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Assistants : sara.alvesdossantos@epfl.ch, clemens.giuliani@epfl.ch

The quantum mechanics needed to understand and practice quantum computing requires good
skills in linear algebra. This is not a big deal, as it all adds up to rather simple concepts and
mathematical formalism. In this problem set you will be asked to solve simple exercises involving
these notions. If you notice that most of the content of this problem set is obscure to you, then it
is maybe the moment to grab a book and catch up with linear algebra. If it happens, then come
talk to us.

On purpose, I will avoid here any quantum mechanics jargon and stick only to the mathematics
one. Quantum mechanics will enter the game starting from the next problem set.

Problem 1 : Matrix-vector and matrix-matrix products

Compute explicitly the following matrix-vector and matrix-matrix products
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

×

0
0
1
1


1

2


1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 −1

×

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

×

1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 −1



1 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

×

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

×

1 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0


(
1 0 0 0

)
×


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


Problem 2 : Eigenvalues and eigenvectors

Find the eigenvalues and eigenvectors (if they exist) of the matrix:

M =

(
1 i
2 1

)
.

Problem 3 : Pauli matrices
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Pauli matrices are defined as

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
Prove the following relations

• X2 = Y 2 = Z2 =

(
1 0
0 1

)
• AB +BA = 0, with A, B = X, Y, Z and A 6= B

• XY − Y X = 2iZ, XZ − ZX = −2iY , Y Z − ZY = 2iX

Problem 4 : Exponential of a matrix

We will see later that in quantum mechanics it is important to know how to compute the
exponential of a matrix. This is defined in terms of the matrix-matrix product and of the Taylor
expansion of the exponential function

eM ≡
∞∑
n=0

Mn

n!

In order to familiarize with this notion, let’s compute

• exp (iαZ)

• exp (iαY )

Let us now briefly recall the Kroenecker or tensor product. If two vector spaces H1 and H2 are
spanned by basis vectors {|0〉1, |1〉1}, then we can define the tensor-product space H = H1 ⊗ H2

which is spanned by the (mutually orthogonal) basis vectors {|0〉1⊗|0〉2, |0〉1⊗|1〉2, |1〉1⊗|0〉2, |1〉1⊗
|1〉2}. For brevity of notation we rewrite these vectors as {|00〉, |01〉, |10〉, |11〉}, where the position
inside the symbol |xy〉 denotes whether the label refers to space 1 or 2. Given two vectors |ψ〉 =
α|0〉1 + β|1〉1 and |φ〉 = γ|0〉2 + δ|1〉2, respectively in H1 and H2, we can define a vector in H as

|ψ〉 ⊗ |φ〉 = αγ|00〉+ αδ|01〉+ βγ|10〉+ βδ|11〉 .

Tensor products of matrices naturally follow from the above definition. If A is a m× n matrix and
B a p× q matrix, then A⊗B is a mp× nq matrix defined as

A =


a11 a12 a13 · · ·
a21 a22 a23 · · ·
a31 a32 a33 · · ·
...

...
... . . .

 , B =


b11 b12 b13 · · ·
b21 b22 b23 · · ·
b31 b32 b33 · · ·
...

...
... . . .


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A⊗B =


a11B a12B a13B · · ·
a21B a22B a23B · · ·
a31B a32B a33B · · ·
...

...
... . . .


Problem 5 : Tensor product

• Compute (
1 0
0 0

)
⊗
(
1 0
0 1

)
+

(
0 0
0 1

)
⊗
(
0 1
1 0

)
• Show, using one example, that in general A⊗B 6= B ⊗ A

• Show that(
1 0
0 0

)
⊗
(
1 0
0 1

)
+

(
0 0
0 1

)
⊗
(
1 0
0 −1

)
=

(
1 0
0 1

)
⊗
(
1 0
0 0

)
+

(
1 0
0 −1

)
⊗
(
0 0
0 1

)
• Prove that (

1 0
0 0

)
⊗
(
1 0
0 1

)
+

(
0 0
0 1

)
⊗
(
1 0
0 −1

)
cannot be expressed as a single tensor product of two matrices as A⊗B

• The same holds for vectors. Prove that |ψ〉 = |00〉+ |11〉 cannot be written as a simple tensor
product, i.e. as |ψ〉 = |φ1〉 ⊗ |φ2〉.
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