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ELECTRON MICROSCOPY

Identification of site-specific isotopic
labels by vibrational spectroscopy
in the electron microscope
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The identification of isotopic labels by conventional macroscopic techniques lacks
spatial resolution and requires relatively large quantities of material for measurements.
We recorded the vibrational spectra of an & amino acid, L-alanine, with damage-free “aloof”
electron energy-loss spectroscopy in a scanning transmission electron microscope to directly
resolve carbon-site—specific isotopic labels in real space with nanoscale spatial resolution.

An isotopic red shift of 4.8 £ 0.4 milli-electron volts in C—0 asymmetric stretching modes
was observed for 1*C-labeled L-alanine at the carboxylate carbon site, which was confirmed

by macroscopic infrared spectroscopy and theoretical calculations. The accurate measurement
of this shift opens the door to nondestructive, site-specific, spatially resolved identification

of isotopically labeled molecules with the electron microscope.

sotopic labeling of molecules is a widely em-

ployed technique for isolating chemical ef-

fects in complex biological experiments (7).

The detection of isotopic labels is most fre-

quently accomplished with mass spectrome-
try, but the resulting sample destruction can lead
to the loss of valuable structural information.
Alternatively, isotopes can be resolved through
shifts in the vibrational modes corresponding to
the changes in atomic mass, allowing techniques
such as infrared and Raman spectroscopy or in-
elastic neutron scattering to identify isotopic labels
and biomarkers to observe dynamic changes in
molecular chemistry (2-6).

However, these macroscopic techniques lack
spatial resolution and require relatively large
quantities of sample for accurate measurement.
To improve sensitivity to local heterogeneities,
researchers have used tip-enhanced Raman spec-
troscopy (TERS) and scanning near-field optical
microscopy (SNOM) to examine the vibrational
spectra of biomolecules with high spatial and
spectral resolution (7, 8). Electron microscopy has
also shown promise for life science applications,
especially in cryogenic experiments (9, 10), and
provides spatially resolved access to a set of sam-
ples and experiments complementary to those
of TERS and SNOM. Recently, breakthroughs
in electron monochromation have allowed elec-
tron energy-loss spectroscopy (EELS) to access
vibrational modes in solids with high spatial
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resolution (17-14). Previous isotopic analysis in
the electron microscope had been conducted
through measurement of knock-on damage and
Compton scattering (15, 16) but required high
electron doses that are incompatible with beam-
sensitive materials. Vibrational EELS, on the
other hand, can be performed in “aloof” mode,
where the probe interacts with the sample with-
out directly irradiating the material, allowing for
efficient, damage-free vibrational spectroscopy of
organic molecules outside of cryogenic condi-
tions (17-21).

We present here the spatial and spectral iden-
tification of site-specific isotopic labels in an
amino acid obtained in a scanning transmis-
sion electron microscope (STEM). We used aloof
monochromated EELS in an aberration-corrected
STEM to examine r-alanine (1-Ala) and its >C-
labeled counterpart. An isotopic shift of 4.8 +
0.4 meV was measured with EELS, which is con-
sistent with Fourier transform infrared (FTIR)
spectroscopy experiments. Additionally, we used
density functional theory (DFT) calculations to
demonstrate that the isotopic shifts observed in
the C and *3C 1-Ala samples primarily originate
from the carboxylate group. By using the highly
localized electron probe, we spatially distinguished
between C and ™C r-Ala with nanoscale precision.

The samples were prepared by crushing and
dispersing the high-purity crystalline powders
onto TEM grids (crystal structure shown schemat-
ically in fig. S1). For the *C-labeled r-Ala particles,
we used powders enriched at the carboxylate
site. Small clusters of 1-Ala (sizes varying from
hundreds of nanometers to tens of micrometers)
were then accessible on the lacy carbon support
membrane. The 1-Ala clusters were much thicker
than the membrane and thus dominated the EEL
spectrum. In this study, the spectra were taken
from larger particles, with micrometer-scale di-
mensions to maximize signal-to-noise ratio, but
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the spectra can also be acquired from the smaller
hundred-nanometer-scale particles, as shown in
the supplementary materials (fig. S2).

