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In this problem set we are going to deal with the generalisation of an important concept like the
entanglement from pure states to density matrices.

Problem 1 : An entanglement witness for statistical mixtures

1. Let’s consider a separable state on two subsystems described by the density matrix

ρs =
∑
k

pk ρ
(1)
k ⊗ ρ

(2)
k , (1)

and an observable A1 : H1 → H1 of subsystem 1. In this case its action on the whole
subsystem is A = A1 ⊗ I2. For this reason we have

〈
Â
〉

= Tr
(
Âρ̂
)

(2)

=
∑
k

pkTr
(
Âρ̂

(1)
k ⊗ ρ̂

(2)
k

)
(3)

=
∑
k

pkTr
(
Â1ρ̂

(1)
k

)
Tr
(
ρ̂
(2)
k

)
(4)

=
∑
k

pkTr
(
Â1ρ̂

(1)
k

)
(5)

since Tr
(
ρ̂
(2)
k

)
= 1 for a density matrix. This means that the expectation value of an

observable acting only on a subsystem is independent from other subsystems if the density
matrix is separable.

2. Formally the density matrix of the state |ψGHZ〉 is

ρ̂ABC = |ψGHZ〉 〈ψGHZ| (6)

=
1

2
(|000〉+ |111〉) (〈000|+ 〈111|) (7)

that is a 8× 8 matrix with 1
2
at each corner of it.

The density matrix associated to the statistical mixture describing the subsystem formed by
the qubits owned by Bob and Charlie can be obtained by making the partial trace over the
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Alice subsystem:

ρ̂BC = TrA [ρABC ] (8)
= 〈0A| ρ̂ABC |0A〉+ 〈1A| ρ̂ABC |1A〉 (9)

=
1

2
(|00〉 〈00|+ |11〉 〈11|) (10)

=
1

2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 (11)

=
1

2

(
ρ̂
(B)
0 ⊗ ρ̂(C)

0 + ρ̂
(B)
1 ⊗ ρ̂(C)

1

)
(12)

where ρ̂(j)0 = |0j〉 〈0j| and ρ̂(j)1 = |1j〉 〈1j|. We notice that the last line has the same structure
of Eq. 1, so it is separable.

3. For a separable density matrix ρ̂s the partial transpose operation (wrt the second subsystem)
acts like

ρ̂TB
s =

∑
k

ρ̂
(A)
k ⊗

(
ρ̂
(B)
k

)T
(13)

and the transpose matrices still have the properties of a density matrix, namely

Tr
(
ρ̂
(B)
k

)T
= Tr

(
ρ̂
(B)
k

)
= 1 (14)((

ρ̂
(B)
k

)T)†

=
(
ρ̂
(B)
k

)T
(15)(

ρ̂
(B)
k

)T
and ρ̂

(B)
k have the same proper values (16)

so ρ̂TB
s is still a separable density matrix.

4. As before, the density matrix for A, B, C and D has the form ρ̂ABCD = |ψS〉 〈ψS|. If we
calculate the partial trace on A we have
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ρ̂BCD = 〈0A| ρ̂ABCD |0A〉+ 〈1A| ρ̂ABCD |1A〉 (17)

=
1

4
(|000〉 〈000|+ |000〉 〈011|+ |011〉 〈000|+ |011〉 〈011|)

+
1

4
(|100〉 〈100| − |100〉 〈111| − |111〉 〈100|+ |111〉 〈111|) (18)

=
1

4



1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 1


(19)

Now if we apply the partial transpose wrt to a single subsystem and we prove that it is no
longer a density matrix, we have satisfied the sufficient condition for a density matrix to be
entanlged. In order to do this, let’s calculate the partial transpose wrt C,

ρ̂TC
BCD =

1

4
(|000〉 〈000|+ |010〉 〈001|+ |001〉 〈010|+ |011〉 〈011|) (20)

+
1

4
(|100〉 〈100| − |110〉 〈101| − |101〉 〈110|+ |111〉 〈111|) (21)

= =
1

4



1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 1


(22)

that is a matrix of which is easy to calculate the eigenvalues in diagonal blocks. From both
the first and the second blocks that have non diagonal elements we have that the secular
equation is λ2 − 1 = 0 and gives two eigenvalues λ = ±1. For this reason, the partially-
transposed matrix isn’t positive semi-definite and it’s sufficient to affirm that ρ̂BCD describes
an entangled state.

