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Motivation:

e dimensionality enters essentially in possible phases and phase diagram, in particular the genuine 2D phase
transition of Kosterlitz and Thouless is more complicated than in three dimensions already at the lowest order

e enhanced correlation effects expected, visualization of correlations in general much easier in 2D

e important phenomena of condensed matter systems involving 2D physics are not (well) understood, e.g. high
Tc superconductors, 2D metal-insulater transition (disorder)

e 2D-3D cross-over

e quantitative understanding of 2D-physics should be possible using atomic gases

I. INFINITE UNIFORM BOSE GAS IN TWO DIMENSIONS
A. Ideal Bose gas
1. Phase space density

Let us consider an ideal Bose gas in a two dimensional box of linear extension L and volume V = L?2. Using periodic
boundary conditions the energy eigenstates are plane waves of energy
hk? 27
k=5 k:f(nx,ny), Ng,ny =0,£1,£2, ... (1)
where m is the particle mass. The occupation number of each mode k of the gas at temperature 7" and chemical
potential u is given by the Bose-Einstein distribution
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where 8 = 1/kgT. The density, n = N/V, where N is the total number of bosons, writes

1
n = Vzk:Nk (3)
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Introducing the thermal wavelength, A = \/27rh2 /mT, we explicitly obtain the phase space density as a function of
Bu
nA? = —log [1 — ] (7)

Note that there is no Bose condensation in the infinite system, as the chemical potential is a regular function of
temperature and density

Bu = log [1 — 67’”2} (8)



At large phase space density, the number of bosons in the ground state is large

but not macroscopic, No/V — 0.

2. Correlation function

The absence of long range order (BEC) is also seen in the first-order correlation function
g1(r) = (¥ (r)¥(0)) (10)

where U(r) is the annihilation operator of a particle at position r. Expanding in Fourier modes W¥(r) =
V25 axe™ 7T and using Ny, = <a£ak), we have
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Let us discuss the low and high temperature limits.
At high temperature, in the classical regime, nA\? < 1, we have —j3u =~ log # > 1, and the modes are gaussian
distributed

Ny =~ ePlh—e) o nAZe=(RN)?/4m 1 (12)
leading to gaussian decay with length scale A in the correlation function
2
a(r) ~ ne m/N (13)

At low temperature, in the degenerate regime, nA? > 1, we have |Su| ~ e < 1. Now, only the high energy
modes, Bex > 1, are still gaussian distributed, whereas low-energy states are distributed as
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for k* < 2mkpT/h® and fu < 1 (14)

and & = (2m|p|/h?)~1/2 becomes the relevant length scale which determines the long-range behavior of the correlation
function. The Lorentzian form can be integrated

[ s = Kolr/9)/om) (15)
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and leads to an exponential decay of the correlation function for large distances
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Since the correlation length £ increases exponentially with nA? (~ 1/T at fixed density), it may become of the order
of the system size, L, for any finite box at low enough temperature. At this point, the number of particles in the

k = 0 mode is macroscopic
No 1 [€&)?
N (L> (17)

and a cross-over to the Bose condensed phase occurs around £ ~ L. At zero temperature, all particles are in the
condensate.

e with € = (2mkpT/h2) "% e /2 5 ) (16)



8. Classical field approximation

Notice that at high degeneracy, nA?, most of the bosons are occupying the low-energy modes

neA? = )\2/ ﬂNk = logle_1 =n\? +log (1- eﬁ“_l) ~ n\? —log (18)
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and we may also replace the Bose occupation by the occupation of a classical field

N~ N = _ (19)
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A classical field theory with a simple cut-off A = (2mkgT/ hz)l/ 2 for high energy modes therefore describes quantita-
tively the highly degenerate regime using
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where oy (¥(r)) are complex numbers which describe the classical field, the real space is discrete with minimum
distance ~ A~1. The probability distribution for a given field configuration, 1 (r), is then

pl(x)] = Z; e P (22)

where Zo = [ Di(r)e PHet is the partition function.