The aloof EEL spectra of 2C and **C-labeled
1-Ala (Fig. 1A) show a strong overlap between
the majority of the peaks but with substantial
differences in the highest intensity features in
these spectra. To validate and expand on the
EELS vibrational results, we obtained FTIR spec-
tra from samples prepared using the same mate-
rials. The FTIR and EELS measurements have
energy resolutions of 1 and 6 meV, respectively,
hence the FTIR spectra were convolved with a
6-meV full width at half maximum (FWHM)
Gaussian to match the energy resolution in EELS
(Fig. 1B). The FTIR spectra in their as-acquired
resolution are also shown for comparison (Fig.
1C). A comparison of the entire FTIR and EEL
vibrational spectra of 1-Ala is shown in the sup-
plementary materials (fig. S3).

The EEL and FTIR spectra, for both the *C
and '2C samples, exhibited a dominant peak at
~200 meV (1600 cm ™). The ~200-meV peak was
red-shifted in both techniques by the isotopic
labels, whereas the majority of the other features
in the C spectrum were almost unchanged in
the '3C spectrum. The shift in the dominant peak
of the EEL spectrum was measured statistically
to be 4.8 + 0.4 meV (see below). In the FTIR ex-
periment, the shift was measured from the maxi-
mum intensities of the dominant peaks in each
isotopic sample at the as-acquired resolution, re-
sulting in a shift of 4.9 meV. The presence of a
consistent large shift of the dominant spectral
feature allows for unambiguous differentiation
between the two isotopic species with vibra-
tional EELS.

Additionally, there was a 2.2% energy offset
observed in the ~200-meV peak between FTIR
and EEL spectra for both isotopic species. The
cause of the offset could arise from the fact that
EELS interacts mostly with the surface, whereas
FTIR spectroscopy interacts with the entire cluster,
because surface effects can alter the detected
frequency of a vibrational mode (22). Alterna-
tively, the offset could stem from subtle differ-
ences in the way that the selection rules affect
vibrational fine structure for electron and pho-
ton excitations. We examined the correlation
between spectral features in EELS and FTIR spec-
troscopy in greater detail (fig. S4) and found that
all of the other EELS peaks had energies within
1% of the corresponding FTIR peaks. The match
of the other spectral features indicates that the
offset is a genuine difference in the detected peak
positions of the same feature in the two spec-
troscopy techniques.

DFT calculations were performed for the fun-
damental vibrations of 1-Ala with and without
isotope substitutions to help assign vibrational
modes to the experimentally observed peaks in
EEL and FTIR spectra. Prior to the calculations,
x-ray diffraction (XRD) analysis was performed
on the purchased 1-Ala sample, which showed
that the powder is crystalline with a standard
orthorhombic structure (fig. S5). The lattice pa-
rameters are in good agreement with previously
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Fig. 1. Isotopic sensitivity in vibrational EELS.
(A) Experimental vibrational spectra acquired
with monochromated aloof EELS for 2C L-Ala
(solid line) and *3C-labeled L-Ala (dashed line),
exhibiting an observable isotopic shift of the
dominant peak. (B) FTIR vibrational spectra
from the same powders used for the EEL
spectra in (A), broadened with a Gaussian
filter to match the energy resolution in EELS
(~6 meV) and showing a highly similar shift

of the dominant peak. (C) FTIR spectra in the
as-acquired energy resolution. Au, arbitrary units.

reported values (23, 24) and indicate that the
1-Ala molecules exist in zwitterionic form in the
powder. A supercell model of 35 zwitterionic
r-Ala molecules was then constructed on the
basis of the atomic coordinates from experi-
mental measurements. Within this supercell
model, an inner layer of nine molecules was
geometrically optimized and used to produce
the vibrational spectra, and the outer layer of
26 molecules was used to enforce the 1-Ala crys-
talline environment and lock the molecules in
their zwitterionic form (fig. S1). The calculations
returned the energy, intensity, and atomic dis-
placement vectors of the vibrational eigenmodes
of crystalline 1-Ala, which were then broadened
with a 6-meV FWHM Gaussian to match the
EELS energy resolution.

