Quantum Information and Quantum Computing, Problem set 7

Assistant: sara. alves doss antos@epfl.ch, clemens. giuliani@epfl.ch, khurshed. fitter@epfl.ch

Problem 1 : Shor's code for factoring N = 15

Our goal is to implement on Qiskit the simplest instance of the period-finding code, so to factor the number N=15. Assume that in step 3 of Shor's algorithm we have randomly chosen x=4 among the co-prime numbers of N, i.e. such that gcd(x,N)=1.

- 1. Devise a quantum circuit that executes the modular exponentiation $f(z) = x^z \mod 15$, with x = 4. We will assume that z is a 2-qubit number. This means that we choose t = 2 as the number of qubits in the first register of the quantum period finding algorithm. This assumption is justified if we expect to find a small period, which is the case here.
- 2. Implement on Qiskit the period-finding algorithm with the modular exponentiation code that you just found. Show that it finds a factor of N = 15.