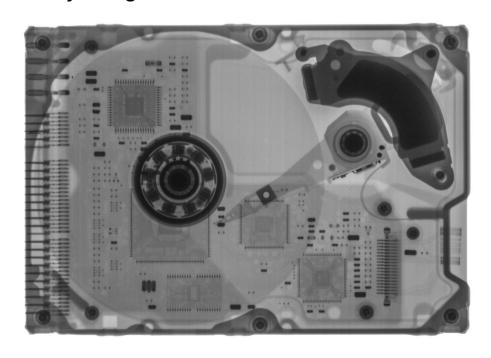

- Neutrons
- X-rays
- Other kinds of light
- Electrons
- Muons
- lons


Interaction with matter:
Absorption
Elastic scattering
Inelastic processes

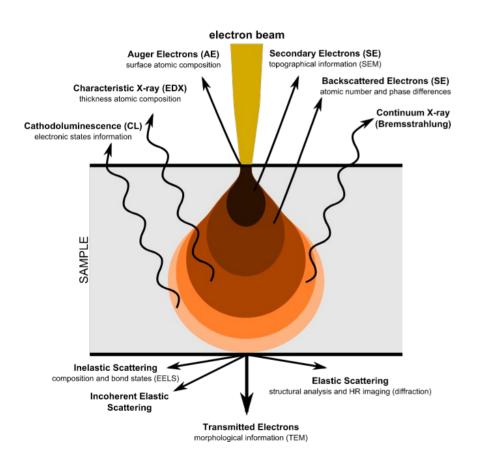


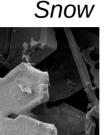
Neutrons interact with the nucleus

X-rays interact with the electrons

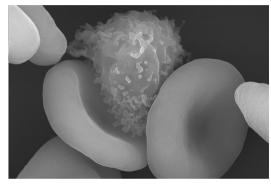


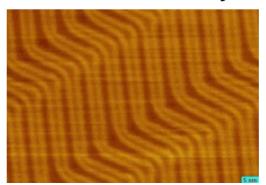
Neutrons and X-rays are complementary techniques

