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I. DIELECTRIC FUNCTIONS OF Cu, Ag, AND Au FOR SMALL ENERGIES

In this Section, we present a unifying analysis of the loss functions for all Cu, Ag, and

Au at energies below 10 eV. We provide an of the reasons why the plasmon forms in Ag,

but is absent in the two other metals. This analysis complements that of Cazalilla et al. [1]

and is based on the properties of coupled classical Drude-Lindhard oscillators [2]. The same

classical model explains why the plasmon in Ag, when calculated using semilocal density

functionals (the local density approximation, LDA, and various versions of GGA), has a

much lower energy, is much broader, and less intense than in experiment.

In Fig. 1, GGA band structures and total densities of states (DOS) are presented. The

occupied part of the DOS of all three metals is characterized by a sharp feature 3-4 eV

wide that originates from d bands, superimposed on a smooth background DOS originat-

ing from sp bands [3]. Since in the main article our emphasis is on excitations with final

states high above the Fermi level, it is important that the band structure at those en-

ergies is accurately described. A large basis set for electronic wavefunctions and, more

importantly, an all-electron approach is therefore essential. We note two important con-

clusions about the unoccupied part of the DOS in these three metals: (i) Above the Fermi

level the DOS is approximately given by that of the free electron gas (in atomic units)

D(E) =
√

2m3(E − E0)/π
2n, where E0 is the bottom of the sp band, n is valence electron

density excluding d electrons, and m is the effective electron mass (best fits are obtained

with m = 1). However, even for the highest energies studied, the DOS shows small oscilla-

tions due to the underlying atomic structure and does not attain a smooth behavior, which

is characteristic of the free electron gas. The most pronounced oscillations in the DOS are

indeed physical and directly translate into features in the loss function that are measured

experimentally, as discussed in the main article. This conclusion is also in full agreement

with Bremsstrahlung isochromate spectroscopy (BIS) measurements of Speier et al. [4]. In

passing, we note that this aspect is also relevant in interpreting photo-emission experiments.
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FIG. 1: (Color online) Calculated band structures (left) and density of states (right) of Cu, Ag,

and Au in the energy range −10-60 eV with respect to the Fermi level. Dashed lines represent the

density of states of the free-electron gas, D(E) =
√

2m3(E − E0)/π
2n, E0 being the bottom of the

sp band, m the electron mass, and n = 1/(4a3) valence electron density (without d electrons), a

being the lattice constant.

During the photo-emission process, electrons are kicked out from the sample by incoming

photons, thus they are often described as plane waves, even for moderate kinetic energies.

The results in Fig. 1 show that for d metals such simplified behavior is not achieved for

energies < 60 eV. (ii) Due to a smaller lattice constant of Cu (3.50 Å) in comparison to that
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of Ag (4.09 Å) and Au (4.08 Å), electronic bands are more dispersive in Cu. Consequently,

the total DOS of Cu is somewhat less structured.

The most interesting aspect of loss functions for small energies (< 10 eV) is the fact that

a well-defined low-energy plasmon forms in Ag (at 3.8 eV), but is absent in other metals.

As already discussed by Ehrenreich and Philipp [3, 5], it results from the interaction of

collective oscillations of electrons in the sp band and the onset of strong optical absorption

from 4d states. The latter significantly modifies the width and the energy of the plasmon

peak. In the absence of such coupling, collective oscillations would occur at the frequency

of the Drude plasmon, in Ag ~ωp ≈ 9.7 eV. (This value is derived from our calculations, but

is very close to that obtained before [3].) Alternatively, the reduction of plasmon frequency

in Ag could be thought of as a screening effect by the 4d electrons, i.e., Ω ≈ ωp/
√
εd [6].

However, such reasoning cannot explain the absence of a similar excitation in Cu and Au.

Cazalilla and coworkers provided a fundamental argument explaining these features [1].