Problem 2 : Entanglement entropy

1. Since ρ̂ is a diagonal density matrix, we have that
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ln (ρ̂) =

(
ln (x) 0
0 ln (1− x)

)
(23)

So the von Neumann density has the form

S (x) = −Tr
[(
x ln (x) 0

0 (1− x) ln (1− x)

)]
(24)

= − [x ln (x) + (1− x) ln (1− x)] (25)

As a first thing, we can notice that, since lim
x→0

x ln(x) = 0, we have S(0) = S(1) = 0. Then
we can calculate the derivative wrt x

dS (x)

dx
= ln

(
1− x
x

)
(26)

and studying the sign we get

• if x = 0.5→ (1− x)/x = 1 and S ′(x) = 0

• if x < 0.5→ (1− x)/x > 1 and S ′(x) > 0

• if x > 0.5→ (1− x)/x < 1 and S ′(x) < 0

so S(x) has a maximum in x = 1
2
, that is S(1

2
) = ln(2). We can note also, by substituting

1− x→ y, that the function is symmetric wrt x = 1
2
. The plot of the von Neumann entropy

can be seen in Fig. 1

Figure 1: Von Neumann entropy as a function of the parameter x

To know for which value of x the state is pure, we have to calculate the purity Tr(ρ̂2) =
x2 + (1 − x)2 and impose it equal to 1. This has solution x = 0, 1 and for these values we
have Spure(x) = S(0) = S(1) = 0 as it should be. instead, when x = 1

2
, we have the maximum

value of entropy, in this case, we have a statistical mixture of |0〉〈0| and |1〉〈1| with equal
weights. In this sense, we can interpret S(x) as a measure of "how mixed" is the state given.
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2. Given the state |ψ〉 and its Schmidt decomposition

|ψ〉 =
∑
j=1,2

λj|aj〉 ⊗ |bj〉, with λj ∈ R , 0 ≤ λj ≤ 1 , and
∑
j=1,2

λ2j = 1 . (27)

we can compute the the reduced density matrices ρ̂A and ρ̂B:

ρ̂A = TrB [|ψ〉 〈ψ|] (28)

=
∑
j

〈bj|ψ〉〈ψ|bj〉 (29)

=
∑
j,k

λ2k|ak〉〈bj|bk〉〈bk|bj〉〈ak| (30)

=
∑
j

λ2j |aj〉〈aj| (31)

ρ̂B =
∑
j

λ2j |bj〉〈bj| (32)

and in their basis, respectively {|a1〉, |a2〉} and {|b1〉, |b2〉}, we obtain

ρ̂A =

(
λ21 0
0 λ22

)
= ρ̂B (33)

3. From the expression above, we have S(ρ̂A) = S(ρ̂B) since a trace operation is independent
from the basis in which it is done. This makes sense, since the "measure of mixture" can’t
be different from subsystem to subsystem.

• If |ψ〉 is a separable state, then the Schmidt decomposition is |ψ〉 = |a〉⊗ |b〉, that is the
case λ1 = 1 and λ2 = 0, from which S(ρ̂A) = S(ρ̂B) = 0 (recalling what we have seen in
the first point).

• if |ψ〉 is a maximally entangled state, then for a couple of basis we can write |ψ〉 =
(|a1〉 ⊗ |b1〉+ |a2〉 ⊗ |b2〉)/2 and we compute S(ρ̂A) = S(ρ̂B) = ln(2) = Smax

This means that given a maximally entangled state, it partial trace on a subsystem gives a
maximally mixed density matrix. Since S(ρA) measures "how mixed" is the state ρA , it can
be considered also a measure of "how entangled" is the original state ρ = |ψ〉〈ψ|
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