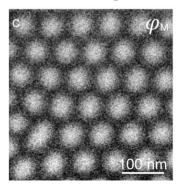

X-ray image of an old hard drive

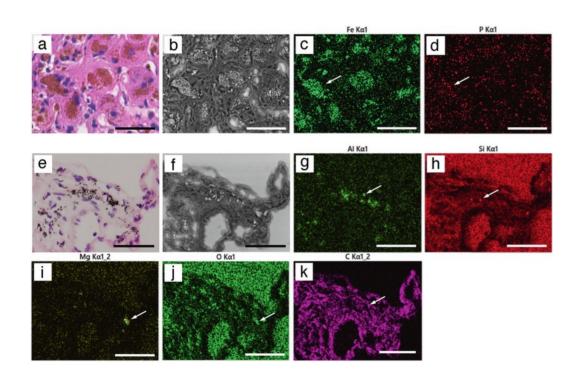


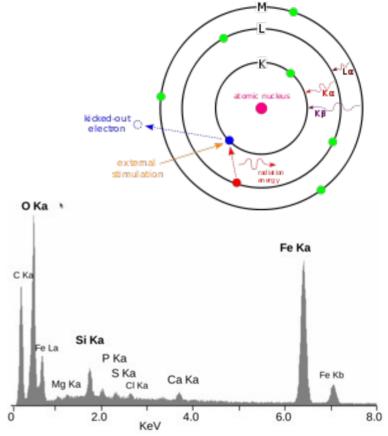
Neutron image of a coffee maker


Electrons are extremely surface sensitive

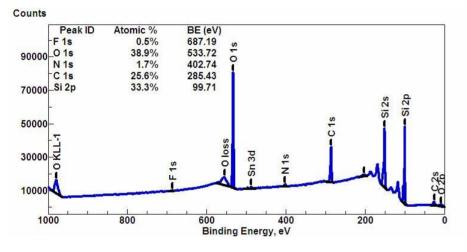

Topography

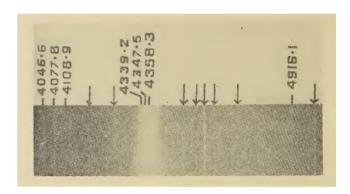

Red blood cells


Atomic scale Catalysis

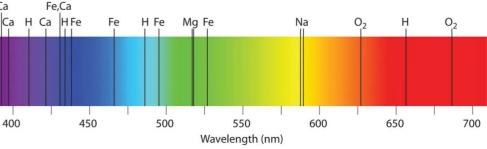


Nano magnets

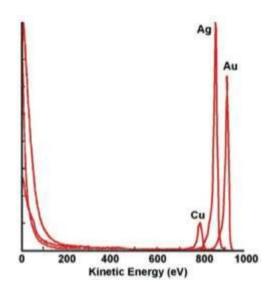

Electrons can see different elements

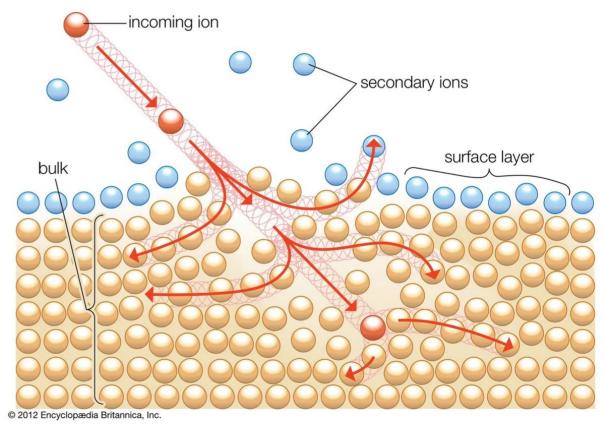


Other kinds of light scattering and spectroscopy

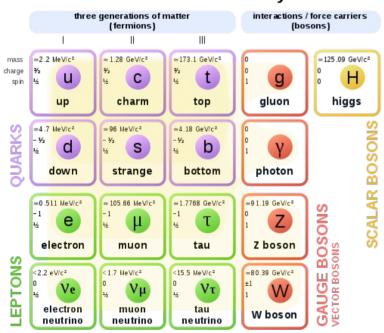

X-ray photoelectron spectroscopy

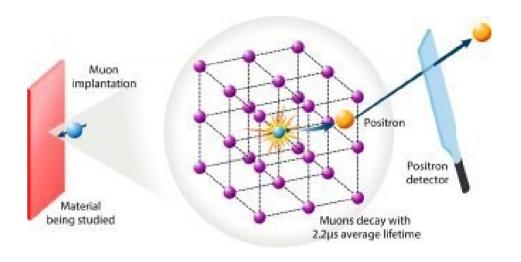
Raman scattering



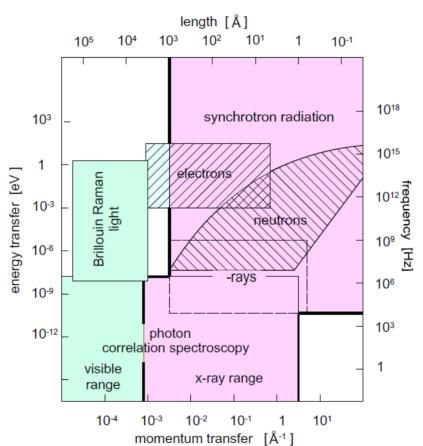

Absorption spectroscopy

Ion spectroscopy gives information about the surface


- Depth profile
- Can be destructive
- Element sensitive

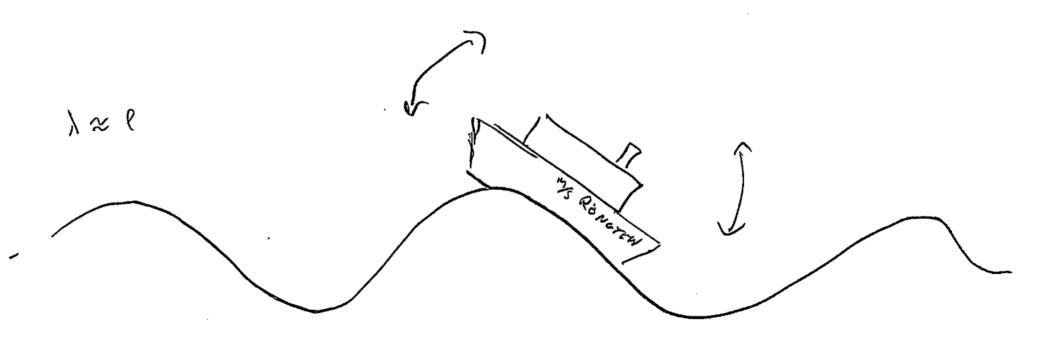


Muons see local magnetism


Standard Model of Elementary Particles

The best probe depends on what you are looking for

- Energy ranges
- Characteristic sizes
- Interaction:
 Electronic
 Nuclear
 Magnetic


Other things to consider:

Sample environment

Safety (sample and scientist)

Cost (time and money)

The best probe depends on what you are looking for

Course format

- Mondays 13:15-17:00 in PH H3 31
- Lectures (2h/week)
 - Blackboard and slides
 - Quizzes
- Exercises (2h/week)
 - Traditional problem solving
 - Data analysis and simulations
 - Article reading and discussion
- Homework
 - Reading (textbook/notes, articles)
 - Finish exercises

Moodle

- Neutron notes
- Lecture slides
