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Ground-state oxygen holes and the metal-insulator
transition in the negative charge-transfer rare-earth
nickelates
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The metal-insulator transition and the intriguing physical properties of rare-earth perovskite
nickelates have attracted considerable attention in recent years. Nonetheless, a complete
understanding of these materials remains elusive. Here we combine X-ray absorption and
resonant inelastic X-ray scattering (RIXS) spectroscopies to resolve important aspects of
the complex electronic structure of rare-earth nickelates, taking NdNiOs thin film as
representative example. The unusual coexistence of bound and continuum excitations
observed in the RIXS spectra provides strong evidence for abundant oxygen holes in the
ground state of these materials. Using cluster calculations and Anderson impurity model
interpretation, we show that distinct spectral signatures arise from a Ni 3d® configuration
along with holes in the oxygen 2p valence band, confirming suggestions that these materials
do not obey a conventional positive charge-transfer picture, but instead exhibit a negative
charge-transfer energy in line with recent models interpreting the metal-insulator transition
in terms of bond disproportionation.
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Re = rare-earth)!™ have garnered significant research

interest in recent years, due to the remarkable properties
they exhibit. These include a sharp metal to insulator transition
(MIT) tunable with the Re radius?, unusual magnetic order and
the suggestion of charge order® in the insulating phase. While
ReNiOj single crystals are very hard to synthesize, causing earlier
experiments to be mainly restricted to powder samples, extremely
high-quality epitaxial thin films can be now produced. As an
additional asset, ReNiO; in thin film form can exhibit even
richer properties compared to bulk, for example, tunability
of the metal-insulator transition by strain’8, thickness®!! or
even by ultrafast optical excitation of the substrate lattice degree
of freedom!2. In addition, there has been a lot of interest in
nickelate-based heterostructures, motivated on one hand by
theoretical predictions of possible superconductivity!3, and on the
other hand by recent observations of exchange bias effects!* and
modulation of the orbital occupation due to strain and interface
effects!>~18,

The origin of the rich physics behind these unique properties
is complicated by the usual electron correlation problem of
transition metal oxides!®. As a consequence, a full understanding
of the mechanism driving the MIT in ReNiO; remains elusive still
today. Hampering the discovery of a universally accepted
description of the MIT is the more fundamental problem of
understanding the ReNiO; electronic structure and the
corresponding Ni 3d orbital occupation.

In Fig. 1, we illustrate in a schematic representation of the
single-electron excitation spectra how different electronic
configurations can result from the two possible regimes of
the effective charge-transfer energy A’ (called for simplicity
charge-transfer energy throughout the text). Using formal valence
rules, it is expected that the Ni atoms exhibit a 3d7 (N2 1)
character, likely in a low spin (S=1/2) configuration. This
ground state (GS) is obtained in Fig. la for A’>0. However,
high-valence Ni® ™ systems are rare, and although many studies
indeed view ReNiO; as conventional positive charge-transfer
compounds yet with the addition of a strong Ni-O covalency and
consequently a GS configuration of the type of o |3d7)+ -
|3d®L) (where L is an O 2p hole)"20-23, mounting evidence
suggests that the ground state disobeys conventional rules.
Alternatively, a negative charge-transfer situation?»?°, where a
finite density n of holes L" is self-doped into the O 2p band and
Ni takes on a 348 configuration (that is, Ni 3d8y‘), is recently
receiving an increasing interest. This scenario is represented in
Fig. 1b for 4’ <0. Notably, the negative charge-transfer picture is
at the base of recent charge or bond disproportionation model
theories where, as first suggested by Mizokawa?®, the
disproportioned insulating state is characterized by alternating
Ni 3d® (n =0) and Ni 3d8£2 (n=2) sites arranged in a lattice with
a breathing-mode distortion?’ 30, These models distinctively
differ from the more traditional charge-disproportionation ones
where the Ni 34 lattice moves towards an alternation of Ni 3d®
and 3d® sites in the insulating phase®3!-34,

To get a full understanding of the MIT and of the unique
physical properties of the rare-earth nickelates, it is crucial to
investigate the ground-state electronic structure in this class of
materials. To this purpose, we stress that while both positive and
negative charge-transfer interpretations introduced above can be
described as highly covalent, there are striking inherent
differences between the two. For the former!62021:3234 the GS
o-|3d’) 4+ B - |3d®L) can be modelled as a Ni 3d’ impurity
hybridizing with a full O 2p band. Here the primary low-energy
charge fluctuations that couple to the GS in first order are the
ones from the O 2p to the Ni 3d’ impurity, mixing in some Ni
3d8L and higher-order character into the wavefunction. However,

