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Motivation:

• dimensionality enters essentially in possible phases and phase diagram, in particular the genuine 2D phase
transition of Kosterlitz and Thouless is more complicated than in three dimensions already at the lowest order

• enhanced correlation effects expected, visualization of correlations in general much easier in 2D

• important phenomena of condensed matter systems involving 2D physics are not (well) understood, e.g. high
Tc superconductors, 2D metal-insulater transition (disorder)

• 2D-3D cross-over

• quantitative understanding of 2D-physics should be possible using atomic gases

I. INFINITE UNIFORM BOSE GAS IN TWO DIMENSIONS

A. Ideal Bose gas

1. Phase space density

Let us consider an ideal Bose gas in a two dimensional box of linear extension L and volume V = L2. Using periodic
boundary conditions the energy eigenstates are plane waves of energy

εk =
h̄2k2

2m
, k =

2π

L
(nx, ny) , nx, ny = 0,±1,±2, . . . (1)

where m is the particle mass. The occupation number of each mode k of the gas at temperature T and chemical
potential µ is given by the Bose-Einstein distribution

Nk =
1

eβ(εk−µ) − 1
(2)

where β = 1/kBT . The density, n = N/V , where N is the total number of bosons, writes

n =
1

V

∑
k

Nk (3)

=

∫
d2k

(2π)2

1

eβ(h̄2k2/2m−µ) − 1
(4)

=
π

4π2

2mT

h̄2

∫ ∞
0

dx
e−x+βµ

1− e−x+βµ
(5)

= − mT

2πh̄2 log
[
1− eβµ

]
(6)

Introducing the thermal wavelength, λ =
√

2πh̄2/mT , we explicitly obtain the phase space density as a function of

βµ

nλ2 = − log
[
1− eβµ

]
(7)

Note that there is no Bose condensation in the infinite system, as the chemical potential is a regular function of
temperature and density

βµ = log
[
1− e−nλ

2
]

(8)
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At large phase space density, the number of bosons in the ground state is large

N0 '
T

|µ|
' enλ

2

(9)

but not macroscopic, N0/V → 0.

2. Correlation function

The absence of long range order (BEC) is also seen in the first-order correlation function

g1(r) = 〈Ψ†(r)Ψ(0)〉 (10)

where Ψ(r) is the annihilation operator of a particle at position r. Expanding in Fourier modes Ψ(r) =

V −1/2
∑

k ake
−ik·r, and using Nk = 〈a†kak〉, we have

g1(r) =
1

V

∑
k

Nke
ik·r =

∫
d2k

(2π)2

eik·r

eβ(h̄2k2−µ) − 1
(11)

Let us discuss the low and high temperature limits.
At high temperature, in the classical regime, nλ2 � 1, we have −βµ ≈ log 1

nλ2 � 1, and the modes are gaussian
distributed

Nk ≈ eβ(µ−εk) ≈ nλ2e−(kλ)2/4π � 1 (12)

leading to gaussian decay with length scale λ in the correlation function

g1(r) ≈ ne−π(r/λ)2

(13)

At low temperature, in the degenerate regime, nλ2 � 1, we have |βµ| ≈ e−nλ
2 � 1. Now, only the high energy

modes, βεk � 1, are still gaussian distributed, whereas low-energy states are distributed as

Nk ≈
1

β(εk − µ)
=

2mkBT

h̄2

1

k2 + ξ−2
, for k2 � 2mkBT/h̄

2 and βµ� 1 (14)

and ξ = (2m|µ|/h̄2)−1/2 becomes the relevant length scale which determines the long-range behavior of the correlation
function. The Lorentzian form can be integrated∫

d2k

(2π)2

eik·r

k2 + ξ−2
= K0(r/ξ)/(2π) (15)

and leads to an exponential decay of the correlation function for large distances

g1(r) =
2

λ2
K0(r/ξ) ∼ 2

λ2

1√
r/ξ

e−r/ξ, with ξ =
(
2mkBT/h̄

2
)−1/2

enλ
2/2 � λ (16)

Since the correlation length ξ increases exponentially with nλ2 (∼ 1/T at fixed density), it may become of the order
of the system size, L, for any finite box at low enough temperature. At this point, the number of particles in the
k = 0 mode is macroscopic