In short, the interaction of the Drude plasmon with interband excitations can be understood

such as interband excitations act as a self-energy for the plasmon. A low-energy plasmon

can thus occur if the real part of the dielectric function vanishes for a certain energy. This

scenario is more likely if the onset of interband transitions appears at higher energies and

(somewhat less important) if the oscillator strength of these transitions is larger. It was

found that this happens only in Ag [1].

One can also see how the position of the d states influences the actual energy of the

plasmon peak by using a phenomenological model. While this model is too simplistic to

be applicable to real materials, it nevertheless captures the most essential physics of noble

metals and complements the analysis of Refs. [1, 3, 5–7]. Let us consider a system in

which Drude-type free electrons with plasma frequency ωp coexist with a bound oscillator

of frequency ω1 [2]. This frequency corresponds to a strong optical absorption band which,

in our case, is the onset of transitions from d states to the states above the Fermi level. If

damping terms are small, the dielectric function is

ε(ω) = 1−
ω2
p

ω2
+

ω2
pf1

ω2
1 − ω2

(1)

with f1 being the oscillator strength for bound electrons.

Collective oscillations of the system occur where ε(ω) = 0. For noble metals ωp ≫ ω1, and

the two frequencies at which Eq. (1) becomes zero are approximately ω1 [1/(1 + f1)]
1/2 and
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FIG. 2: Real part ε1 (dashed line) and imaginary part ε2 (full line) of the dielectric function for a

system consisting of free Drude electrons and a bound oscillator with frequency ω1. Compared to

(b), ω1 is smaller in (a), and the corresponding peak width is slightly broader. These two factors

result in a pronounced plasmon excitation in (b) while the plasmon is severely damped in (a).

ωp (1 + f1)
1/2, only the first of which is relevant for our purposes. The best agreement for Ag

is obtained for f1 = 1, which we will assume here for qualitative considerations. Thus, the

lowest collective oscillation in such system occurs at frequency Ω1 ≈ ω1/
√
2. Whether the

plasmon excitation actually develops or not depends on the imaginary part of the dielectric

function at this frequency. If ε2 is small, the plasmon can exist, while if ε2 is large, the

plasmon is severly damped.

Thus, in reality, damping terms must be included. They smoothen the function ε1, and

give a finite width to optical excitations seen in ε2. Model dielectric functions are plotted

in Fig. 2 for two different cases (for graphical purposes the damping terms are included

only in ε2). Say, ω1 is underestimated by a certain theory which tries to model the real

situation (Fig. 2(a)). As a result, Ω1 will also be underestimated since Ω1 ≈ ω1/
√
2. More

importantly, this implies that Ω1 is closer to ω1 as ω1−Ω1 ≈ ω1(1−1/
√
2) (Fig. 2(a)). Since

ε2 peaks at ω = ω1, the value of ε2(Ω1) will be larger (or much larger) in this approximation

compared to reality. As a result, the plasmon excitation will be severely damped. Increasing

the value of ω1 (Fig. 2(b)) also increases the distance between Ω1 and ω1, and thus decreases

the value of ε2 at ω = Ω1. Consequently, the plasmon peak becomes more pronounced. If,
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FIG. 3: (Color online) Calculated and measured (blue dots) dielectric functions for Cu, Ag, and

Au in the energy range up to 12 eV. The calculations are performed using either the GGA band

structure (black solid lines) or approximate GW corrections on top (red dashed lines).

in addition, the width of the peak in ε2 around ω1 was narrower in the improved theory (as

happens in the case of Ag due to the reduced width of Ag 4d states), this facilitates the

formation of the plasmon excitation further.

As can be seen from this simple model, it is very important to accurately represent the

onset of optical transitions (ω1 above) in order to have a reliable description of the plasmon.

This conclusion is in full agreement with the analyses of Refs. [1, 3, 5–8]. In Cu, Ag,

and Au this onset depends on the position of d states that has to be described correctly.

It is well known that GGA functionals somewhat fail in this respect. This happens due

to remaining self-interaction errors and (less importantly) many-body effects. To partially
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cure these shortcomings, we have applied approximate GW corrections when calculating the

non-interacting density response functions χ0. We have used the GW results of Yu et al. [9]

for Cu, Marini et al. [7] for Ag, and Rangel et al. [10] for Au. The corrections are functions

only of energy. In case of Ag, for example, this approach is an approximation of that used

in Ref. [7]. The calculated dielectric functions of all three metals are compared with each

other and with available experimental results in Fig. 3. The corresponding loss functions

are presented in Fig. 4.