The intriguing perovskite nickelates family ReNiO; (with

for the negative charge-transfer case!®2°30, all Ni sites assume a

3d® state with on average n=2 holes in the six oxygens
coordinating a central Ni ion. This case is more aptly modelled
by a Ni 348 impurity hybridizing with a partially filled O 2p band.
The electronic structure and consequently the character of the
gap are vastly different in the two scenarios: o - |3d”) + f8 - |3d%L)
with a O 2p-Ni 3d-like gap or 3d°L" with a O 2p-O 2p-like gap
(refer to Fig. 1a,b, respectively).

Here we combine two X-ray spectroscopies, namely X-ray
absorption (XAS) and resonant inelastic X-ray scattering (RIXS)
at the Ni L;-edge, to resolve if the electronic structure of ReNiO;
follows a positive or negative charge-transfer picture. While the
XAS results are similar to those previously reported, the first ever
measurements of high-resolution Ni L; RIXS on NdNiO;
provide crucial insights into the nature of the excitations present.
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Figure 1 | Single-electron excitation spectra in terms of charge removal
and charge addition. This sketch introduces conventional parameters used
to describe charge dynamics in transition metal oxide (TMO) compounds
with formal 3d” filling: (1) charge-transfer energy A: energy cost for
transferring an electron/hole from the L band to the Ni 3d band (with
respect to the band centre of mass); (2) Hubbard U: energy cost needed to
remove an electron from the occupied 3d band and to add it to the
unoccupied 3d band; (3) effective charge-transfer energy A’: key parameter
to distinguish between the two different regimes discussed here. 4’ is
defined by the equation in the figure, starting from A. This figure identifies
the ground state (GS) and the gap character obtained for two 4’ regimes:
(a) 4’">0. In conventional positive charge-transfer compounds the lowest
energy removal states are ligand based, and the lowest energy addition
states are transition metal based, leading to a charge-transfer derived
energy gap (O 2p-Ni 3d like) and a 3d” GS. (b) A’ <0. In negative
charge-transfer compounds, one hole per Ni is doped into the ligand band,
giving a density of ligand holes n, L". The GS is here Ni 3d8£”. The
red-dashed contour bands are a cartoon-like demonstration of the opening
of the gap in the mainly O 2p continuum resulting in the metal to
insulator transition. In this case, the lowest energy removal and addition
states are both ligand based, leading to an O 2p-O 2p like gap. Under no
circumstances can this type of gap result from configuration a, unless active
doping is considered. Note that this figure neglects Ni-O hybridization, to
provide clear distinction between the regimes.
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The unusual coexistence of bound and continuum contributions
across the narrow Ni L; resonance and the specific nature of the
orbital excitations, allows us to verify that the electronic ground
state contains abundant O 2p holes and that the Ni sites are
indeed best described as Ni 3d3L", rather than a low spin Ni 3d,
showing that the ReNiO; are indeed self-doped, negative charge-
transfer materials. Further, the RIXS spectra exhibit a clear
suppression of the low-energy electron-hole pair continuum in
the insulating phase, providing not only a fingerprint of the
opening of the insulating gap at T< Ty but also experimental
evidence of the dominant O 2p-character for the states across Ep,
as expected for a negative charge-transfer system.

Results

Bulk-like NdNiO; thin film. Several high-quality NdNiO; thin
films grown on a variety of substrates were investigated. Epitaxial
films were prepared by off-axis radiofrequency magnetron
sputtering®>*3¢ and were fully characterized by X-ray
diffraction measurements, atomic force microscopy, transport
and soft X-ray scattering measurements. In the following, we will
focus on 30nm thick NdNiO; film grown on (110)-oriented
NdGaOj; substrate under tensile strain conditions (+ 1.6% of
strain) as a representative example of bulk ReNiOj; in general. In
this case, coupled metal-insulator and paramagnetic-to-
antiferromagnetic transitions have been found at T~150K,
consistent with the corresponding bulk compound®.