N0

N
∼ 1

nλ2

(
ξ

L

)2

(17)

and a cross-over to the Bose condensed phase occurs around ξ ∼ L. At zero temperature, all particles are in the
condensate.
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3. Classical field approximation

Notice that at high degeneracy, nλ2, most of the bosons are occupying the low-energy modes

n<λ
2 ≡ λ2

∫
βεk<1

d2k

(2π)2
Nk = log

1− eβµ−1

1− eβµ
= nλ2 + log

(
1− eβµ−1

)
≈ nλ2 − log

e

e− 1
(18)

and we may also replace the Bose occupation by the occupation of a classical field

Nk ≈ N cf
k ≡

1

β(εk − µ)
(19)

which gives

λ2

∫
βεk<1

d2k

(2π)2
N cl

k = log
1 + |βµ|
|βµ|

≈ nλ2 + |βµ| (20)

A classical field theory with a simple cut-off Λ = (2mkBT/h̄
2)1/2 for high energy modes therefore describes quantita-

tively the highly degenerate regime using

Hcl − µN =
∑
k<Λ

(εk − µ)α∗kαk ≈
∑
r

[
− h̄2

2m
|∇ψ(r)|2 − µ|ψ(r)|2

]
(21)

where αk (ψ(r)) are complex numbers which describe the classical field, the real space is discrete with minimum
distance ∼ Λ−1. The probability distribution for a given field configuration, ψ(r), is then

p[ψ(r)] = Z−1
cl e

−β(Hcl−µN) (22)

where Zcl =
∫
Dψ(r)e−βHcl is the partition function.

B. Interactions in quasi2D

The microscopic interaction potential between two atoms is given by v(|~r|), where ~r = (r, z) denotes the distance
vector in three dimension and the interaction part of the full 3d Hamiltonian writes

V3d =
1

2

∫
d3~r

∫
d3~r′Ψ†(~r)Ψ†(~r′)v(|~r − ~r′|)Ψ(~r′)Ψ(~r) (23)

Let us now assume that the atoms are tightly confined by a very strong external potential, u(z). Without interactions,
the single particles eigenfunctions write ψk(r)ϕν(z), where ψk(r) are plane waves describing the in-plane motion, and
ϕν(z) is the bound state wavefunction in z with energy Ezν . The excitation energy to the first excited state in
z, h̄ωz ≡ Ez1 − Ez0 , introduces the energy scale which characterizes the quasi-two-dimensional behavior. At low
temperatures, T � h̄ωz, and low chemical potential µ � h̄ωz, we expect that the z-motion is frozen: all particles
occupy the ground state in the confined direction with undisturbed density distribution ϕ2

0(z), of typical extension, az,

which we define l−1
z =

√
2π
∫
dzϕ4

0(z) (in analogue to gaussian/harmonic oscillator eigenfunctions). We can integrate
out the motion in z to obtain the effective 2D Hamiltonian, and for the quasi-two-dimensional interaction potential
we expect

vq2d(r, r
′) =

∫
dz

∫
dz′|ϕ0(z)|2|ϕ0(z′)|2v(

√
(r− r′)2 + (z − z′)2) (24)

Atomic gases are characterized by a range of the interaction potential, r0, which is much smaller than the typical
distance between atoms, nr3

0 � 1, so that for typical thermodynamic properties the interaction can be (heuristically)
described by a contact potential

v(~r) =
4πh̄2as
m

δ3(~r) (25)
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where as is the 3d scattering length. We thus get

vq2d(r) =
h̄2

m
g̃δ2(r), g̃ =

√
8π
as
lz

(26)

introducing the dimensional coupling constant g̃ which characterizes the strength of the interaction. Notice, that
g̃ � 1 only requires as � lz, and the coupling constant is independent of the actual 2D density.

Actually, the above derivation can only give the leading order term in the limit as/lz → 0, since the scattering
wave function of two particles must become isotropic for small distances and higher excitations in z get necessarily
involved. Solving the two-body problem in the quasi-2D geometry, the s-wave scattering amplitude can be derived.
For harmonic confinement the effective 2D scattering amplitude writes

f(ε) =

√
8πas/lz

1 + as/lz[log(Bh̄ωz/πε) + iπ]/
√

2π
, B ' 0.915 (27)

The logarithmic depends on the energy ε = h̄2q2/m of the colliding particles with relative momentum q is typical for
two dimensional scattering. We can now use any two-dimensional (short range) interaction vq2d(r) which reproduces
the scattering length above.

