Quantum Information and Quantum Computing, Problem set 10

Assistant: sara.alvesdossantos@epfl.ch, clemens.qiuliani@epfl.ch, khurshed.fitter@epfl.ch

Problem 1: A depolarising channel

Take a two-dimensional Hilbert space \mathcal{H} and a completely positive trace preserving (CPTP) map $\mathcal{E}: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ given by

$$\mathcal{E}(\hat{\rho}) := p \frac{\hat{1}}{2} + (1 - p) \,\hat{\rho} \tag{1}$$

for $p \in [0, 1]$.

This map describes the action of what is known as a depolarizing channel.

(a) Any quantum channel given by a CPTP map \mathcal{E} can be can be written in terms of Kraus operators M_a as

$$\mathcal{E}(\hat{\rho}) = \sum_{a} \hat{M}_{a} \hat{\rho} M_{a}^{\dagger} \tag{2}$$

where $\sum_{a} \hat{M}_{a}^{\dagger} M_{a} = 1$.

Find a Kraus-operator representation for \mathcal{E} .

Hint: You might want to prove (and then use) the identity $\mathbb{1} = \frac{1}{2}(\hat{\rho} + \hat{\sigma}_x\hat{\rho}\hat{\sigma}_x + \hat{\sigma}_y\hat{\rho}\hat{\sigma}_y + \hat{\sigma}_z\hat{\rho}\hat{\sigma}_z)$, where $\sigma_{x,y,z}$ are the Pauli-matrices.

(b) Any two-dimensional density matrix can be written in the Bloch representation

$$\rho = \frac{1}{2}(\mathbb{1} + \mathbf{r} \cdot \hat{\boldsymbol{\sigma}}) \tag{3}$$

where $\hat{\boldsymbol{\sigma}} = \begin{bmatrix} \hat{\sigma}_x & \hat{\sigma}_y & \hat{\sigma}_z \end{bmatrix}^T$ is the vector of pauli matrices and $\mathbf{r} \in \mathbb{R}^3$, $\|\mathbf{r}\| \leq 1$ is called Bloch vector.

Calculate the action of the depolarizing channel \mathcal{E} on such a bloch state for a given \mathbf{r} . How is the radius $r = ||\mathbf{r}||$ affected?

Bonus: What happens when the depolarizing channel is applied to a pure state?

<u>Problem 2</u>: Noise models in Qiskit

In this hands-on exercise we will see how to create custom noise models in Qiskit.

- (a) Learn how to save and plot density matrices in Qiskit using the classical density matrix simulator
- (b) Learn how to configure a noise model in Qiskit and use it to create a bit-flip, a phase-flip and a depolarising channel.

- (c) Apply your noise model to a circuit of choice and plot the final density matrices. What happens to the purity of the matrix?
- (d) Learn how to perform a tomography experiment to evaluate the density matrix of the system on the quantum device