B. Interactions in quasi2D

The microscopic interaction potential between two atoms is given by v(|7]), where ¥ = (r, z) denotes the distance
vector in three dimension and the interaction part of the full 3d Hamiltonian writes

-
/

V= [ @7 [ @70 @8 ) 7)EE) (23)

Let us now assume that the atoms are tightly confined by a very strong external potential, u(z). Without interactions,
the single particles eigenfunctions write ¥y (r)p, (), where ¥y (r) are plane waves describing the in-plane motion, and
v, (2) is the bound state wavefunction in z with energy EZ. The excitation energy to the first excited state in
z, hw, = Ef — E§, introduces the energy scale which characterizes the quasi-two-dimensional behavior. At low
temperatures, T < hw,, and low chemical potential u < hw,, we expect that the z-motion is frozen: all particles
occupy the ground state in the confined direction with undisturbed density distribution 3(z), of typical extension, a.,
which we define I;1 = /27 [ dzpd(2) (in analogue to gaussian/harmonic oscillator eigenfunctions). We can integrate
out the motion in z to obtain the effective 2D Hamiltonian, and for the quasi-two-dimensional interaction potential
we expect

vg2a(r,1') = /dz/dz'|¢o(2)|2\¢o(2:’)l2v(\/(r -2+ (2 - 2)?) (24)

Atomic gases are characterized by a range of the interaction potential, rg, which is much smaller than the typical
distance between atoms, nrj < 1, so that for typical thermodynamic properties the interaction can be (heuristically)
described by a contact potential

_ drh2a,

m
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where a; is the 3d scattering length. We thus get

2
vizalr) = " g8%(r), g — VAR (26)
m l,
introducing the dimensional coupling constant g which characterizes the strength of the interaction. Notice, that
g < 1 only requires as < [, and the coupling constant is independent of the actual 2D density.

Actually, the above derivation can only give the leading order term in the limit as/l, — 0, since the scattering
wave function of two particles must become isotropic for small distances and higher excitations in z get necessarily
involved. Solving the two-body problem in the quasi-2D geometry, the s-wave scattering amplitude can be derived.
For harmonic confinement the effective 2D scattering amplitude writes

B 8mas/l,
1+ ay/l.[log(Bhw. /7€) + in] /27

f(e) B=~0915 (27)

The logarithmic depends on the energy e = h%g? /m of the colliding particles with relative momentum q is typical for
two dimensional scattering. We can now use any two-dimensional (short range) interaction vgoq(r) which reproduces
the scattering length above.

For a dilute gas, the typical energy is € = kpT’, whereas at zero temperature it is given by the chemical potential,
€ = 2u. In the limit € < A, eV2m(as/ )7 we can further neglect the imaginary part and use a contact potential with
coupling constant g = f(e).

C. Interacting Bose gas: Density and phase fluctuations
In second quantization the Hamiltonian of the interacting system reads

52
H= / d*r0t (r) {—A + gqﬁ(r)qf(r)] U(r) (28)
2m 2
where the coupling constant is chosen to reproduce the effective 2D scattering properties and the Heisenberg equation

of motion gives

0¥ (r,t)

g

= [W(r,t), H] = [—thA + gt (r,t)U(r, t)} (r,t) (29)

For the ideal gas, we have already seen that at low temperatures (high degeneracy), the wave character of the atoms
dominate and the system is well described by classical fields. Similar, we expect that the classical field theory is
accurate for the weakly interacting case (§ — 0)

H —/d% h—2|v\1/(r)|2+
cl — A m

N

|w<r>|4} (30)

where A ~ (mkpT/h?)~'/? indicates that the integrals must be regularized at small distances, e.g. by a lattice (we
will drop A in the following).

At low temperatures, we expect that the potential energy ~ gn?/2 dominates over the kinetic energy < hn /2mA2.
In this region (nA2 > 7/§), the density is approximately gaussian distributed

2
L] ~ xpl- 3y — )]~ exp | =6 [ el (02 = o)’ (31)
The fluctuations of the density around its mean value, n = ((n(r)) = |[1(r)|?) = u/g, are gaussian distributed,
T
A2 = (2(r)) —n? ~ ”kj LA /f (32)

and therefore highly suppressed, An?/n? ~ [gnA?]~! ~ 0. This is in striking contrast to the ideal gas case, where
the kinetic energy can never be neglected at any finite temperature and the Fourier modes are gaussian distributed
and we have (n?) = 2n? with large density fluctuations as in any gas at high temperature. In particular, due to the
interactions, the density fluctuations smoothly vanish with temperature and rejoin An? = 0 for the condensate at
T =0 (in leading order).



