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In this problem set we are going to deal with the generalisation of an important concept like the
entanglement from pure states to density matrices.

Problem 1 : An entanglement witness for statistical mixtures

1. Let’s consider a separable state on two subsystems described by the density matrix
1 2
k

and an observable A; : H; — H; of subsystem 1. In this case its action on the whole
subsystem is A = A; ® ly. For this reason we have
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since Tr ﬁ,(€2)> = 1 for a density matrix. This means that the expectation value of an

observable acting only on a subsystem is independent from other subsystems if the density
matrix is separable.

2. Formally the density matrix of the state |gnz) is

papc = |Yanz) (Yanz| (6)
- %(|000>+|111))((000|+<111|) (7)

that is a 8 X 8 matrix with % at each corner of it.

The density matrix associated to the statistical mixture describing the subsystem formed by
the qubits owned by Bob and Charlie can be obtained by making the partial trace over the



Alice subsystem:

where po

PBC

of Eq. 1, so it is separable.
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= |0;) (0;] and P = |1,;) (1;]. We notice that the last line has the same structure

3. For a separable density matrix p, the partial transpose operation (wrt the second subsystem)

acts like

and the transpose matrices still have the properties of a density matrix, namely
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so pl® is still a separable density matrix.

4. As before, the density matrix for A, B, C' and D has the form papcp = |¥s) (¥s].

calculate the partial trace on A we have
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If we



ppep = (04| pasep|0a) + (14| pasep|la)
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Now if we apply the partial transpose wrt to a single subsystem and we prove that it is no
longer a density matrix, we have satisfied the sufficient condition for a density matrix to be

entanlged. In order to do this, let’s calculate the partial transpose wrt C|
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that is a matrix of which is easy to calculate the eigenvalues in diagonal blocks. From both
the first and the second blocks that have non diagonal elements we have that the secular
equation is A2 — 1 = 0 and gives two eigenvalues A = £1. For this reason, the partially-
transposed matrix isn’t positive semi-definite and it’s sufficient to affirm that ppcp describes

an entangled state.

Problem 2 : Entanglement entropy

1. Since p is a diagonal density matrix, we have that



In (p) = <ln(():v) . (10_ x)) (23)

So the von Neumann density has the form
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As a first thing, we can notice that, since lim zIn(x) = 0, we have S(0) = S(1) = 0. Then

x—0
we can calculate the derivative wrt x
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and studying the sign we get

e ifr=05—(1—x)/r=1and 5'(x) =0
e ifr <05—(1—2x)/z>1and S (x)>0
e ifz>05—(1—2x)/z<1and S (z)<0
so S(x) has a maximum in x = 3, that is S(5) = In(2). We can note also, by substituting

1 — x — y, that the function is symmetric wrt x = % The plot of the von Neumann entropy
can be seen in Fig. 1
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Figure 1: Von Neumann entropy as a function of the parameter x

To know for which value of z the state is pure, we have to calculate the purity Tr(p?) =
22 + (1 — 2)? and impose it equal to 1. This has solution = 0,1 and for these values we
have Spye(z) = S(0) = S(1) = 0 as it should be. instead, when z = 1, we have the maximum
value of entropy, in this case, we have a statistical mixture of |0)(0| and |1)(1| with equal
weights. In this sense, we can interpret S(z) as a measure of "how mixed" is the state given.
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2. Given the state 1) and its Schmidt decomposition
W) =) Alaj) ®@[b;), with\; €R, 0< XA <1, and Y A =1. (27)
j=1,2 J=12

we can compute the the reduced density matrices ps and pg:
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and in their basis, respectively {|a1), |as)} and {|b1), |bs)}, we obtain
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3. From the expression above, we have S(pa) = S(pp) since a trace operation is independent
from the basis in which it is done. This makes sense, since the "measure of mixture" can’t
be different from subsystem to subsystem.

e If [¢)) is a separable state, then the Schmidt decomposition is |¢)) = |a) ® |b), that is the
case A\; = 1 and Ay = 0, from which S(p4) = S(pg) = 0 (recalling what we have seen in
the first point).

e if |¢) is a maximally entangled state, then for a couple of basis we can write [¢)) =
(la1) ® |b1) + |as) ® [b2))/2 and we compute S(pa) = S(pp) = In(2) = Smax

This means that given a maximally entangled state, it partial trace on a subsystem gives a
maximally mixed density matrix. Since S(p4) measures "how mixed" is the state py , it can
be considered also a measure of "how entangled" is the original state p = [1)(¢|