Below, we give a brief discussion of the main features in dielectric and loss functions

based on the phenomenological theory introduced above.

Copper. In comparison with local and semilocal functionals, GW pushes Cu 3d states

down by about 0.8 eV. [9] As a result, the onset of the corresponding peak in ε2 occurs at

larger energies (Fig. 3(a)), in agreement with experiment. These corrections are substantial

to recover a simulated reddish color of Cu (Fig. 5). However, 3d states are relatively shallow

in Cu, and ε1 does not become zero for small energies. That means that the low-energy

plasmon excitation does not develop in Cu. Instead, a small broad peak (peak (1) in Fig.

4(a) and Fig. 1(a) of the main paper) appears. However, ε1 vanishes at about 10 eV. This

results in a wide peak in the loss function (peak (2) in Figs. 4 and 1(a) of the main paper),

which should thus also be considered as a plasmon-type excitation. A simple classical model

discussed above would yield a position of this second peak at about ~Ω2 ≈
√
2~ωp ≈ 14 eV

(using the parameters for Cu). This means that a simple model is unable to explain the

actual position of this higher-lying peak, that results from the interaction of free electron in

the sp band and the entire optical absorption band.

Silver. Silver is the only case in which a well-defined low-energy plasmon develops, as

discussed above. This happens because Ag 4d states are deeper than the d states in the two

other metals. Dielectric and loss functions of silver are thus most sensitive to details of the

band structure, as seen in Figs. 3(b) and 4(b). Indeed, the absorption onset from Ag 4d

states to states above the Fermi level, as seen from ε2, is found by about 0.8 eV too low in

energy in GGA. Because of an overestimated absorption in the blue range, this results in a

dirty green color predicted by GGA (Fig. 5). The center of the first peak in ε2 occurs at

about 4.2 eV in GGA, and the model above would predict that ε1 vanishes at 4.2/
√
2 ≈ 3.0

eV, which is not far from the actual value of 3.2 eV. The plasmon excitation peaks at 3.0

eV, while the experimental plasmon energy is 3.8 eV. Due to the rather high value of ε2 the



7

0.0

0.2

0.4

0.6

0.8

Im
(-

1/
ε) GGA

GW

0 2 4 6 8 10 12
energy (eV)

0.0

0.2

0.4

0.6

Im
(-

1/
ε)

0.0

0.5

1.0

Im
(-

1/
ε)

(a) Cu

(c) Au

(b) Ag

1

2

1
2

1

FIG. 4: Impact of exchange-correlation effects in the band structure on the loss functions of Cu,

Ag, and Au: Solid lines obtained from GGA band structure and dashed lines from GW bands.

peak is much broader than the experimental one.

GW corrections shift Ag 4d states down by about 1.0 eV, and thus the center of the

maximum in ε2 shifts to about 5.0 eV, making silver appear gray (Fig. 5). According to the

phenomenological model, ε1 should vanish at about 5.0/
√
2 ≈ 3.5 eV. The plasmon peak

indeed develops at about 3.55 eV, in much better agreement with experiment. Moreover,

the peak becomes much more narrow and well defined.

As seen in Fig. 3(b), both theory and experiment show that ε1 of Ag also vanishes for

≈ 7.7 eV. Since the value of ε2 is appreciable at this point, this leads to a broad feature

in the loss function with the peak position at about 8.0 eV (peak (2) in Fig. 4(b) and Fig.

1(b) of the main paper). Similar to peak (2) of Cu, this peaks is a result of the interplay

between the free-electron plasmon resonance, sharp absorption edge from Ag 4d bands, as

well as higher lying absorption bands. However, due to the vanishing value of ε1 and the

involvement of sp electrons, we can attribute this peak also to a plasmon resonance.