- Exercises
- Articles
- Exam
 - Oral (date to be decided)
- Reading
 - "Neutron Scattering Theory, Instrumentation and Simulation" by Kim Lefmann
 - "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow

Course contents

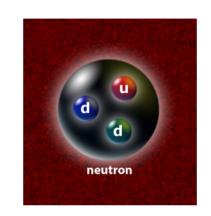
- Neutrons (6 lectures, Ellen):
 - Basic properties, cross sections
 - Diffraction
 - Instrumentation
 - Reflectometry, SANS, imaging
 - Inelastic neutron scattering
 - Polarized neutrons

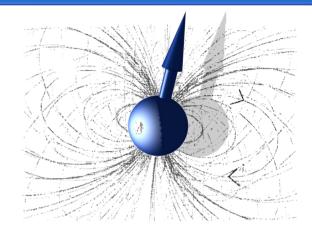
- X-rays (6 lectures, Thorsten):
 - Theory of the interaction between X-rays and matter
 - X-ray sources and instrumentation
 - X-ray absorption spectroscopy
 - X-ray emission spectroscopy and resonant inelastic X-ray scattering
 - Resonant Elastic X-ray scattering
 - Inelastic X-ray scattering

Discovery of the neutron

1930
W. Bothe and H.
Becker, Germany
Found a new kind of radiation

1932
I. Joliot-Curie and F. Joliot, France
Characterised the new kind of radiation




J. Chadwick, England
Measured neutral particles with the same mass as the proton

Physical properties of the neutron

Main characteristics:

- Neutrons are subatomic particles that have a net zero charge
- They possess a magnetic moment and are therefore sensitive to magnetic fields

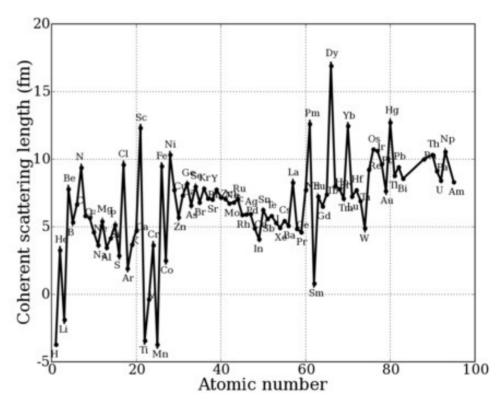
Energy
0 - 5 meV
5 -100 meV
100 meV - 1 eV
1 eV -100 eV
100 eV - 100 keV
100 keV - 10 Me
10 MeV - 10 GeV
>10 GeV

Classification
Cold
Thermal
Epithermal
Resonant
Intermediate
Fast
Ultra-fast
Relativistic

	Charge	Spin	Mass (MeV/c²)	γ/2π (kHz/G)
Electron	±e	1/2	0.511	2800
Muon	±e	1/2	105.7	13.6
Proton	+e	1/2	938.3	4.26
Neutron	0	1/2	939.6	-2920