Bound and continuum excitations across Ni L; resonance. XAS
and RIXS measurements were carried out by exciting at the Ni L
edge, corresponding to the 2ps,, to 3d electronic transition at
around ~852¢eV. The XAS spectra have been acquired in the
partial fluorescence yield mode, by integrating the RIXS spectra
for each incident photon energy hv;, to insure the bulk sensitivity.

Figure 2a-c presents an overview of XAS and RIXS data for
the 30nm thick NdNiO; film, measured at both 300K
(metallic phase, red colour) and at 15K (insulating phase, blue
colour). The Ni L, ;3 XAS shown in Fig. 2a is in good agreement
with the previously published data on NdNiO; (refs 20,21,37-39).
At 15K, the Ni L; region of the XAS (from 850 to 860eV), is
characterized by two clear structures—a sharp peak at 852.4 eV
(A) and a broader peak at 854.3eV (B)—both of which are
present in other ReNiOs as well>1®20:24 At 300 K both peaks are
still recognizable, however, their separation is less evident.

A series of high-resolution RIXS spectra have been recorded
across the Ni-L; resonance in steps of 0.1eV, as shown in the
intensity colour maps of Fig. 2b,c. Each spectrum obtained for a
specific hv;, measures the intensities of the emitted photons as a
function of the energy loss hv =hv;,-hv,y, where hv,y is the
outgoing photon energy. RIXS is able to simultaneously probe
excitations of diverse nature, for example, lattice, magnetic, orbital
and charge excitations?®*!. In addition, one can distinguish
with RIXS between localized, bound excitations and delocalized
excitations involving continua. For localized electronic excitations,
the RIXS signal appears at a fixed hv while scanning hv;, across a
corresponding resonance (Raman-like behaviour). Conversely, for
delocalized electronic excitations involving continua, the RIXS
signal has a constant hv,, and therefore presents a linearly
dispersing energy loss as a function of hv;, (fluorescence-like
behaviour)40-43,

From the RIXS maps of the NdNiO; thin film in Fig. 2b,c one
directly observes a clear, strong Raman-like response at around
1eV of energy loss when tuning hv;, to the XAS peak A. These
atomic-like dd-orbital excitations, which are sensitive to the local
ligand field symmetry, behave similarly to those observed in other
oxide materials like the prototypical Ni 3d® system NiO*%,
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Figure 2 | Overview of XAS and RIXS measurements for a 30 nm NdNiO3
film on NdGdOs. (a) Ni L3, XAS measured in partial fluorescence yield
mode at 300 K (metallic phase) in red and at 15K (insulating phase) in
blue. Refer to Supplementary Note 2 and Supplementary Fig. 2 for XAS in
total electron yield mode. (b,c) RIXS intensity map measured across the Ni
L5 edge at 300K (15K); intensity scale bar from O to 5 (a.u.). The white
solid line displays the XAS measured at the same temperature. The letters
A, B and C mark the three different incident energies mentioned in the text,
while dd, CT and Fl refer to RIXS excitations of different character, also
discussed in the text. The grey-dashed line indicates the incident energy
giving the most pronounced changes in the RIXS map and in the XAS across
the MIT. The red-dotted line provides a guide to the eye for the linearly
energy dispersing Fl feature.

A fluorescence-like contribution resonates instead at the XAS
peak B, contrary to the Raman-like response dominated by
multiplet effects observed in NiO at the corresponding Ni L; XAS
shoulder**. Already by looking at the colour map, this fluorescence-
like spectral signature is clearly visible all across the Ni L;-edge and
always with a linearly dispersing behaviour, as suggested by the red-
dotted line overimposed to the data. Interestingly, the fluorescence
intensity distribution in the NdNiO; RIXS map has also a strong
temperature dependence, while at 300K it merges continuously
with the dd-excitations (Fig. 2b), at 15K a dip in intensity is created
corresponding to the incident photon energy C, hv,=853eV
(see Fig. 2¢, dashed grey line).
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To gain more insight into the origin of the observed Raman-
and fluorescence-like spectral response, we closely examine the
individual RIXS spectra and we perform a fitting analysis to
extract the general behaviour of the main spectral components.
As shown in Fig. 3a, the raw RIXS spectrum is decomposed into
three different contributions (see Supplementary Note 1 and
Supplementary Fig. 1). Referring to the photon energy hv;, = A,
we identify from the corresponding RIXS spectrum localized
dd-orbital excitations extending from 1 to 3eV (black line), a
broad background centred around 4eV (CT, green line), and a
residual spectral weight (Fl, magenta line) peaking at 0.7eV
between the elastic line and the dominating dd-profile.