For a dilute gas, the typical energy is ε = kBT , whereas at zero temperature it is given by the chemical potential,

ε = 2µ. In the limit ε� h̄ωze
√

2π(as/lz)−1

we can further neglect the imaginary part and use a contact potential with
coupling constant g̃ = f(ε).

C. Interacting Bose gas: Density and phase fluctuations

In second quantization the Hamiltonian of the interacting system reads

H =

∫
d2rΨ†(r)

[
− h̄2

2m
∆ +

g

2
Ψ†(r)Ψ(r)

]
Ψ(r) (28)

where the coupling constant is chosen to reproduce the effective 2D scattering properties and the Heisenberg equation
of motion gives

ih̄
∂Ψ(r, t)

∂t
= [Ψ(r, t), H] =

[
− h̄2

2m
∆ + gΨ†(r, t)Ψ(r, t)

]
Ψ(r, t) (29)

For the ideal gas, we have already seen that at low temperatures (high degeneracy), the wave character of the atoms
dominate and the system is well described by classical fields. Similar, we expect that the classical field theory is
accurate for the weakly interacting case (g̃ → 0)

Hcl =

∫
Λ

d2r

{
h̄2

2m
|∇Ψ(r)|2 +

g

2
|Ψ(r)|4

}
(30)

where Λ ∼ (mkBT/h̄
2)−1/2 indicates that the integrals must be regularized at small distances, e.g. by a lattice (we

will drop Λ in the following).
At low temperatures, we expect that the potential energy ∼ gn2/2 dominates over the kinetic energy <∼ h̄

2n/2mΛ2.
In this region (nλ2 � π/g̃), the density is approximately gaussian distributed

p[ψ(r)] ∼ exp[−β(Hcl − µN)] ∼ exp

[
−β
∫
d2r

g

2

(
|Ψ(r)|2 − µ/g

)2]
(31)

The fluctuations of the density around its mean value, n ≡ 〈〈n(r)〉 = |ψ(r)|2〉 = µ/g, are gaussian distributed,

∆n2 ≡ 〈n2(r)〉 − n2 ∼ nkBT

g
, nλ2 � π/g̃ (32)

and therefore highly suppressed, ∆n2/n2 ∼ [gnλ2]−1 ' 0. This is in striking contrast to the ideal gas case, where
the kinetic energy can never be neglected at any finite temperature and the Fourier modes are gaussian distributed
and we have 〈n2〉 = 2n2 with large density fluctuations as in any gas at high temperature. In particular, due to the
interactions, the density fluctuations smoothly vanish with temperature and rejoin ∆n2 = 0 for the condensate at
T = 0 (in leading order).
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1. Phonon Hamiltonian

To include better thermal fluctations at low temperature, we separate amplitude and phase

Ψ(r) = |A(r)|eiϕ(r) (33)

assuming small density fluctuations, A(r) =
√
n[1 + 2α(r)], with |α(r)| � 1 and

∫
d2rα(r) = 0. Up to quadratic

terms, the Hamiltonian writes

Hcl − µN '
∫
d2r

h̄2n

2m
[∇ϕ(r)]

2
+

∫
d2r

{
h̄2n

2m
[∇α(r)]

2
+ 2gn2α2(r)

}
+

[
gn2

2
− µn

]
V (34)

Minimization with respect to n, fixes the chemical potential µ = gn.
The Hamiltonian is diagonal in Fourier space

ϕ(r) =
1√
N

∑
k

ϕke
ik·r, α(r) =

1√
N

∑
k

αke
ik·r (35)

with ϕ∗k = ϕ−k and α∗k = α−k since both fields, ϕ(r) and α(r), are real. We get (dropping an overall constant term)

Hcl − µN =
∑
k

h̄2k2

2m
|ϕk|2 +

∑
k

(
h̄2k2

2m
+ 2gn

)
|αk|2 (36)

and we can read of the strengths of the fields at thermal equilibrium

〈ϕ−kϕk〉 =
1

2

1

βεk
, 〈α−kαk〉 =

1

2

1

β(εk + 2gn)
(37)

where the factor 1/2 originates from the fact that we integrate over a real field (for each mode k > 0, we split
ϕk = ϕ′k + iϕ′′k in real and imaginary part and get gaussian integrations for ϕ′k and ϕ′′k; the factor 1/2 arises, since
two terms, k and −k, of the summation in the Hamiltonian contribute).