1. Phonon Hamiltonian

To include better thermal fluctations at low temperature, we separate amplitude and phase

U(r) = |A(r)]e™ (33)
assuming small density fluctuations, A(r) = \/n[l+ 2a(r)], with |a(r)] < 1 and [d?*ra(r) = 0. Up to quadratic
terms, the Hamiltonian writes

h*n h*n n?
_ ~ 2 1T 2 2.)n 2 2 2 gn”
H, — uN =~ /d o [Ve(r)) +/d r{ 5 [Va(r)]” +2¢gn“a (r)} + [ 5 un} 14 (34)

Minimization with respect to n, fixes the chemical potential u = gn.
The Hamiltonian is diagonal in Fourier space

_i eik-r alr :L o eik-r
—m%jwk , afr) m; K (35)

with ¢} = ¢_k and «af. = a_k since both fields, ¢(r) and a(r), are real. We get (dropping an overall constant term)

Hep — pN = Z|<Pk|2+2(

and we can read of the strengths of the fields at thermal equilibrium

11 1 1
(P—kpx) = 5@, (a_kax) = QW

where the factor 1/2 originates from the fact that we integrate over a real field (for each mode k > 0, we split
Yk = @) + iy in real and imaginary part and get gaussian integrations for ¢} and ¢y ; the factor 1/2 arises, since
two terms, k and —k, of the summation in the Hamiltonian contribute).

) (36)

(37)

2. Density fluctuations

We see that density fluctuations are gapped, (|ax|?) — [2n(2gn]~!, for k — 0, whereas phase fluctuations are
gapless, limg_,o(|pk|?) — 0o. As a consequence, phase fluctuations will develop long-range correlations, and density
fluctuations remain short-ranged

(n(r)n(0)) —n?

2 = 4{a(r)a(0)) (38)
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N 4/ (27)2 2nB(ex +2gn)  nA Ko(r/€) ~ 2 /g , forr>¢ (39)

where & = y/h?/2mgn is the healing length, (£/A)? = (2gnA?)~'. Density correlations (at equal distances) are in
general suppressed

AL; ~ 4(a?(0)) :4/ "k

n k<A (2m)2
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The same result is obtained from the real-space calculation of the density fluctuations in the limit » ~ A~! ~ 0 where
Ko(r/€) ~ —log(r/&) (note that the classical theory is not defined for strictly vanishing distances!).

3. Phase fluctuations

Now, phase fluctuations are more delicate. Let us first look at the phase correlations at zero distance

2 2
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which diverges ~ log L/ for large systems. In addition, correlations are present, even at large distances

- 2 eikr _
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~ 3 [Ko(mr/L) — Ko(m/(LA))] =~ —WlogrA (43)
which grow logarithmically with r.
Let us note, that
_ d’k 1—¢kT 1
G(r)= ngféo/ PRt o logrA (44)
satisfies also the 2D-Poisson equation
V2G(r) = 6%(r) (45)

and therefore corresponds to the Green’s function of the 2D-Coulomb potential.

D. Low T: Algebraic ordered phase (Berenzinskii)

Let us now use the results derived in the last section to calculate the first order correlation function of an interacting
Bose gas at low temperatures. Within the classical field approximation, separating amplitude from phase fluctuations,
we get

g1(r) = (T (1) ¥(0)) = n(y/1+ 2a(r)y/1 + 2a(0)e ¥ =#O) (46)
Using our effective Hamiltonian, Eq.(36), amplitude and phase fluctuations are independent and we get
g1(r) = n {1+ ([a(r) — a(0)]a(0))} (=P =#O) (47)

where we have expanded the root, /1 + 2x ~ 1 + x — 22/2, restricting up to quadratic terms in a. We can directly
use our previous results, Eq. (39), to obtain the contributions of the density fluctuations

An? 1 7T
An2  nA2 r/E |’

1

(0 0O =0 {1+ 1 [Ror/€) — Kalt/€AN] | - 1~ for r 3> € = A/y/Zgn)? (48)

which approaches a constant at large distances. Since we expect that the density correlations grow monotonously from
An? =0 at T = 0 to An? = n? at high temperatures, the amplitude fluctuations never vanishes at large distances
within our approximations.

The term due to phase fluctuations is also rapidly evaluated using that (e®*) = exp[—(u?)/2] assuming that u is
gaussian distributed. We have ([o(r) — ¢(0)]?) = —2([¢(r) — »(0)]¢(0)) and we can use the phase correlation function
calculated above, Eq. (43), to obtain

e o AN LA
(e =200) — exp{p(r) — (O 0)] = exp |56 = () (19)
which determines the algebraic decay of the first order correlation function
AnZ2 A 1/nA2
gl(r) ~ N |:]. — W:| (7") 5 r > g (50)

In the thermodynamic limit (infinite large systems), Bose condensation is therefore absent at any finite temperature,
as g1 approaches zero macroscopic distances. The absence of long range order in two dimensions is a general feature
(theorem of Hohenberg, Mermin and Wagner, and others). However, the algebraic decay is very slow at low tempera-
ture and gives rise to a new (superfluid) phase, distinct from the usual high-temperature disordered phase, as pointed
out by Berezinskii.