Remarkably, at this photon energy even the fine multiplet
structure of the dd-excitations is in good agreement with that of
NiO*, suggesting immediately that NdNiO5 has an unusual Ni
3d8-like S=1 local electronic structure similar to NiO. Figure 4

——o— Raw data

Intensity (a.u.)
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Figure 3 | RIXS data analysis across the MIT. (a) RIXS line spectra (grey
open-dot line) measured at hv;, = A and hv;, =B at 15K. The thin solid lines
refer to Gaussian fits of dd-excitations (black), the CTexcitation (green) and
the Fl excitation (magenta). The blue-dashed line refers to the sum of the
three fitting contributions, plus the elastic line at O eV. (b,c) Integrated
intensity of the fit dd-, CT- and Fl-excitations together with the total
integrated intensity at 15K (300K). The grey arrow marks the incident
energy giving the most pronounced changes in the RIXS integrated intensity
across the MIT. (d,e) Peak energy dispersion for the CT- and Fl-excitation at
15K (300K). The same colour code as in a is used throughout the figure.
The error bars of the model parameters are evaluated using the least square
fitting routine and expressed in s.e.d. The error bars of the initial RIXS
spectra were estimated assuming Poisson statistics.

furthermore endorses this concept, displaying the comparison
between the RIXS data and cluster model calculations performed
for a Ni 3d” GS (grey line, model parameters taken from ref. 39)
and a crystal field calculation of the dd-excitations for a Ni 3d®
GS (black line, model parameters from NiO*>; see also
Supplementary Note 3 and Supplementary Table 1). The
dd-excitations obtained for the Ni 3d’ case strongly differ from
the present NdNiO; data not only in the peak energy positions
displaced to higher energies, but also in the intensity distribution
profile, thus ruling out a Ni 3d” GS scenario. The dd-excitations
calculated for the NiO in Ni 3d® configuration instead present a
remarkably good correspondence with the present data, verifying
the d®-like character of Ni in this compound: such a finding is the
first key result of our study and directly poses the question if
NdNiO; deviates from a conventional positive charge-transfer
picture based on a Ni 3d’ GS in favour of a negative charge-
transfer scenario based on a Ni 3d® GS, as illustrated in Fig, 1b.
Finally, we note that in the insulating phase an extra dd-peak
emerges from the experimental data at ~0.75eV, which is not
captured by the Ni 3d® calculation. We speculate that this
contribution could be caused by symmetry-breaking phenomena
(related to the presence of different Ni sites in the insulating
phase). However, more advanced and detailed calculations have
to be developed to reproduce this finding.

Referring now to hv;, =B incident photon energy, the three
contributions identified above for hv;, = A—dd, CT and Fl—can
be still distinguished in the corresponding RIXS spectrum.
However, comparing the two spectra in Fig. 3a, we observe a
shift in energy for the CT- and Fl-contributions, contrary to the
dd-excitations which are fixed in energy loss, and a strong
redistribution of spectral weight between the three spectral
components.

NdNiOg - hv;,=A
Experiment:
—O— T=300 K
—O= T=15K
Calculation:
— GS 3d7

— GS3d®

Intensity (a.u.)

Energy loss (eV)