2. Density fluctuations

We see that density fluctuations are gapped, 〈|αk|2〉 → [2nβ2gn]−1, for k → 0, whereas phase fluctuations are
gapless, limk→0〈|ϕk|2〉 → ∞. As a consequence, phase fluctuations will develop long-range correlations, and density
fluctuations remain short-ranged

〈n(r)n(0)〉 − n2

n2
= 4〈α(r)α(0)〉 (38)

' 4

∫
d2k

(2π)2

eik·r

2nβ(εk + 2gn)
=

4

nλ2
K0(r/ξ) ∼ 4

nλ2

1

r/ξ
e−r/ξ, for r � ξ (39)

where ξ =
√
h̄2/2mgn is the healing length, (ξ/λ)2 = (2g̃nλ2)−1. Density correlations (at equal distances) are in

general suppressed

∆n2

n2
' 4〈α2(0)〉 = 4

∫
k<Λ

d2k

(2π)2
〈|αk|2〉 =

8m

8πnh̄2β

∫ 1

0

dx

x+ 2gnβ
' 2

nλ2
log

π

g̃nλ2
=

2

nλ2
log[2π(ξ/λ)2] (40)

The same result is obtained from the real-space calculation of the density fluctuations in the limit r ∼ Λ−1 ≈ 0 where
K0(r/ξ) ' − log(r/ξ) (note that the classical theory is not defined for strictly vanishing distances!).

3. Phase fluctuations

Now, phase fluctuations are more delicate. Let us first look at the phase correlations at zero distance

〈ϕ2(r)〉 =
1

V

∑
k6=0

〈|ϕk|2〉 ≈
1

2nλ2

∫ Λ2

π2/L2

d(k2)
1

k2
' 1

2nλ2

∫ Λ2

0

d(k2)
1

k2 + π2/L2
' 1

nλ2
logLΛ/π (41)
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which diverges ∼ logL/λ for large systems. In addition, correlations are present, even at large distances

〈[ϕ(r)− ϕ(0)]ϕ(0)〉 =
1

V

∑
k6=0

〈|ϕk|2〉
[
eik·r − 1

]
=

2π

nλ2

∫
d2k

(2π)2

eik·r − 1

k2 + π2/L2
(42)

' 1

nλ2
[K0(πr/L)−K0(π/(LΛ))] ' − 1

nλ2
log rΛ (43)

which grow logarithmically with r.
Let us note, that

G(r) = lim
L→∞

∫
d2k

(2π)2

1− eik·r

k2 + π2/L2
' 1

2π
log rΛ (44)

satisfies also the 2D-Poisson equation

∇2G(r) = δ2(r) (45)

and therefore corresponds to the Green’s function of the 2D-Coulomb potential.

D. Low T: Algebraic ordered phase (Berenzinskii)

Let us now use the results derived in the last section to calculate the first order correlation function of an interacting
Bose gas at low temperatures. Within the classical field approximation, separating amplitude from phase fluctuations,
we get

g1(r) = 〈Ψ∗(r)Ψ(0)〉 = n〈
√

1 + 2α(r)
√

1 + 2α(0)e−i[ϕ(r)−ϕ(0)]〉 (46)

Using our effective Hamiltonian, Eq.(36), amplitude and phase fluctuations are independent and we get

g1(r) ' n {1 + 〈[α(r)− α(0)]α(0)〉} 〈e−i[ϕ(r)−ϕ(0)]〉 (47)

where we have expanded the root,
√

1 + 2x ' 1 + x − x2/2, restricting up to quadratic terms in α. We can directly
use our previous results, Eq. (39), to obtain the contributions of the density fluctuations

〈|Ψ∗(r)Ψ(0)|〉 ' n
{

1 +
1

nλ2
[K0(r/ξ)−K0(1/(ξΛ))]

}
→ n

[
1− ∆n2

4n2
+

1

nλ2

e−r/ξ

r/ξ

]
, for r � ξ = λ/

√
2g̃nλ2 (48)

which approaches a constant at large distances. Since we expect that the density correlations grow monotonously from
∆n2 = 0 at T = 0 to ∆n2 = n2 at high temperatures, the amplitude fluctuations never vanishes at large distances
within our approximations.

