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In this lecture I briefly review the basics of second quantization and discuss two simple applications. First, I will
derive the Hartree-Fock mean-field equation of a dilute Bose gas at finite temperature from a variational principle.
Within this approximation, Bose-Einstein condensation is expected exactly at the same critical temperature than an
ideal gas at the same density. In order to improve the description of dilute Bosons at low (zero) temperature, we will
discuss the Bogoliubov approximation.

A. Reminder on second quantization

Whereas explicit symmetric or antisymmetric wave functions to describe few-body Bose or Fermi systems can be still
written down, this description gets lengthy and cumbersome for many-body ”bulk” systems. The actual calculation
of the partition function of ideal Bose and Fermi gases was much simpler, as only the single particle energies and their
occupation number were involved. The formalism of second quantization provides the formal framework for a more
compact description basically based on the representation of the wave function in terms of occupation numbers.

1. Creation and annihilation operators

From studying the harmonic oscillator, we should be familiar with creation and annihilation operators which allowed
us to construct states of energy n times the fundamental energy fw of the oscillator from the state with n—1 times that
energy. We now describe our many-body wave function by a set of single particle wave functions with corresponding
single particle energies ¢, e.g. the eigenstates and energies of a non-interacting single particle Hamiltonian. A basis
for our many-body states can the be build out of states that are simply described by their occupation number, ng, of
each energy level of energy ej
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where |n; = 0) is simply the empty (vaccum) state. For Bosons, we can now introduce creation and annihilation
operators similar to the harmonic oscillator, but for each single particle state, which can be occupied by one or more
than particles
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We can explicitly verify that
[ak,al], = akaz - aZak =1 (4)
and
lak, al]- = Sk, lag, an]- = [af,al,]- =0 (5)

as the order of adding or removing particles does not enter for bosons.
For Fermions, we have to consider that only 0 or 1 fermion can occupy one single particle state, so that we have
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a2|51:nl,eg:ng,...,sk:nkzo,...> = leyini,e0: N9y, N =1,..0) (8)
aL|612n1,82an,...,Eankzl,...> =0 (9)



and we get anti-commutation relations
[ak,aL]Jr = {ak,az} = akaL + aLak =1 (10)

as well as a? = (az)2 = 0. Note that the assumption of bosonic commutation relations, Eq. (5), will lead to

contradictions. For consistency, we must use anti-commutation rules for the remaining combinations
T
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The anticommutation expresses that the antisymmetrization of a state with m labels, depend on the order of the m
labels. Interchanging two labels will introduce a minus sign. (The basis states in the occupation number representation,
Eq. (1), are associated to a Slater determinant for Fermions, whereas the symmetrized states associated for Bosons
do not introduce signs.)

2. Field operators

Using creation and annihilation operators, we immediately see that alak gives the number of particles in the state
k. Similar, we get simple expressions for all diagonal only involving this occupation number, e.g. the total number
of particles in the system, the total energy of a non-interacting system with single particle energies ;. Using the
corresponding single particle wavefunctions, ¢ (r), we can define general field operators

u(r) = Y gl (12)
k

wi(r) = 3 pi(r)al (13)
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which satisfy
[U(r), O ()]s =6(r — 1), [¥(r), ()]s = [TT(r), ¥ =0 (14)
where we have used the completeness of single particle states ), ¢y (r)px(r’) = 6(r —r’). The operator ¥(r) and
UT(r) simply describe the annihilation and creation of a particle at position r, and
1
r1,T2,...,TN) = ﬁ‘l’T(rN) - Wl (rg) Wl (ry)]0) (15)

is the state of N particles with one at ry, one at rs, etc.
A general N-body wave function can then be build via
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with
1
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is properly (anti)symmetrized.

8. Operators in second quantization

Since field operators provide a simple tool to manipulate matrix elements in the occupation number representation,
it is useful to express the general operators in terms of field operators. The expressions are rather intuitive, the proofs
can be found in any quantum mechanics text book. The density of particles at r is given by

p(r) = i(x)P(r) (18)

since the definition of the field operators above, merely presents a change of the basis vectors of single particle states
from k to r.



Similar, the kinetic energy is given in terms of free-particle (plane-wave) states
k2 n
T = ; %akak (]‘9)
which can be written as
T= ——/drqﬁ (r)V3U(r) /dr VI (1) [VO(r)] (20)

The potential energy is diagonal in position space, and we have

V= % / dry / drav(r — 19)p(r1)p(rs) — w / p(r) (21)

which gives
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Note that the order of the operators is important.

B. Bogoliubov approximation

Up to now, we have essentially approximated the state of the system by an essentially non-interacting one, the
interaction was treated within a mean-field approximation. In particular at zero temperature, we described the
system by a pure condensate — all particles occupied the same single particle state, £ = 0 for a homogeneous system;
within this ansatz, the occupation of this state Ny is always equal to V. Let us look at the interaction energy again,
this time in Fourier space,
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using a pseudo-potential in Fourier space as discussed previously. Since Ny = agao is expected to be the only

occupation which is extensive, we have aj ~ az ~ N71/2

condensate operators

ag for k # 0, and we keep only terms which contain

N2
vV~ 90°Y0 + 7 [2aLakNo + alaikaoao + a%agaka,k} (24)
2V 2V
k£0
The total Hamiltonian then writes
N2 k2
H= goXo + Z 7@Lak + g—aka No| + == go {alaikaoao + a:r)agaka_k} (25)
2y = 2m 4 2y 20