Figure 4 | Comparison between experimental and calculated dd-
excitations. Data: RIXS spectra at T=15K (blue circles) and at T=300K
(red circles), hvi,=A, ¢ polarization. Calculation: crystal field RIXS
calculation for a Ni 3d® GS based on NiO parameters?® (black line); cluster
calculation for a Ni 3d” GS using the parameters in ref. 39 (grey line).
Please note that the elastic lines have been removed from the calculated
spectra to better display the differences at the low energies. The
experimental dd-line shape is well reproduced by the Ni 3d® cluster
calculation, supporting the negative charge-transfer scenario for ReNiOs.
The good matching between data and calculation shows that: (1) there is no
inversion of crystal field in ReNiOs compared with NiO, in agreement with
ref. 25 for dominating Coulomb interaction; (2) being the Ni-O distance
shorter in ReNiO5 than in NiO, the negative charge-transfer energy may
lead to a reduction of the expected t,g-e, splitting.
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To disentangle localized versus delocalized character of the
RIXS excitations, we extend in Fig. 3b-e the fitting analysis to all
the RIXS spectra between 852 and 858eV incident photon
energies and we track for each contribution the integrated
intensity (Fig. 3b,c) and the peak energy dispersion (Fig. 3d,e; see
Supplementary Note 1 and Supplementary Fig. 1). While the dd-
excitations (black dots) have a Raman-like behaviour throughout
the energy range and clearly resonate at hv;, = A, the other two
contributions (CT in green and FI in magenta dots) resonate
instead at hv;, =B (see Fig. 3b, 15K). Interestingly, and contrary
to the similarity in their resonant behaviour, the CT- and the
Fl-contributions present different peak energy dispersions as a
function of the incident photon energy (Fig. 3d). The broad
CT-peak (FWHM ~6¢eV) displays a behaviour characteristic of
well-known charge-transfer excitations between the central Ni
site and the surrounding oxygens: constant energy loss (~4eV)
up to the resonant energy hv;, = B, and a fluorescence-like linear
dispersion at higher incident photon energies. The Fl-peak
(FWHM ~1eV), instead, linearly disperses versus incident
photon energy across the full Ni L; resonance: as introduced
above, this behaviour is a clear fingerprint for a delocalized
excitation involving continua. Overall, these findings are common
to both low and high temperature data sets. However, in the
metallic state (see Fig. 3c,e, 300K) the intensity of both CT- and
Fl-peaks is enhanced at hv;,, = C: the resulting extra weight in the
integrated RIXS intensity profile (Fig. 3c, blue dots) mimics
the filling of the valley observed in the XAS spectrum at 300K,
and explains the absence of a dip in the intensity distribution of
the RIXS map (Fig. 2b) at the same incident energy.

In addition, we examine the Fl-excitations more closely in
Fig. 5, where we focus on the low energy loss range (<1.5€eV) of
the high-statistics RIXS spectra obtained at the Ni L; pre-peak
region, starting 1 eV before peak A. In Fig. 5a, we observe changes
in the dd-excitations between 300 and 15K (across the MIT)
likely due in part to local rearrangements of the NiOg octahedra.
Moreover, a sizeable spectral weight continuum around
0.2-0.5eV (see Fig. 5a, inside the ellipse area) is present only at
300 K in the metallic phase, as better displayed by the RIXS colour
maps for 300 and 15K (see Fig. 5b,c, respectively).

Anderson impurity model. To understand the origin of the
various RIXS excitations and their link to the electronic structure,
one can employ an Anderson impurity model (AIM)
interpretation (Supplementary Note 4). While the schematics in
Fig. lab show the single-particle removal and addition
excitations for different charge-transfer scenarios, RIXS actually
measures charge neutral excitations, which are well represented in
a configuration interaction-based AIM. These charge neutral
excitations are shown schematically in Fig. 6a for the negative
charge-transfer case A'<0 and the positive charge-transfer case
A" >0 (NiO like) of a Ni 3d® impurity. As previously mentioned,
for the A’>0 case, the only charge fluctuations possible in the
AIM are from the full O 2p band to the Ni impurity level. While
conserving the total charge, these fluctuations give rise to a Ni
3d°L band corresponding to charge-transfer excitations (shown in
green in Fig. 6a for NiO). However, for the 4’ <0 case (recall
Fig. 1b), the presence of a self-doped, partially filled O 2p density
of states (DOS) extending across the Fermi level opens additional
pathways for the neutral charge fluctuations. Electrons can
either hop from the O 2p valence band to the O 2p conduction
band leaving the Ni impurity occupation unchanged, yielding a
characteristic low energy electron-hole pair continuum of
m excitations d®y"c™ marked in magenta (v is a hole in the
valence band and c an electron in the conduction band, as shown
in the small O 2p DOS inset of Fig. 6a); or, to and from the Ni

impurity level, from the O 2p valence band and toward the O 2p
conduction band, respectively, causing the impurity occupation to
change by plus or minus one and yielding a charge-transfer like
continuum of excitations at higher energy. Eventually these
charge-transfer excitations can be dressed by associated electron-
hole pair excitations, v"'c"™, resulting in d°v™ +1c™ or d7y"Mcm+1
bands of excitations (green band). We stress that the here
introduced low-energy electron-hole pair excitations can be
obtained only for the A’ <0 case, where the O 2p DOS crosses Eg.