The term due to phase fluctuations is also rapidly evaluated using that 〈eiu〉 = exp[−〈u2〉/2] assuming that u is
gaussian distributed. We have 〈[ϕ(r)−ϕ(0)]2〉 = −2〈[ϕ(r)−ϕ(0)]ϕ(0)〉 and we can use the phase correlation function
calculated above, Eq. (43), to obtain

〈e−i[ϕ(r)−ϕ(0)]〉 = exp [〈[ϕ(r)− ϕ(0)]ϕ(0)〉] = exp

[
− 2π

nλ2
G(r)

]
≈
(

Λ

r

)1/nλ2

(49)

which determines the algebraic decay of the first order correlation function

g1(r) ∼ n
[
1− ∆n2

4n2

](
Λ

r

)1/nλ2

, r � ξ (50)

In the thermodynamic limit (infinite large systems), Bose condensation is therefore absent at any finite temperature,
as g1 approaches zero macroscopic distances. The absence of long range order in two dimensions is a general feature
(theorem of Hohenberg, Mermin and Wagner, and others). However, the algebraic decay is very slow at low tempera-
ture and gives rise to a new (superfluid) phase, distinct from the usual high-temperature disordered phase, as pointed
out by Berezinskii.
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Let us discuss the consequences of the algebraic decay for the momentum distribution, obtained by Fourier transform
of g1(r)

Nk =

∫
d2reik·rg1(r) (51)

Dimensional analysis immediately shows that

Nk ∼
nλ2

(kλ)2−1/nλ2 , k → 0 (52)

By continuation to k = 0 ∼ O(L−2), the number of particles in the condensate scales as

N0 ∼ L2−1/nλ2

(53)

Although the condensate can be quite large, it is never macroscopic N0/V → 0 for V →∞.
Within our approximations, the algebraic order remains up to arbitrary large temperature, which is clearly an

artifact. At high temperature, we expect N0 ∼ Nk >∼ 1, so that our low temperature approximations are certainly
invalid for nλ2 <∼ 1/2. Actually, the transition occurs earlier, as we will discuss later.

Appendix: explicit calculation of 〈exp[i(ϕ(r)− ϕ(0))]〉

Let us explicitly calculate 〈exp[i(ϕ(r)− ϕ(0))]〉 for the Hamiltonian Eq. (34). Using Fourier space we have

〈exp[i(ϕ(r)− ϕ(0))]〉 =

∫
Dϕ(r)ei[ϕ(r)−ϕ(0)]e−

h̄2n
2m

∫
d2r[∇ϕ(r)]2∫

Dϕ(r)e−
h̄2nβ
2m

∫
d2r[∇ϕ(r)]2

(54)

=
∏
k>0

∫
dϕkdϕ

∗
k exp

[
iϕk

[
eik·r − 1

]
/V 1/2 − βnh̄2k2|ϕk|2/2m+ c.c.(term with −k)

]∫
dϕkdϕ∗k exp

[
−2βnh̄2k2|ϕk|2/2m

] (55)

=
∏
k>0

∫
dadb exp

[
(2ia [cosk · r− 1] /V 1/2 − 2ib [sink · r− 1] /V 1/2 − βnh̄2k2(a2 + b2)/m

]∫
dadb exp

[
−βnh̄2k2(a2 + b2)/m

]
=
∏
k>0

exp

[
− 2

V

1− cosk · r)

2βnh̄2/2m

]
= exp

 1

V

∑
k6=0

〈|ϕk|2〉(cosk · r− 1)

 (56)

= exp [〈[ϕ(r)− ϕ(0)]ϕ(0)〉] = exp

[
−1

2
〈[ϕ(r)− ϕ(0)]2〉

]
(57)

E. Superfluidity

Although Bose condensation and superfluidity frequently occur together (in three dimensions), they are distinct
phenomena. For (ideal and interacting) Bose gases, condensation is absent in the thermodynamic limit at any finite
temperature as shown above. In the following we discuss the description of superfluidity and show that it persists at
low temperatures for interacting gases.

