
2024-2025

Quantum Information and Quantum Computing, Solutions 12
Assistant : sara.alvesdossantos@epfl.ch, clemens.giuliani@epfl.ch

Problem 1 : Correctable and non correctable errors in Shor’s 9-qubit code

1. We know that the Shor’s code encodes a generic single-qubit state to three sets of three qubits
in order to detect and correct single-qubit errors. This is done by encoding the two basis state

|0L〉 −→
1√
8
(|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉+ |111〉) (1)

|1L〉 −→
1√
8
(|000〉 − |111〉)⊗ (|000〉 − |111〉)⊗ (|000〉 − |111〉) (2)

where |iL〉 means that we encoded the logical |i〉 state of a single qubit. This code can correct
one bit flip error in each set of three qubits, plus one phase error. Also, two phase errors in
the same set of three qubits act the same on the codewords, so do nothing to the state (the
product is in the stabilizer). For this reason, the code can correct X2X7 , X5Z6 and Z5Z6.
The two-qubits error X1X3 cannot be corrected because it involves two bit flip errors in the
same set of three, and Y2Z8 cannot be corrected because it involves two phase flip error on
different set of three (the bit flip part of Y2 can be corrected, however).

2. For X1X3 , the error correction procedure notes that qubit number 2 is the misfit, and
“corrects” it by performing the bit flip operation X2 . Thus, the net effect is to flip all
of the first three qubits. Thus, the encoded |0L〉 state does not change (as |000〉 + |111〉
becomes |111〉+ |000〉), but the encoded |1L〉 state becomes −|1L〉 (as |000〉 − |111〉 becomes
|111〉 − |000〉). That is, α|0L〉 + β|1L〉 becomes α|0L〉 − β|1L〉; the logical operation is an
encoded Z.

For Y2Z8 , we can write Y2 = iX2Z2 . The code can correct X2 , but the residual phase
error Z2Z8 cannot be corrected. (The factor i is an overall phase, which has no physical
significance and does not count as an error.) The correction procedure notes that the phase
on the middle block of three is different, and tries to fix it with a Z5 , say, making the overall
error a Z2Z5Z8. Thus, |000〉+ |111〉 becomes |000〉 − |111〉 on all three blocks and vice-versa,
changing |0L〉 into |1L〉. This is a logical X operation: α|0L〉+ β|1L〉 becomes α|1L〉+ β|0L〉.

Problem 2 : Combining stabilizer codes

1. Clearly the Mi⊗ In2 commute with each other, since the Mi ’s do, and the In1 ⊗Nj commute
with each other similarly. Moreover, Mi ⊗ In2 also commutes with In1 ⊗ Nj, since they are
trivial (identity) where the others are not, so we have an Abelian group and a stabilizer code
S = S1 ⊕ S2 using n = n1 + n2 qubits.

1

2. There are n1−k1 M generators and n2−k2 N generators, for a total of r = n1+n2−(k1+k2),
so the number of encoded qubits is k = n− r = k1 + k2 .

3. Suppose E is an error which is not detected by the code S1 . That is, E commutes with all
generators of S1 , but is not in S1 . Then, clearly, E ⊗ In2 commutes with the generators of
S, but is not in S, and is therefore not detected by S either. Conversely, if E is detected by
S1 , either E ∈ S1 , in which case E ⊗ In2 ∈ S , or E anticommutes with some generator Mi

of S1 , in which case E ⊗ In2 also anticommutes with the generator Mi ⊗ In2 of S. Similarly,
if F is or is not detected by S2 , then In1 ⊗ F is or is not detected by S as well.

The distance of S1 is d1 and the distance of S2 is d2 . That means that there exist errors E
and F of weight d1 and d2 , respectively, which are not detected by S1 and S2 . Thus, there
is a Pauli operator of weight d = min(d1, d2) which is not detected by S.

Now, we have to prove that this is exactly the distance we are looking for. To do this, we have
to demonstrate that S can detect any error of weight less than d. Any operator of weight less
than d can be written as E ⊗ F , where E has weight less than d1 (and is therefore detected
by S1) and F has weight less than d2 (and is therefore detected S2).

We have four cases:

• E and F anticommute with some generator of S1 and S2 , respectively. In this case,
clearly the product is detected by both the M generators and the N generators, and is
therefore detected by S.

• E ∈ S1 and F anticommutes with a generator of S2 . In this case, E ⊗ F is detected by
an N generator, so is still detected by S

• Same situation if conversely F ∈ S2 and E anticommutes with a generator of S1, so still
detected by S

• E ∈ S1 and F ∈ S2 . In this case, E ⊗ In2 and In1 ⊗ F are both in S, which is closed
under multiplication, so E ⊗ F ∈ S as well.

In all 4 cases, S detects the error E ⊗ F . That is, S detects all errors of weight less than
d and fails to correct at least one error of weight d. The distance of the code is thus exactly
d = min(d1, d2).

Problem 3 : Logical codewords of the 5-qubit stabilizer code

1. We are considering tensor products of Pauli operators. This means that, if we want to see if
an operator commutes with another, we have to look at pairwise commutation relationships.
In this case we have that Z commutes with I and Z, but XZ = −ZX, therefore for a 5
qubit operator to commute with ZL it has to contain an even number of X operators. This is
the case of the four five-qubit operators indicated in the text, so they all commute with ZL.
Given that ZL does affect the logical qubits and commutes with the generators, we can use
it as a logical operator, given that it will not bring us out of the code space.

2

2. Since ZL represents the logical Z gate applied on the logical qubit encoded by the code, we
want that ZL|0L〉 = |0L〉 and ZL|1L〉 = −|1L〉, namely each term in the definition of |0L〉 has
to contain an even number of |1〉 and each term in the definition of |1L〉 has to contain an
odd number of them. We can also use the ZL operator, together with the four generators of
the whole code, in order to create a projector that will help us to detect the |0L〉 and |1L〉
state. We therefore define the operator

P =
∑

M (3)

where the sum runs over the four generators of the stabilizer plus the logical ZL. It is
intuitively clear that this operator is a projector on the state |0L〉, as per definition there are
no operatorsM other than ZL and the four generators, such thatM |0L〉 = |0L〉. We can then
determine the |0L〉 state by finding a state which is not annihilated by the projector (such as
|00000〉) and just see what we get when the projector acts on it:

|0L〉 =
1

4
(|00000〉+ |10010〉+ |01001〉 − |11011〉+ |10100〉 − |00110〉 − |11101〉 − |01111〉

+ |01010〉 − |11000〉 − |00011〉 − |10001〉 − |11110〉 − |01100〉 − |10111〉+ |00101〉)

We can then apply a similar procedure to the state |11111〉, but in this case the projector P
must include the operator −ZL instead of ZL. We get

|1L〉 =
1

4
(|11111〉+ |01101〉+ |10110〉 − |00100〉+ |01011〉 − |11001〉 − |00010〉 − |10000〉

+|10101〉 − |00111〉 − |11100〉 − |01110〉 − |00001〉 − |10011〉 − |01000〉+ |11010〉) .

3