The effects of these two impurity models on RIXS are detailed
in Fig. 6b. The case of NiO can be solved numerically including
the full correlations within the Ni 3d shell, and we show the
calculated RIXS map in Fig. 6b. Comparing this to the schematic
NiO configurations in Fig. 6a, we see that there are Raman-like
dd-excitations below 4 eV, corresponding to reorganized Ni 3d®
orbital occupations, and a charge-transfer band at distinctively
higher energy losses which is Raman-like for lower incident
photon energies up to ca. 855eV, before dispersing like
fluorescence for higher photon energies. However, as the
schematic in Fig. 6a suggests, the charge-transfer excitations do
not extend down to low energy losses for the NiO case (4'>0).
To gain further insight into the NdNiO; experimental data,
the extracted CT- and Fl-dispersion curves of Fig. 3d are overlaid
on the calculated RIXS map in Fig. 6b. Indeed, the NdNiO;

—— T=300K
—— T=15K

E=852.1 eV
E=852.0 eV
E=851.9 eV
E=851.8 eV
E=851.7 eV
E=851.6 eV
E=851.5eV
E=851.4 eV
E=851.3 eV

Intensity (a.u)

1.2 0.8 0.4 0
Energy loss (eV)

Energy loss (eV)

851 851.5 852 852.5 853 853.5 851 851.5 852 852.5 853 853.5
Photon energy (eV) Photon energy (eV)

Figure 5 | Low-energy electron-hole pair continuum in the RIXS spectra.
(@) RIXS line spectra measured for incident energies going from hv;, = A-1eV
up to hv;,=A-0.2eV in steps of 0.1eV at 15K (blue) and 300K (red). Each
spectrum has been acquired for 5 min. The grey ellipse highlights the energy
loss region where the electron-hole pair continuum is more prominent.
(b,c), Magnification of the low energy loss region (< 0.9 eV) of the RIXS map
with a logarithmic intensity scale at 300 K (15K); intensity scale bar from
—3to 1 (a.u.). The spectra have been normalized to the dd-area to have
comparable background signal in the low energy loss region. The red ellipses
underline the electron-hole pair continuum present at 300K (b) and the
intensity gap in the same energy window at 15K (c).
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Figure 6 | Anderson impurity model interpretation of the RIXS and XAS spectra. (a) AIM schematic for charge neutral RIXS excitations. The
configurations of the AIM are very different for A’ <0 (NdNiO3) and A4’ >0 (NiO) 3d® compounds. CT-like excitations are obtained in both cases (green
bands), while Fl-like excitations (magenta band) are found only for 4’ <0 and correspond to electron-hole pair excitations as shown in the O 2p DOS inset.
(b) Calculated RIXS map for the positive charge-transfer compound NiO, using the AIM. The NdNiO3 CT- and Fl-excitations dispersion curves from Fig. 3d
are overlaid for comparison (green and magenta open dots, respectively), as well as the NiO CT-excitation dispersion (green solid line). Horizontal coloured
lines make the connection between the RIXS excitations and the assigned interpretation in the AIM schematic of a.

CT-excitations (open green dots) show a similar behaviour as the
NiO CT ones (solid green line). The NdNiO; Fl-excitations,
instead, with their distinctive fluorescence-like dispersion differ
from any of the NiO excitations. Interestingly, the identified
Fl-contribution propagating down to very low energy losses is
compatible instead with the electron-hole pair continuum
excitations d®v™c™ coming from the broad O 2p band: this
finding is the second key result of our study and naturally occurs
for the negative charge-transfer case (4’ <0) as represented in the
AIM schematic of Fig. 6a (magenta band).

Discussion

The main findings of the presented data analysis and
interpretation are as follows: localized dd-excitations sharply
resonate at the XAS peak A with a lineshape consistent with a Ni
3d® configuration; delocalized Fl-excitations mostly resonate at
the XAS peak B and are interpreted as electron-hole pair
excitations across the O 2p band cut by Ep (Fig. 1b, green
contours); spectral weight reduction of the electron-hole pair
excitations close to zero energy loss (Fig. 5b,c) suggests the
opening of an O-0O insulating gap (Fig. 1b, red-dashed contours)
at low temperature, in line with previously reported optical
conductivity*®?” studies and similarly as in more recent ARPES
data®® revealing a spectral weight transfer from near Ej to higher
binding energies across MIT.