The Hess-Fairbank effect shows that superfluidity is a thermodynamic property. Rotating very slowly the container
of the system, only the normal part of the fluid will rotate with the container in the stationary regime, the superfluid
part will remain at rest. To calculate the superfluid response, we therefore consider first the response to a perturbation
coupling to the momentum in general.

1. Longitudinal and transverse response

The momentum density operator (m times the current operator), π(r), writes

π(r) = mj(r) =
h̄

2i

{
Ψ†(r)[∇ψ(r)]− [∇Ψ†(r)]Ψ(r)

}
(58)
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and the static response of the momentum density with respect to some perturbation coupling to the momentum is a
tensor, χij(r, r

′), proportional to the current-current correlation function

χij(r, r
′) =

∫ β

0

dτ〈πi(r, 0)πj(r
′, τ)〉 (59)

where g(τ) is the momentum density at imaginary time τ . For an isotropic system, the tensor is diagonal in Fourier
space

χij(k) =

∫
d2reik·(r−r

′)χij(r, r
′) (60)

and the only tensors we can construct are δij and kikj , so that its general form can always be written as

χij(k) =
kikj
k2

χL(k) +

(
δij −

kikj
k2

)
χT (k) (61)

introducing the longitudinal and transverse response, χL(k) and χT (k), respectively.
Imagine that we disturb our system applying our an external field in x direction, and measuring the response in

the same direction, we get χ11(k). If the external fields is uniform in the transverse (y,z) direction (it has purely
longitudinal character), we have ky = kz = 0, but kx 6= 0, so that kxkx/k

2 = 1, and we get the longitudinal response,
χL(k). Alternatively we can apply a pure transverse field, uniform in x, but with spatial variation in one of the
transverse directions, e.g. y. We have kx = 0, but ky, kz 6= 0, so that kxkx/k

2 = 0, and we get the transverse
response, χT (k).

2. Normal density

Now, applying an external perturbation which couples to the momentum, we can properly define superfluidity. Let
us put our gas in a ring geometry, with large (eventually infinite) diameter. Moving the walls of the ring with a very
small velocity, we expect the superfluid fraction to remain at rest, only the normal fluid will move with the walls at
equilibrium. The movement of the walls in the ring with infinite diameter corresponds to a transverse perturbation,
so that χT (k) contains essentially the response of the normal part of the fluid. To eliminate the bulk response, we
better take k → 0 so that

ρn ≡ m(n− ns) = χT (k → 0) (62)

where ρn defines the normal mass density. The longitudinal response is different. For the ring it introduces perturba-
tions along the ring. At equilibrium, the whole fluid must react to a longitudinal perturbation to reach a stationary
state and we have

ρ = mn = χL(k → 0) (63)

This relation also follows from the continuity equation of the density and is called f-sum rule.
Note that for classical systems, momenta are always gaussian distributed (assuming velocity independent forces),

so that χij(k) ∝ δij and ρn = ρ. Superfluidity is a pure quantum phenomena.

3. Results for Phonon Hamiltonian/ Spin-wave approximation

Using density and phase variables, the momentum density of our classical fields writes

πi(r) = h̄ImΨ∗(r)∇iΨ(r) = h̄|Ψ(r)|2∇ϕ(r) (64)

Since the classical fields do not depend on imaginary time, we get for the momentum response

χij(r, 0) = βn2h̄2 [1 + 4〈α(r)α(0)〉] 〈∇iϕ(r)∇jϕ(0)〉 (65)

where we have already used our low temperature expansion of the Hamiltonian, quadratic in phase and density
fluctuations. Since density correlations are short ranged, we can neglect the term involving α(r) in the following
where we concentrate on the long-range limit. Inserting the Fourier transform, we get

χL(k) = βnh̄2k2〈|ϕk|2〉 = mn, χT (k) = 0, for k → 0 (66)
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Therefore our system is superfluid in the low-temperature phase and within our approximation the superfluid density,
ns, equals the total density, n = ns. Since the density fluctuations do not modify the superfluid density, nor the
algebraic decay, they are frequently dropped, and only the phase gradient term in the Hamiltonian is left (spin-wave
approximation).