Let us discuss the consequences of the algebraic decay for the momentum distribution, obtained by Fourier transform
of g1(r)

N, = /ereik'rgl(r) (51)

Dimensional analysis immediately shows that

nA?
Ni ~ 7([6)\)2_1/”)‘2 , k—0 (52)

By continuation to k = 0 ~ O(L™2), the number of particles in the condensate scales as
N(J ~ I/Q—l/nA2 (53)
Although the condensate can be quite large, it is never macroscopic No/V — 0 for V — oc.
Within our approximations, the algebraic order remains up to arbitrary large temperature, which is clearly an

artifact. At high temperature, we expect Ny ~ N 2 1, so that our low temperature approximations are certainly
invalid for nA? < 1/2. Actually, the transition occurs earlier, as we will discuss later.

Appendix: explicit calculation of (exp[i(¢(r) — ¢(0))])

Let us explicitly calculate (exp[i(¢(r) — ¢(0))]) for the Hamiltonian Eq. (34). Using Fourier space we have

121 2 2
D ilo(r)—p(0)] ,~ [ Pr(Ve(r)]
(expli(o(r) — p(oy)) = LREDETTTE Te T (54)
[ Do(r)e” = J @r[ve)]

B H [ doxdepi; exp [igk [eT — 1] JV1/2 — Bnh?k2|ex|?/2m + c.c.(term with —k)]
o [ dewdpr exp [—28nh>k2|pi|2/2m]
H [ dadbexp [(2ia [cosk - r — 1] JV2 —2ib[sink -r — 1] /VY/2 — Bnh?k?(a® + b?)/m]
[ dadbexp [—Bnh’k2(a? + b2)/m)]

(55)

k>0
21—cosk-r) 1 9
= exp |————5—| =exp | > (l¢x|")(cosk -r—1) (56)
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= xp (fp(r) ~ w(Op(0)] = exp |5 lo(x) — $(0))| 67)

E. Superfluidity

Although Bose condensation and superfluidity frequently occur together (in three dimensions), they are distinct
phenomena. For (ideal and interacting) Bose gases, condensation is absent in the thermodynamic limit at any finite
temperature as shown above. In the following we discuss the description of superfluidity and show that it persists at
low temperatures for interacting gases.

The Hess-Fairbank effect shows that superfluidity is a thermodynamic property. Rotating very slowly the container
of the system, only the normal part of the fluid will rotate with the container in the stationary regime, the superfluid
part will remain at rest. To calculate the superfluid response, we therefore consider first the response to a perturbation
coupling to the momentum in general.

1. Longitudinal and transverse response

The momentum density operator (m times the current operator), 7(r), writes

7(r) = mj(r) = 2% (W) Vo) - [V ()] e(r)} (58)



and the static response of the momentum density with respect to some perturbation coupling to the momentum is a
tensor, x;;(r,r’), proportional to the current-current correlation function

B8
xig (1) = / dr (i (r, )5 (', 7)) (59)

where g(7) is the momentum density at imaginary time 7. For an isotropic system, the tensor is diagonal in Fourier
space

xij (k) = /dzreik'(r_rl)Xij(l“a r’) (60)
and the only tensors we can construct are d;; and k;k;, so that its general form can always be written as
500 = S0+ (3 - 552 ) et (51)

introducing the longitudinal and transverse response, xr(k) and xr(k), respectively.

Imagine that we disturb our system applying our an external field in x direction, and measuring the response in
the same direction, we get x11(k). If the external fields is uniform in the transverse (y,z) direction (it has purely
longitudinal character), we have k, = k., = 0, but k, # 0, so that k,k;/ k? =1, and we get the longitudinal response,
xrL (k). Alternatively we can apply a pure transverse field, uniform in z, but with spatial variation in one of the
transverse directions, e.g. y. We have k, = 0, but ky,, k. # 0, so that k,k,/k* = 0, and we get the transverse
response, x7 (k).

2. Normal density

Now, applying an external perturbation which couples to the momentum, we can properly define superfluidity. Let
us put our gas in a ring geometry, with large (eventually infinite) diameter. Moving the walls of the ring with a very
small velocity, we expect the superfluid fraction to remain at rest, only the normal fluid will move with the walls at
equilibrium. The movement of the walls in the ring with infinite diameter corresponds to a transverse perturbation,
so that xr(k) contains essentially the response of the normal part of the fluid. To eliminate the bulk response, we
better take k — 0 so that

pn =m(n —ng) = xr(k — 0) (62)

where p,, defines the normal mass density. The longitudinal response is different. For the ring it introduces perturba-
tions along the ring. At equilibrium, the whole fluid must react to a longitudinal perturbation to reach a stationary
state and we have

p=mn=xr(k—0) (63)

This relation also follows from the continuity equation of the density and is called f-sum rule.
Note that for classical systems, momenta are always gaussian distributed (assuming velocity independent forces),
so that x;j(k) o« d;; and p, = p. Superfluidity is a pure quantum phenomena.