This collection of results clearly identifies NdNiOj; as a negative
A’ charge-transfer material, with a local Ni 3d® configuration’, a
predominant O 2p character across the Fermi level® and a
consequent GS of mainly Ni 3d8L". This picture is compatible
with the scenario proposed by Mizokawa®®, also discussed
as bond dis rolsaortionation model in recent theoretical
approaches?’3%°1°2 which comprises an expanded 3d® Ni site
(n=0, S=1) and a collapsed 3d81;2 Ni site (n=2, S=0)
alternating in the insulating phase with the following spin order
10/0 and a homogeneous Ni 3d®L (n=1) GS in the metallic
phase. As underlined in previous works??°, this model is in
agreement with several breakthrough experimental findings: (1/2 0
1/2) antiferromagnetic Bragg peak in the insulating phase’; charge
ordering®, which in this model is distributed among both Ni and O

6

sites instead of only Ni sites; absence of orbital order>*; evidence of
strong Ni-O covalence in the G§#2021,

Furthermore, the different resonant behaviour extracted in this
study for localized and delocalized RIXS excitations suggests that
the two distinct XAS peaks marked at low temperature
mostly result from the two different components of the GS,
being XAS peak A mostly associated with a Ni 3d® configuration,
and XAS peak B with the delocalized ground-state Ni 3d8L?
configuration. This is in line with the energy dependence of the
(1/2 0 1/2) peak resonating at hv;, = A (refs 31,37), here assigned
to the magnetically active S=1 site.

In conclusion, by combining Ni L; XAS and RIXS measure-
ments we studied the electronic ground-state properties of ReNiO3,
to discriminate the electronic structure between a negative and a
positive charge-transfer scenario. By analysing the first ever high-
resolution Ni Lz RIXS data obtained for ReNiO3, we identified the
coexistence of bound, localized excitations and strong continuum
excitations in both the XAS and the RIXS spectra, in contrast to
earlier absorption studies which assumed primarily charge-transfer
multiplet effects in the XAS. Further, we disentangled the
continuum features in the RIXS spectra into charge-transfer and
fluorescence excitations, showing the latter to arise due to the
presence of a ground state containing holes in the oxygen 2p band.
Electron-hole pair excitations from oxygen 2p states across the
Fermi level have been identified down to zero energy loss,
mimicking the opening of a gap for T'< Tyy. All these experimental
observations provide clear indication of an O 2p hole-rich ground
state with Ni 3d8L" electronic configuration as the main
component, as expected for a negative charge-transfer system.
This GS configuration lends support to the treatment of the
ReNiO; as a S=1 Kondo or Anderson lattice problem with a Ni
3dL" (n=1) metallic GS, and realizing the MIT by a bond
disproportionation leading to two Ni site environments: Ni 3d®
(n=0, S=1) and Ni 3d8L? (n=2, $=0), differing in the
hybridization with the O 2p hole states yet leaving the charge at the
nickel sites almost equal. While this result is vital for
the understanding of the rare-earth nickelate family per se,
the combined XAS and RIXS approach demonstrated here
opens the opportunity to classify the electronic structure for other
cases of very small or negative charge-transfer gaps A’, which could
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be common to other materials with unconventionally high
formal oxidation states (as for example sulfides, selenides and
tellurides).

Methods

Experimental details. XAS and high-resolution RIXS measurements have been
performed at the ADRESS beamline of the Swiss Light Source®, Paul Scherrer
Institute. The sample has been oriented in grazing incidence, with the incoming
photon beam impinging at 15° with respect to the sample surface. The scattering
plane for the RIXS measurements was coinciding with the crystallographic ac-plane
(or be-plane, equivalently). All the data displayed here have been measured for
incoming photons polarized parallel to the a (b) axis (also referred to as ¢
polarization, perpendicular to the scattering plane). For the RIXS measurements we
used the SAXES spectrometer™* prepared with a scattering angle of 130° and a total
energy resolution of 110 meV. The spectrometer was set in the high-efficiency
configuration, using the 1,500 lines per mm VLS spherical grating. This set-up
allowed acquiring around 600-800 photons at the maxima of the prominent
spectral structures already in 1 min. The recorded scattered photons were not
filtered by the outgoing polarization.

Data availability. The XAS and RIXS data that support the findings of this study
are available from the corresponding authors V.B. and T.S. upon request.
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