Gold. The behavior of the complex dielectric function of Au is rather similar to that of

Cu. The position of d states is shallower than in Ag, but slightly deeper than in Cu, as

seen in Fig. 1(c). Gold appears brownish in GGA (Fig. 5). As before, GW corrections of

Ref. [10] move the d states to slightly lower energies, but these corrections are somewhat

less pronounced than in the two previous cases. However, they are sufficient to restore the

golden color (Fig. 5). Both theory and experiment show that ε1 does not become zero for
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FIG. 5: (Color online) Simulated colors of Cu, Ag, and Au using GGA (top) or GW (bottom) band

structures. Reflection was modeled by diffuse scattering using the dielectric function calculated

within the respective theory. The CIE 1931 XYZ scheme was used to model the resulting colors.

The Austrian 5 Euro-cent coin (2006, copper-coated steel), the Lithuanian 10 litas coin (1936, 0.75

fineness silver), and the Swiss 20 franc Goldvreneli (1935, 90% gold) are shown for comparison.

The color of real metals results from a combination of diffuse and specular scattering. The latter

is responsible for the metallic glare.

energies below 5 eV, but, at variance, it attains small negative values right before the onset

of optical transitions from 5d states. As a result, a very weak plasmon-like peak (first hump

in Fig. 4(c)) develops at 2.65 eV, compared to the experimental value of 2.5 eV. In fact, in

the energy range 5.5-6.0 eV, ε2 is fairly large and ε1 vanishes due to the interplay of free

electrons in the sp band, a strong optical absorption band from d states to empty states

above the Fermi level, as well as higher-lying optical absorption bands. As a consequence,

a broad peak in the loss function forms at this energy, which can be also classified as a

plasmon-type resonance.
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II. INTERBAND TRANSITIONS IN MODEL DIELECTRIC FUNCTIONS

Interband transitions can be described by a set of damped harmonic Drude-Lindhard

oscillators with positive frequencies ωj and damping coefficients γj. The corresponding

dielectric function is given by:

ε(ω) = 1 +
∑

j

α2
j

ω2
j − ω2 − iωγj

, (2)

where α2
j = ω2

pfj, and fj is the oscillator strength. Let us assume that the frequencies ωj

are well separated from each other, and that the coefficients γj are small. In the vicinity of

a specific frequency ωk we can then express the dielectric function as:

ε(ω) = β +
α2
k

ω2
k − ω2 − iωγk

, (3)

where β is the contribution from all other oscillators:

β ≈ 1 +
∑

j 6=k

α2
j

ω2
j − ω2

k

. (4)

The loss function around ωk is given by:

L(ω) = Im{−ε−1(ω)} =
1

β2

ωγkα
2
k

(ω̃2
k − ω2)

2
+ ω2γ2

k

, (5)

with

ω̃2
k = ω2

k +
α2
k

β
. (6)

By comparing Eq. (5) and the imaginary part of the dielectric function derived from Eq. (3)

we can draw the following conclusions: The peak height of the loss function is renormalized

by 1/β2 in comparison with the corresponding peak in ε2, and β represents the average value

of ε1 around the peak. Furthermore, the peak is shifted to a higher energy labeled ω̃k. The

distance between ω̃k and ωk decreases with increasing ωk. These relations have been used

in analyzing the results presented in Fig. 2 of the main text.

III. LOCAL-FIELD EFFECTS IN THE RESPONSE FUNCTIONS

Here we discuss, why at small momentum-transfer q, Cu on the one hand, and Ag and

Au, on the other hand, exhibit considerable differences with respect to local-field effects.
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We focus on the loss function in the energy range up to 60 eV as shown in Fig. 1 of the

main article.

At higher energies the dielectric functions of Cu, Ag, and Au are dominated by transitions

from occupied d states. For the energy range, where LFEs are important, the final states

are high above the Fermi energy. In essence, they are perturbed free electron-like states.

One could expect LFEs to be stronger in Cu as its d orbitals are more localized than those

of Ag and Au. Paradoxically, however, the opposite is observed in Fig. 1 of the main article,

and we can show that they are weaker in copper because of its localized d states. Here, we

consider only the RPA response functions for simplicity.