3. Results for Phonon Hamiltonian/ Spin-wave approzimation

Using density and phase variables, the momentum density of our classical fields writes
7;(r) = hImU* (r)V,; ¥ (r) = h|¥(r)|*Ve(r) (64)
Since the classical fields do not depend on imaginary time, we get for the momentum response
X (1, 0) = B2 [1 + 4{a(r)a(0))] (Vip(r) ¥ 0(0)) (65)

where we have already used our low temperature expansion of the Hamiltonian, quadratic in phase and density
fluctuations. Since density correlations are short ranged, we can neglect the term involving «(r) in the following
where we concentrate on the long-range limit. Inserting the Fourier transform, we get

xz(k) = Ank?k2(|pw|?) = mn,  xr(k) =0, fork—0 (66)



Therefore our system is superfluid in the low-temperature phase and within our approximation the superfluid density,
ng, equals the total density, n = ns. Since the density fluctuations do not modify the superfluid density, nor the
algebraic decay, they are frequently dropped, and only the phase gradient term in the Hamiltonian is left (spin-wave
approximation).

F. T =0: Bogoliubov analysis

Our discussion at finite temperature indicate that Bose condensation should occur at zero temperature, e.g. g1(r) ~
1 for large r in the limit nA?> — oc. However, our classical field theory neglects quantum fluctuations which may
become important in this limit. To include them, we have to quantize our excitation.

Therefore, field and density fluctuations have to satisfy the commutation relation

2la(r), o(r')] = id*(x — 1) (67)

(Note that the phase is ill defined in the continuum theory, and we should rather use a lattice version.) We obtain
this commutation relation, by splitting separating real and imaginary part in the Fourier composition (only k > 0
since it is real), ax = (v + iz_k)/2, and px = (px + ip—x)/h, and quantizing the z’s and p’s as usual: [zk, px] = ih.
Our Hamiltonian then has the standard form of an harmonic oscillator for each mode k

H:Z Pie
2M,

k+£0

(68)

with My, = h? /ey and Myw? /2 = (e +2gn)/2. Introducing the usual annihilation/ creation operator of the harmonic
oscillator, ayx = y/mw/2h(zx + ipk/mw), we diagonalize the Hamiltonian

1
H = g;ohwk (aLak + 2) ,  hwx = ek (e + 2gn) (69)

We can now calculate the first order correlation function, expanding ¥ = n'/2¢*¢\/1 + 2a (the order is imposed to
recover the usual commutation relation for ¥) up to second order ¥ ~ n'/2[1 4 ip — ©?/2][1 + a — a?/2] treating «
and ¢ as operators

gi1(r) = (¥'(r)¥(0)) (70)
~ n{l+ ([a(r) — (0)]a(0) + [#(r) = ¢(0]¢(0) — ip(r)a(0) +ia(r)p(0) — ia(r)e(r) +ip(0)a(0))} (71)
= {1+ ([a(r) = a(0)]e(0) + [p(r) = £(0)]p(0)) } — 6*(r) /2 + 67(0)/2 (72)

where we have used isotropy and the commuation relation. We then get

1) = not 5o S () + R/ = 1] (T - 1) (73)
k£0
1 d?k €k hwy, iker
=nt 5/ (2m)2 {szk * % 1} (ek - 1) )

where we have used that mw?(z?)/2 = (p?)/2m = hw/4 in the ground state of an harmonic oscilator. The integral
converges both for k — 0 and k — oo, so that its value is finite for any distance. In the limit » — oo we approach
the condensate density

1 A’k [ e hewy, g

—p— = [ | =k TR 1— L
no=n 2/(2@2 [2hwk T 9 } ( An (75)

and we have
1 dzk )
— -1 ik-r
g1(r) no —|— [2hwk 2o ] e (76)
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where & = (2§n)_1/2 is the usual healing length of the condensate.

We see, that we have true Bose condensation at zero temperature in two dimensions. We note, that the superfluid
density is equal to the total density, since the phonon excitations have only longitudinal character.

From our phonon calculation, we see that for § 2 4w, the gas may not condense even at zero temperature and a
quantum phase transition to a normal state may occur.