Let us now introduce new operators by and bL in order to diagonalize the Hamiltonian.
Let us sketch first the various steps.

e Frequently, ag is replaced by the number /Ny in the Hamiltonian. This step violates particle number con-
servation of the Hamiltonian. It is not difficult to avoid this step, e.g. we can write the kinetic energy of
non-condensed particles as

k2 k2
Z %alak = Z N, aLaoazr)ak + O(1/N) (26)
k40
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with the same commutation relation to leading order, [ay, &J{(] =1+ O(1/N). In the following we drop the

distinction between ayx and ay.



e We can rewrite the Hamiltonian in the form
D11 D12 ak
H=C § I a_ 28
+ = (0 a-1c) (D21 Dy ) \a', (28)

We therefore want to diagonalize the matrix under the constraint that the new basis, a linear combination of
ax and aT_k, remain bosonic creation and annihilation operators.

e Therefore, we introduce new operators by as linear superpositions of ax and aT_k
bk = Bk (ak - AkaT_k) (29)
where Ay and By are real and depend only on k = |k|. We then have

ax b + Akbik) (30)
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e Imposing the condition [b, bJ{(] =1+ O(1/N) we can fix By.
e Writing the Hamiltonian in terms of by we obtain the following form
H=Co+Y [cl(k) + Co(k)blby + C5 (k) (bltbik + bkb,k)] (31)
k£0

This Hamiltonian is diagonalized by setting Cs(k) = 0 and Ca(k) > 0 to obtain positive excitation energies.
From these conditions we can determines Ay.

Explicitelty, this will give By, = (1 — A?)~'/2, and the Hamiltonian writes
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k#£0 k

1 k2
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k0 k
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where n = N/V is the density. We can now eliminate the off diagonal terms in the last line choosing

(2’“; +gon> AH%(HA@ =0 (33)
Ai+2[k2+gon]Ak+1:0 (34)
gon | 2m
or
2
A = goin —% — gon \/(;; +gon) — (gon)? (35)
k,Q
= —zx—-1x+vz(x+2), z= Smgon (36)

‘We then have
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The coefficient in front of bzbk must be positive, since excitation energies must be positive for the ground state energy.
In particular for k — 0, since implies that 1 — A7 must be positive, which can only be true if we chose the positive
sign in front of the square root, in Ag, Eq. (36). We therefore have

-1 2z(x+2)£2(x+1)Va(x+2) 1 (v+1)/x(r+2)
(-4 = dr(x+2) =3t 2x(x +2) (38)

Resubstituting, we get for the Hamiltonian

H=Fy+ Z wkbLbk (39)
k£0

where FEj is the ground state. Explicitly, we get

k2 [ k2
Wg = \/2m [2m + 290n0:| (40)

where ng = No/V = n+ O(co/N) which gives a linear (sound-wave) spectrum at small k, and a free particle behavior
at large momenta. Further

gon 1 k2
Eo/N =20 — N2 - 41
o/ 9 2N { o + gon Wk:| (41)

Notice that the summation on the rhs does not converge for large k since

k2 4dmgon 12 g2 14mgon 1 [4mgon 2 k2 2mgin?
=—1 ~— |1+ = - = el = — — k — oo(42
Yk o [ 32 o |P T2 T a\ e o T T T o(42)
However, notice that we cannot use a simple constant gg for the bare potential but rather
go = 9 o g |1+ 9 Z 4m (43)
T 1-Cak. \% q?

q#0

and the divergence is cancelled by using gon/2 up to second order in g ~ a where a is the physically relevant scattering
length. The ground state energy then writes

2 12
Bo/N = T2 {1 + T:\/nai‘ /ﬂ] (44)

The non-condensed number of particles is given by

W= S Olafoxlo)s (45)

k#£0

where the Bogoliubov vacuum |0) g is determined by

bk|0)p =0 (46)
Therefore, we get
A2 1 + A2
== Z 7 (0 (bL + Aub_ ) (bk n Akb_k) 0)5 = = Z { <o|bT biel0) 5 (47)
k0 k0

where we have used the commutation relation. At zero temperature, the last term vanishes and we can evaluate the
summation (which is finite since Ay ~ 1/k? for large k). We get

n' = ngx/nai”/w (48)



so that even at zero temperature not all particles are in the condensate

no/nzl—n’/nzl—gx/nﬁ/w (49)

The Bogoliubov vacuum |0)p is given by

bkl0)p =0 (50)
Since we have
b ~ a(];ak - Akaikao (51)
the structure of the vaccum is given by
N/2
0y ~ | afal = > Agalyal| 10) (52)
k#£0

in leading order Ny ~ N as can be verified directly. The many-body wave function is then represented by a Jastrow
function in position space

\I/N(I‘l,...,I‘N) NH[].-‘rf(T”)] (53)
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where f(r) ~ >, Are’™ ™. Since Aj ~ g/k? for large k we recover the a/r divergences of the s-wave two-body wave
function at small distances.
At finite temperature, the Bogoliubov modes are thermally occupied

1

T —
() = (54)
and the non-condensed fraction of particles will grow monotonously with increasing temperature, T, unless n’ = n and
the normal, non-condensed, state with ng = 0 is reached. However, close to the critical temperature, the validity of

the Bogoliubov approximation breaks down, and corrections have to be included to describe the transition correctly.