For the present analysis it is convenient to introduce the symmetrized density-reponse

function, [12] defined as:

χ̃0
G,G′(q, ω) =

√

v(q+G)χ0
G,G′(q, ω)

√

v(q+G′) (7)

Using this notation, the inverse dielectric constant without local field effects is

ε−1(Q, ω) =
[

1− χ̃0
G,G(q, ω)

]−1
, (8)

while the corresponding expression including local fields is:

ε−1(Q, ω) =
[

[

1− χ̃0(q, ω)
]−1

]

G,G
. (9)

Let us focus on very small momentum transfers q within the first Brillouin zone (G=0).

Local-field effects become sizeable if the diagonal elements χ̃0
G,G′ become significant. If

off-diagonal elements were small, one could expand Eq. (9) in terms of them.

The expansion of Eq. (9) in χ̃0
G,G’ does not contain linear terms, and to the lowest order

in χ̃0
G,G the inverse dielectric function is given by

[ε−1]00 =
1

1− χ̃0
00

+
1

(1− χ̃0
00)

2

∑

G

χ̃0
0Gχ̃

0
G0

1− χ̃0
G,G

+ ... (10)

(The arguments of the functions have been suppressed.) The first term of the expansion

is the inverse dielectric function without local fields, as given in Eq. (8). Even though the

expansion is not strictly valid for Ag and Au (since LEFs are not small), we find that the

first term in the expansion has the same sign as the exact expression (i.e. it decreases or

increases the loss function in the same way), albeit with a significant overshoot. Eq. (10)
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can be written in a more elegant form, similar to the one proposed in Ref. [13]:

[ε−1]00 =
1

1− χ̃0
00

+
∑

G

F (G)

1− χ̃0
G,G

+ ... (11)

with an appropriately defined weight function F (G). The latter illustrates the coupling of

different dielectric functions without local fields at momenta q+G to yield the full dielectric

function for momentum q.

Actual calculations reveal that the G vectors within the first shell of reciprocal vectors

largely dominate the sum in Eq. (11). We find that the absolute values of the weight function

F (G) are by an order of magnitude larger for Ag and Au than for Cu. This, in turn, can be

traced back to the matrix elements χ̃0
G,0 for Ag and Au being 3-4 times larger than those of

Cu for the energies studied.

To understand why this happens we first note that for q → 0 and G′ = 0 the second

matrix element in Eq. (10) of the main article is proportional to the momentum matrix

element in optical transitions that turn out to be rather similar in Cu, Ag, and Au for

comparable energies. It is the first matrix element in this equation, which is more crucial

for the observed difference between the metals. It can be written (for q = 0) as Bnn′k(G) =
∑

G′′ c∗nk(G)cn′k(G+G′′), where cnk is the expansion of Bloch wavefunctions in plane waves.

The index n refers to occupied states and n′ to unoccupied states (due to the orthogonality

condition Bnn′k(0) = 0). Therefore, the difference between the three metals with respect to

the importance of local fields for energies 0− 60 eV boils down to the different magnitudes

of coefficients Bnn′k(G), which we now explain.

Fig. 1 shows that the unoccupied states are perturbed free electron-like states. As a

result, the plane wave with G ≈
√
2E a.u. carries most weight for a given energy E. For

energy ∼ 70 eV above the bottom of the valence band G ≈ 2.3 a.u. On the other hand, it is

well known from plane wave pseudopotential calculations that in order to accurately describe

the d states of noble metals one needs plane waves with the norm up to (approximately) ∼
7 a.u. (50 Ry) for Ag and Au, and ∼ 9 a.u. (80 Ry) for Cu. Bnn′k(G) introduced above

becomes substantial for unoccupied states n′ with G components that probe the electron

density of d states. Since the density of Cu 3d states is much more localized, unoccupied

states n′ that probe this density are higher in energy than for Ag and Au. However, for

these higher energies the transitions from shallower semi-core states start to overlap with

transitions from Cu 3d states.
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In summary, we have demonstrated that local-field effects in the energy range 0−60 eV are

smaller for Cu than for Ag and Au because the d orbitals of Cu are spatially more localized.