Figure 2 shows the vibrational eigenvalues
and spectrum of the r-Ala supercell with the
carbon atoms as their naturally occurring *C
isotope (top panel). The eigenvalues (black ver-
tical lines) reveal many vibrational modes spread
throughout the IR range that merge together to
form individual peaks in the Gaussian-convolved
spectrum. A one-to-one correspondence is ob-
served between the main peak groups in FTIR
and DFT spectra. Some small differences are
observed in peak intensity and frequency be-
tween experiment and theory, which is dis-
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cussed in greater detail in the supplementary
materials (fig. S6).

The DFT peak groups can be used to assign
eigenmodes and displacement vectors directly to
the experimental peaks. The dominant ~200-meV
peak is seen to be mainly the C-O asymmetric
stretching modes in the COO™ group. The other
strong peaks are bending modes in the NH;"
group at ~190 meV and coupled vibrations be-
tween C-C stretching and various symmetric
and asymmetric deformations in CH; and COO™
groups for three subpeaks between 160 and
180 meV. The remaining smaller peaks are most-
ly bending deformation modes in the CH; and
NH;"* groups. The assignment of these vibration-
al modes is in good agreement with other cal-
culations of the r-Ala zwitterion (25).

To examine the influence of isotopes, the
vibrational response was recalculated upon **C
labeling of each carbon site in the molecule: the
o site bonded to the NH3" group, the B site on
the methyl side chain, and the carboxylate, or C',
site, which are shown below the all->C calcula-
tion in Fig. 2. For the a and B sites, only changes
to weak oscillators are observed, which are
washed out in the Gaussian-broadened spectra.
However, *C labeling in the carboxylate site re-
sulted in a substantial red shift for the main C-O
asymmetric stretching mode, clearly observed in
the broadened spectrum, that corresponds to the
shifted ~200-meV peak in the EELS and FTIR
measurements. Experimental differences between
the C' enrichment and the o- and B-site enrich-
ment are shown in FTIR measurements in fig.
S7. These differences show that the sensitivity
of vibrational spectroscopy is connected to
the oscillator strengths of the different modes
along with the magnitude of the shift.

The magnitude of the shift induced by the
heavier **C atom in the carboxylate site is closely
related to the change in the reduced mass of a
C-O pair (/u?CO/u2CO): a shift factor of ~1.022.
The shift factors from the experiments yielded
similar values: 1.026 for both FTIR spectroscopy
and EELS. The DFT calculations predicted a
larger-magnitude shift in the C-O stretching
modes, 6.5 meV compared with ~5 meV, but
this value corresponds to a shift factor of 1.033,
which is within 1% of the experimental values.
The agreement corroborates our understanding
that the dominant peak in the EEL and FTIR
spectra is from the C-O stretching vibrational
modes, and that vibrational EELS can distin-
guish between isotopic labels at specific sites in
organic molecules.

To precisely measure the isotopic shift in EELS
and to quantify the precision of the measure-
ment, we acquired a series of 100 EEL spectra
from each 1-Ala sample. Figure 3A shows indi-
vidual low signal-to-noise ratio (SNR) EEL spectra
from C and *C 1-Ala sequences, respectively,
with the corresponding Lorentzian fits to the
C-0 peak. The distribution and average of the
fitted peak centers are plotted in Fig. 3B. The C-O
peak was measured to be at 200.5 meV for the °C
1-Ala and at 195.7 meV for '2C r-Ala (a shift of
4.8 meV), with standard deviations of 0.2 meV
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Fig. 2. Influence of isotopic enrichment
at specific carbon sites. DFT-calculated
vibrational eigenvalues (black vertical lines)
and corresponding Gaussian-broadened
spectra for L-Ala with its naturally occurring
12C isotope and with *3C isotopic labeling at
each of the three carbon sites—C, site, Cg site,
and C' site (shown schematically in the insets
by red circles)—demonstrating a large shift from
C'-site labeling. The red dashed vertical lines
indicate the centers of the main peak groups
observed in the calculated *C L-Ala spectrum.

for each series of measurements. The magnitude
of the error is just 0.2 meV, which is less than 5%
of the total isotopic shift, demonstrating high-
precision isotopic identification.