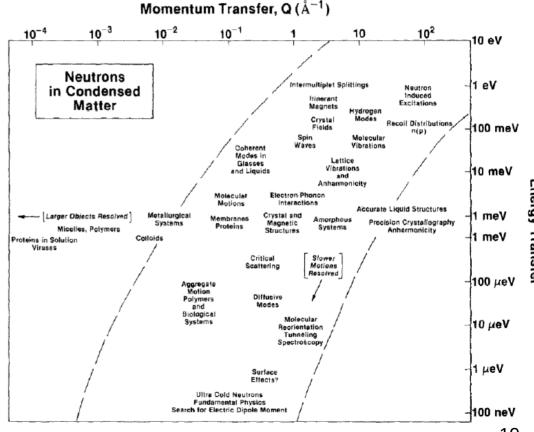
Physical properties of the neutron

Quantum mechanical description


De Broglie wavelength: $p = \frac{h}{2}$

Kinetic energy (non-relativistic): $E = \frac{1}{2}mv^2$

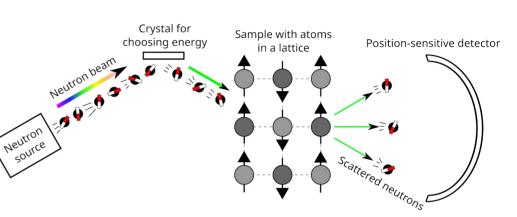
Interaction directly with the nucleus

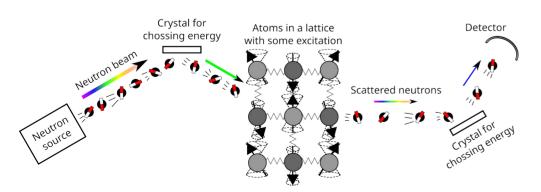

Isotope dependent interaction strength

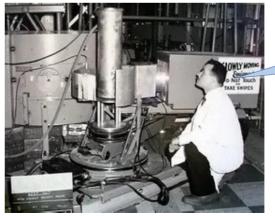
Decays into an electron, and an antineutrino (decay time ~ 15 min)

Vast applications in different fields of science

- Condensed matter
 - Magnetism, superconductivity, glasses, liquids
- Material research
 - Stress/strain, batteries
- Soft condensed matter
 - Polymers, composites
- Structural chemistry
 - Catalysis, reactions, parametric studies, molecular spectroscopy
- Geology
 - Minerals and high pressures/temperatures, hydrogen in rocks
- Life sciences
 - Membranes, proteins
- Particle physics
 - Properties of the neutron, quantum mechanics