F. T = 0: Bogoliubov analysis

Our discussion at finite temperature indicate that Bose condensation should occur at zero temperature, e.g. g1(r) ∼
1 for large r in the limit nλ2 → ∞. However, our classical field theory neglects quantum fluctuations which may
become important in this limit. To include them, we have to quantize our excitation.

Therefore, field and density fluctuations have to satisfy the commutation relation

2n[α(r), ϕ(r′)] = iδ2(r− r′) (67)

(Note that the phase is ill defined in the continuum theory, and we should rather use a lattice version.) We obtain
this commutation relation, by splitting separating real and imaginary part in the Fourier composition (only k > 0
since it is real), αk = (xk + ix−k)/2, and ϕk = (pk + ip−k)/h̄, and quantizing the x’s and p’s as usual: [xk, pk] = ih̄.
Our Hamiltonian then has the standard form of an harmonic oscillator for each mode k

H =
∑
k6=0

p2
k

2Mk
+

1

2
Mkω

2
kx

2
k (68)

with Mk = h̄2/εk and Mkω
2
k/2 = (εk +2gn)/2. Introducing the usual annihilation/ creation operator of the harmonic

oscillator, ak =
√
mω/2h̄(xk + ipk/mω), we diagonalize the Hamiltonian

H =
∑
k 6=0

h̄ωk

(
a†kak +

1

2

)
, h̄ωk =

√
εk (εk + 2gn) (69)

We can now calculate the first order correlation function, expanding Ψ = n1/2eiϕ
√

1 + 2α (the order is imposed to
recover the usual commutation relation for Ψ) up to second order Ψ ' n1/2[1 + iϕ − ϕ2/2][1 + α − α2/2] treating α
and ϕ as operators

g1(r) = 〈Ψ†(r)Ψ(0)〉 (70)

' n {1 + 〈[α(r)− α(0)]α(0) + [ϕ(r)− ϕ(0]ϕ(0)− iϕ(r)α(0) + iα(r)ϕ(0)− iα(r)ϕ(r) + iϕ(0)α(0)〉} (71)

= n {1 + 〈[α(r)− α(0)]α(0) + [ϕ(r)− ϕ(0)]ϕ(0)〉} − δ2(r)/2 + δ2(0)/2 (72)

where we have used isotropy and the commuation relation. We then get

g1(r) = n+
1

2V

∑
k6=0

[
〈x2

k〉+ 〈p2
k〉/h̄

2 − 1
] (
eik·r − 1

)
(73)

= n+
1

2

∫
d2k

(2π)2

[
εk

2h̄ωk
+
h̄ωk
2εk
− 1

] (
eik·r − 1

)
(74)

where we have used that mω2〈x2〉/2 = 〈p2〉/2m = h̄ω/4 in the ground state of an harmonic oscilator. The integral
converges both for k → 0 and k → ∞, so that its value is finite for any distance. In the limit r → ∞ we approach
the condensate density

n0 = n− 1

2

∫
d2k

(2π)2

[
εk

2h̄ωk
+
h̄ωk
2εk
− 1

]
= n

(
1− g̃

4π

)
(75)

and we have

g1(r) = n0 +
1

2

∫
d2k

(2π)2

[
εk

2h̄ωk
+
h̄ωk
2εk
− 1

]
eik·r (76)

→ n0 +

∫
d2k

(2π)2

1√
8ξk

eik·r = n0 +
1√

24πξr
, r →∞ (77)
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where ξ = (2g̃n)−1/2 is the usual healing length of the condensate.
We see, that we have true Bose condensation at zero temperature in two dimensions. We note, that the superfluid

density is equal to the total density, since the phonon excitations have only longitudinal character.
From our phonon calculation, we see that for g̃ >∼ 4π, the gas may not condense even at zero temperature and a

quantum phase transition to a normal state may occur.