Finally, we dispersed both '*C and '2C r-Ala
clusters on the same sample grid. Figure 4A
shows a STEM dark-field image of a region ex-
tending between two 1-Ala clusters (°C on the
left, *3C on the right). We took an EELS line
profile across this region, acquiring a sequence
of 75 spectra at each probe position, and fit
Lorentzians to the C-O stretching peak for each
individual spectrum. The corresponding fits of
the summed data (Fig. 4B) show that the EEL
intensity was centered on the >C-O frequency
when the probe was near the left cluster, and on
the *C-0 frequency when the probe was near
the right cluster. The C-O stretching mode was
detected as a mix of the two in the vacuum be-
tween the two clusters, providing a real-space
picture of the isotopic shift between the *C and
13C 1-Ala clusters.

The C-0 peak intensity was highly localized
to the 1-Ala clusters. The summed peak center
and standard deviation of each 75-spectrum
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Fig. 3. Precision of isotopic sensitivity. (A) Raw EEL spectrum acquired from *°C and *3C (-Ala
samples, with a Lorentzian fit of the C-0O peak. To perform high-precision measurements, 100
spectra were acquired and fitted. (B) Histogram of fitted peak positions from all acquisitions in both
samples, demonstrating a 4.8-meV peak shift with <1-meV precision.

Fig. 4. High—spatial reso-
lution isotopic analysis.
(A) Dark-field image of °C
(left) and 3C (right) L-Ala
clusters. EELS was ac-
quired along a line profile

Dark Field Image of Alanine Clusters
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position of the C-0 EELS g_
peak, plotted for each @
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sequence along the line profile is plotted in Fig.
4C. The error bars here, determined by the
standard deviation of the individual fits, show
that the C-O shift could be reliably obtained
from individual noisy spectra while close to the
clusters, but for large impact parameters, the
peak fit requires the summed data. For several
probe positions, the fitting routine returned
unphysical results and these five data points
were removed as outliers (fig. S8).

The particles here were separated by several
hundred nanometers, which is an order of mag-
nitude below the optical diffraction limit (~3.1 um
for excitations at an energy of 200 meV), and the
true spatial resolution of the technique is much
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Position (nm)

higher. A line scan on a single 1-Ala cluster
showed that the intensity of the signature C-O
peak fell off sharply as a function of the distance
from the cluster. The vibrational EEL spectra
from the line scan are presented in the sup-
plementary materials (fig. S9) and show that
the intensity is reduced by 20% after 25 nm and
by 50% after 100 nm. Additionally, by calculating
the delocalization of inelastic scattering, we can
estimate the sample depth from which the ma-
jority of the signal originates. For a primary beam
energy of 30 keV, at an energy loss of 200 meV
and an impact parameter of 5 nm, this value is
estimated to be ~50 nm (more details in the
supplementary materials). The two estimates

1 February 2019

of the maximum vibrational spatial resolution
indicate that clusters much closer together could
still be resolved using EELS.

The capacity to produce high-SNR, high-energy
resolution spectra from minute quantities of or-
ganic material makes vibrational EELS a strong
complement to conventional techniques. Further
progress in this rapidly advancing technique and
experiments involving larger isotopic differences
should enable nanoscale versions of traditionally
macroscopic experiments, such as isotopic con-
centration measurements and, potentially, car-
bon dating. Additionally, one can perform direct
vibrational mapping of beam-sensitive samples
by using “leap-frog” scanning, where the electron
probe is advanced in discrete steps and blanked
between acquisitions. The area directly irradiated
by the beam is destroyed, but the surrounding
area is undamaged and probed by the aloof EELS
(26). When combined with cryogenic sample
preparation, isotope-labeled proteins could be
tracked in real space in whole-cell samples with
the resolution of the electron microscope, result-
ing in direct observation of intracellular molec-
ular chemistry.
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Mapping isotopically labeled alanine

Electron microscopy of organic materials must avoid the destructive effects of electron beam impact. One
approach is to measure vibrational spectra with electron energy-loss spectroscopy in a mode where the electron beam
grazes the sample and couples to it through evanescent modes. Hachtel et al. used such methods to probe carbon-12-
and carbon-13-labeled alanine crystals, which exhibited an isotopic shift in the asymmetric carbon-oxygen stretching
mode. They used this property to map the distribution of labeled clusters of alanine on length scales of tens of
nanometers.
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