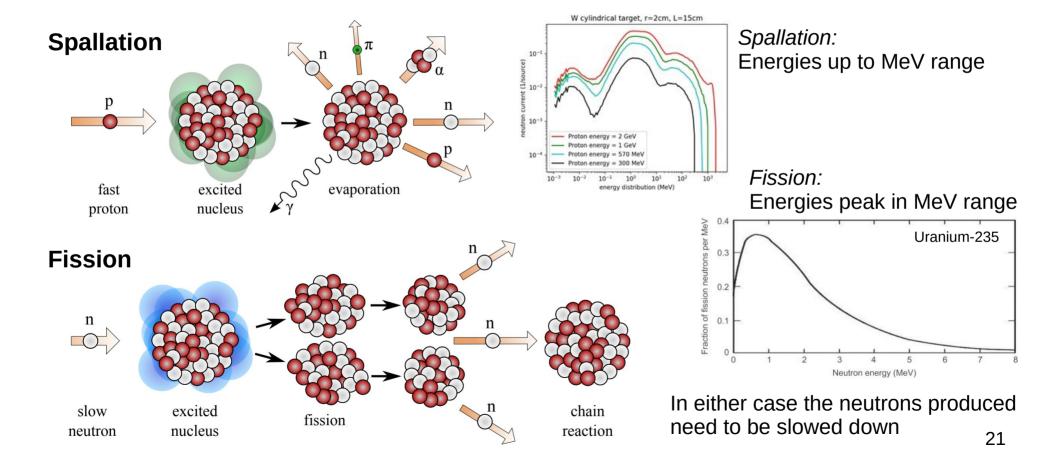



Nobel prize in physics in 1994



Neutrons show where atoms are

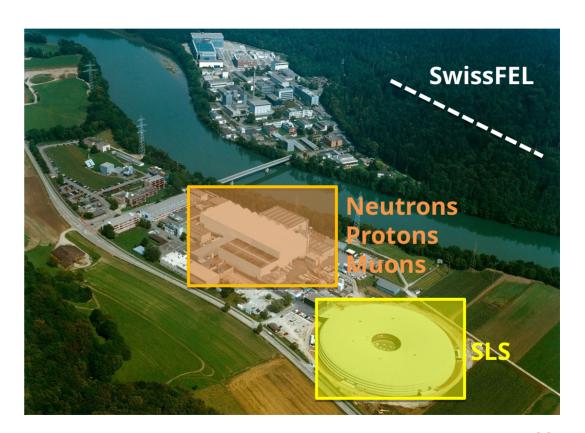
C. Shull



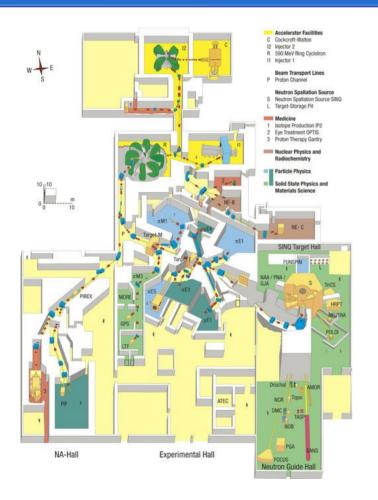
Neutrons show what atoms do

B. N. Brockhouse

Neutrons are generated in either a *spallation* process or by *fission*



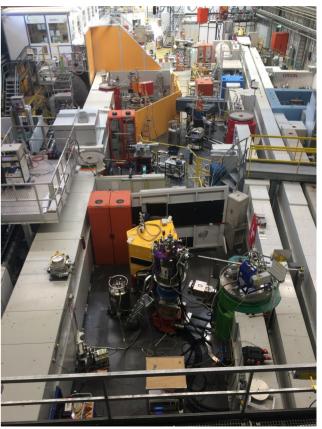
Neutron facilities around the world



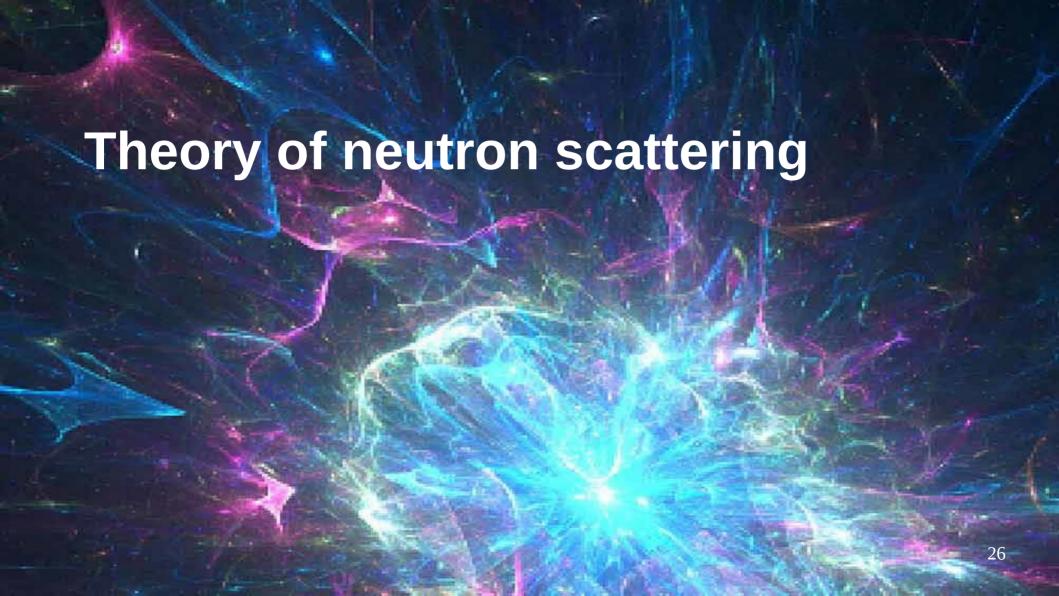
The Swiss Spallation Source at the Paul Scherrer Institute

- 50 MHz source, i.e. continuous
- Lower energy spallation source comparable to medium flux reactor
- Flexible operation, e.g. 6 days a week, or 50 days
- Switch accelerator off, source switches off instantly
- Hour long thunderstorm shutdown to protect accelerator?