They are thus more extended in the reciprocal space, and are probed by unoccupied states

at larger energies.

IV. NORMALIZATION OF EXPERIMENTAL SPECTRA

The dynamic structure factor s(Q, ω) and the loss function L(Q, ω) defined obey certain

sum rules. Let us first consider a systems where only Neff electrons per unit cell Ω0 contribute

to the electronic excitations, and all the other electrons can be assumed to be frozen. In

that case, the dynamic structure factor obeys the so-called f-sum rule,[3] which is (in atomic

units):
∫ ∞

0

s(Q, ω)ωdω = πneffQ
2, (12)

where neff = Neff/Ω0. The corresponding rule for the loss function is

∫ ∞

0

L (Q, ω) ωdω = 2π2neff. (13)

The sum rule cannot be straightforwardly applied to the calculated and measured loss func-

tions in the energy range 0 − 60 eV discussed in the main body of the paper. While, to

a large extent, for these energies Neff = 11 electrons contribute to the response functions,

the dielectric functions still vary substantially as a function of energy, and excitations from

lower-lying p states start to interfere.

To demonstrate that the f-sum rule indeed holds for theoretical loss functions, thus at-

testing that our theoretical method is robust, in Fig. 6 we plot the loss functions of Ag for

momenta q = 0.026 Å−1 and 2.128 Å−1 in (111) direction up to energies of 130 eV. In this

energy range, excitations from 4d, 5s, as well as 4p levels contribute, and thus Neff = 17.

Computations to obtain loss functions in this large energy range are very demanding. For

energies < 90 eV, the loss function for q = 0.026 Å−1 is larger in absolute magnitude than

that for q = 2.128 Å−1. However, as expected from Eqs. (12) and (13), the loss function at

larger momenta must become larger than that at smaller momentum, and this indeed occurs

above 90 eV in Fig. 6. Because of the prefactor ω in the sum rule, high-energy tails become

very important. For energies above 100 eV, the loss functions do not show any pronounced

features and decay monotonously. For fitting our data, we assumed a power-law decay of
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FIG. 6: (Color online) Loss functions for Ag for two different momentum transfers in the energy

range 0−160 eV: q = 0.026Å−1 (black) and q = 2.128Å−1 (blue). The inset shows the high-energy

tails of the loss functions that are fitted to the function Aωα.

type A/ωα in the energy range 100 − 130 eV. For Ag, the exponent α was very close to 4

for very small Q (inset in Fig. 6), becoming smaller for larger Q (i.e. more extended tail).

The sum rule then holds for the loss function defined in this way. For example, it gives

Neff = 16.81 and 16.94 for the two momenta in Fig. 6, respectively, thus fulfilling the f-sum

rule with an accuracy of 1%. These considerations also show that the decrease of the loss

function for larger momenta as seen in Fig. 3 of the main paper is fully consistent with the

f-sum rule.

For a vanishing q, an additional sum rule, the so-called screening sum rule, applies: [3]

2

π

∫ ∞

0

L(Q = 0, ω)
1

ω
dω = 1 (14)

This sum rule is a consequence of the causality principle, leading to the Kramers-Kroning

relationship. The rule is approximately fulfilled for loss functions with a small finite q. For

example, it is fulfilled with an accuracy of 0.4% for q = 0.026 Å−1 shown in Fig. 6.

Both sum rules can be applied to normalize the experimental loss functions. In principle,

one could apply the screening sum rule for loss functions at very small momenta. Subse-

quently, one could calculate Neff from the application of the f-sum rule and scale all other

loss functions accordingly. However, the interference of excitations from lower-lying p levels

does not allow to apply this procedure. In this work, we have chosen an alternative way

where the integral
∫ ω0

0
L (Q, ω) dω is enforced to have the same value as that based on the
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theoretical function. We have chosen ~ω0 = 50 eV.
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