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Problem 1 : Elementary quantum circuits

1. Show that this circuit is a quantum swap, i.e. it swaps the |0〉 and |1〉 states.
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2. Prove the following equalities

•

Z

= Z

•
H • H

H H

=

•

3. For U = V 2, with V a single-qubit unitary, construct a C5(U) gate without using ancilla
qubits. You may use multiply (up to 4 control qubits) controlled-V and V † gates in addition
to the universal set of gates H, S, T, CNOT.

4. The discrete Fourier transform from a set of complex numbers x0, . . . , xN−1 to a set of complex
numbers y0, . . . , yN−1 is defined as

yk =
1√
N
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xje
2πijk/N

The quantum Fourier transform is defined in a Hilbert space of dimension N as the unitary
transformation

N−1∑
j=0

xj|j〉 →
N−1∑
k=0

yk|k〉

where |j〉 and |k〉 are vectors of the computational basis. Show that the following circuit
performs the quantum Fourier transform for N = 23. Write the corresponding unitary matrix
(define ω = e2πi/8).
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5. Find the quantum circuits that, starting from the state |00〉 as an input, generate the four
Bell states (|00〉+ |11〉)/
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Problem 2 : Quantum teleportation

The quantum teleportation protocol enables the transfer the quantum state of a system (on the
side of Alice) to another remote system (on the side of Bob). Notice that an important result of
quantum mechanics, the no-cloning theorem plays a fundamental role here. The no-cloning theorem
states that the arbitrary (i.e. unknown) state of a quantum system cannot be copied onto another
system of the same kind. If we could clone an arbitrary state, then we could achieve quantum state
teleportation in a straightforward way by simply cloning the state. The peculiarity of this protocol
is that the state is transferred – not cloned – without any knowledge of the state itself.

In this protocol, Alice has one qubit – which we denote as qubit 1 – initially set in the arbitrary
state

|ψ〉 = α|0〉+ β|1〉. (1)

Alice wishes to transfer to Bob the quantum information stored in qubit 1 – namely the complex
coefficients α and β – even if she doesn’t know herself the values of these two coefficients. To this
purpose, Alice and Bob each possess one qubit of a pair of qubits – denoted here qubit 2 and 3 –
that are set to the entangled state

|β00〉 =
|00〉+ |11〉√

2
. (2)

The state of this pair of qubits has been initially set by Alice, Bob, or by a third actor, and the two
qubits have subsequently been distributed to Alice and Bob. The initial state of the whole system
is therefore

|Ψ0〉 = |ψ〉 ⊗ |β00〉 = (α|0〉1 + β|1〉1)⊗
|0〉2 ⊗ |0〉3 + |1〉2 ⊗ |1〉3√

2
, (3)

where the indices are here only used to recall the order in which the three qubits enter into the
tensor products. This notation can be dropped in what follows, knowing that qubit 3 is the one
owned by Bob.

1. Alice applies to her two qubits a Controlled-NOT gate.1 Compute the total state |Ψ1〉 of the
three qubits after this first operation.

2. Alice then applies to qubit 1 a Hadamard gate

H =
1√
2

(
1 1
1 −1

)
(4)

What is the total state |Ψ2〉 after this step?
1A C-NOT gate is defined by its action on the basis {|00〉, |01〉, |10〉, |11〉}. If qubit 1 is set to zero then

both qubits are untouched. If qubit 1 is set to one, then qubit 2 is flipped. The operator can be written as
CNOT = |0〉〈0| ⊗ I + |1〉〈1| ⊗X, and we have computed the corresponding 4x4 matrix in Problem Set 1.
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3. Alice then measures qubits 1 and 2 “in the computational basis”. This wording means that she
measures an observable which is diagonal and non degenerate in the basis {|00〉, |01〉, |10〉, |11〉}
– which is usually called the computational basis. The result of this measurement answers
the question “0 or 1?” for each of the two qubits on which the measurement is performed.
Let’s call (x, y) ∈ {0, 1}2 the outcome of this measurement. What are the states of Alice’s
pair of qubits, and of Bob’s qubit, after the measurement, for each of the 4 possible outcomes
(x, y)? Alice sends the classical information (x, y) to Bob through a classical communication
channel (e.g. e-mail). Show that, depending on the value of (x, y), Bob can choose to apply
gates X and Z to his qubit so to set it in the state |ψ〉 that initially characterized qubit 1 on
Alice’s side.

In this way, the state |ψ〉 has been “teleported” from Alice to Bob. Think about the following
points:

4. Was there teleportation of matter from Alice to Bob?

5. Was the state |ψ〉 cloned?

6. Was there any superluminal transmission of information?
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