A closer look at the Swiss neutron source

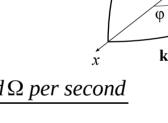


Neutron instrument



Guide hall

Visit to the Paul Scherrer Institute



Neutron scattering cross sections

Flux:
$$\Psi = \frac{number\ of\ neutrons\ hitting\ a\ surface\ per\ second}{surface\ area\ perpendicular\ the\ beam}$$

Cross section:
$$\sigma = \frac{number\ of\ scattered\ neutrons\ per\ second}{\Psi}$$

$$\frac{d \sigma}{d\Omega} = \frac{1}{\Psi} \frac{\text{number of scattered neutrons} \in d\Omega \text{ per second}}{d\Omega}$$

Partial differential cross section:

$$\frac{d^{2}\sigma}{d\Omega dE_{f}} = \frac{1}{\Psi} \frac{number\ of\ scattered\ neturons \in d\ \Omega \land with\ energies \in the\ interval\ [E_{f}, E_{f} + dE_{f}]\ per\ second}{d\ \Omega dE_{f}}$$

scattered

incident

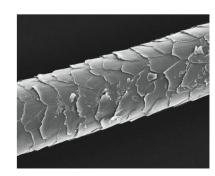
neutrons

Neutron scattering is an unlikely event

Unit: 1 barn = 10^{-24} cm²

Surface of France = 643 801 km² ~10⁶km²

1 barn corresponds to hitting a 100x100 µm² spot in France


Luckily we have 10²³ atoms

Neutron scattering and absorption processes

Absorption cross section:

$$\sigma_{\rm a} = \sigma_{\rm a, th} \frac{v_{\rm th}}{v} = \sigma_{\rm a, th} \frac{\lambda}{\lambda_{\rm th}}$$

Coherent scattering:

Collective behavior, interference

Incoherent scattering:

No structural information

Z	Nucleus	$b (10^{-15} \text{ m})$	$\sigma_{\rm inc} \ (10^{-28} \ {\rm m}^2)$	$\sigma_{\rm a,th} \ (10^{-28} \ {\rm m}^2)$
1	$^{1}\mathrm{H}$	-3.742	80.27	0.3326
1	$^{2}\mathrm{D}$	6.674	2.05	0.000519
2	$^3{ m He}$	5.74	1.532	5333
2	$^4\mathrm{He}$	3.26	0	0
3	Li	-1.90	0.92	70.5
4	Be	7.79	0.0018	0.0076
5	В	5.30	1.70	767
6	C	6.6484	0.001	0.00350
7	N	9.36	0.50	1.90
8	O	5.805	0	0.00019
9	\mathbf{F}	5.654	0.0008	0.0096
10	Ne	4.566	0.008	0.039
11	Na	3.63	1.62	0.530
12	Mg	5.375	0.08	0.063
13	Al	3.449	0.0082	0.231
14	Si	4.1507	0.004	0.171
15	P	5.13	0.005	0.172
16	S	2.847	0.007	0.53
17	Cl	9.5792	5.3	33.5
18	\mathbf{Ar}	1.909	0.225	0.675
19	K	3.67	0.27	2.1
20	Ca	4.70	0.05	0.43
21	Sc	12.1	4.5	27.5
22	Ti	-3.37	2.87	6.09
23	V	-0.443	5.08	5.08
24	Cr	3.635	1.83	3.05
25	Mn	-3.750	0.40	13.3
26	Fe	9.45	0.40	2.56
27	Co	2.49	4.8	37.18
28	Ni	10.3	5.2	4.49
29	Cu	7.718	0.55	3.78
30	Zn	5.68	0.077	1.11
32	Ge	8.185	0.18	2.20
48	Cd	4.83	3.46	2520

On to the blackboard...