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11.1 The spiked-tensor model
Consider the following inference problem. You observe a symmetric tensor

yijk =

√
2λ

N2 x∗
i x∗

j x∗
k + ξijk (1)

with 1 ≤ i ≤ j ≤ k ≤ N . x∗ ∈ RN is the ground truth, generated with a factorized prior
P0(x) =

∏N
i=1 P0(xi). ξijk is a symmetric tensor, whose components 1 ≤ i ≤ j ≤ k ≤ N are

all independent standard Gaussian random variables (mean zero, variance one). λ > 0 acts as a
signal-to-noise (SNR) ratio.

The aim of this exercise is to derive the state equation for the order parameter

m =
1
N

Ey,x∗Ex∼Ppost(·|y)x
T
∗ x (2)

as a function of the SNR λ.

1. Show that the posterior distribution for the problem can be written as

P (x|y) = 1
Z(y)

[
N∏

i=1
P0(xi)

] ∏
i≤j≤k

e
− λ

N2 x2
i x2

j x2
k
+

√
2λ
N2 xixjxkyijk

√
2π

 (3)

for a given Z(y). How is Z(y) defined for this measure?
The posterior is the same as for the spiked-matrix model, or spike-Wigner model, we saw in
class, see ex 9.1.1. In particular, the output channel term is given by a product of Gaussian
densities evaluated in yijk, each with mean

√
2λ/N2xixjxk and variance one. One then

expands the square at the exponent, and reabsorbs all x-independent terms in the partition
function. The partition function equals

Z(y) =

∫
dx1 . . . dxN

[
N∏

i=1
P0(xi)

] ∏
i≤j≤k

e
− 2λ

2N2 x2
i x2

j x2
k
+

√
2λ
N2 xixjxkyijk

√
2π

 . (4)
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2. Show that the averaged replicated partition function equals

Ey [Z(y)n] =

∫
dyijk e

− 1
2
∑

i≤j≤k
y2

ijk

n∏
α=0

∫
dx(α)

(
N∏

i=1
P0
(

x
(α)
i

))

×

 ∏
i≤j≤k

e
− λ

N2

(
x
(α)
i

)2(
x
(α)
j

)2(
x
(α)
k

)2
+

√
2λ
N2 x

(α)
i x

(α)
j x

(α)
k

yijk

√
2π


(5)

where you should notice that we are taking the product over n + 1 replicas.
This is the same as exercise 9.1.2, with the minimal modifications of dealing with rank-3
tensors instead of rank-2 tensors, i.e. matrices. Also consider the additional factor 2 in λ.

3. Integrate over the disorder, i.e. the observation y, to get at leading order in N

Ey [Z(y)n] =

∫ ∏
α,i

P0
(

x
(α)
i

)
dx

(α)
i exp

λN

3
∑
α<β

(∑
i

x
(α)
i x

(β)
i

N

)3 (6)

One has

∏
i≤j≤k

∫
dyijk

e
− 1

2 y2
ijk

√
2π

e
−
∑

α
2λ

2N2

(
x
(α)
i

)2(
x
(α)
j

)2(
x
(α)
k

)2
+
∑

α

√
2λ
N2 x

(α)
i x

(α)
j x

(α)
k

yijk

=
∏

i≤j≤k

e
−
∑

α
2λ

2N2

(
x
(α)
i

)2(
x
(α)
j

)2(
x
(α)
k

)2
+ 2λ

2N2
∑

α,β x
(α)
i x

(α)
j x

(α)
k

x
(β)
i x

(β)
j x

(β)
k

= e
λ

N2
∑

α ̸=β

∑
i≤j≤k

x
(α)
i x

(β)
i x

(α)
j x

(β)
j x

(α)
k

x
(β)
k

≈ e
λ

N2
∑

α ̸=β
1
3!

∑
i,j,k x

(α)
i x

(β)
i x

(α)
j x

(β)
j x

(α)
k

x
(β)
k

= e
λ

N2
∑

α ̸=β
1
3!

(∑
i

x
(α)
i x

(β)
i

)3

= e
λ

3N2
∑

α<β

(∑
i

x
(α)
i x

(β)
i

)3

(7)

4. Introduce the appropriate order parameters and obtain

Ey [Z(y)n] =

∫ ∏
α<β

dq̂αβ dqαβ exp
(
NIenergy(qαβ , q̂αβ) + NIentropy(q̂αβ)

)
(8)

where we defined
Ienergy(qαβ , q̂αβ) =

λ

3
∑
α<β

q3
αβ −

∑
α<β

qαβ q̂αβ (9)

and

Ientropy(q̂αβ) = log

∫ ∏
α

P0 (xα) dxα exp

∑
α<β

q̂αβxαxβ


 (10)
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where we stress that here the integral over dxα runs over the real numbers for all α =
0, . . . , n.
Same as exercise 9.1.4.

5. Argue that the RS free entropy

ϕ = lim
N→∞

Ey

[
1
N

log Z(y)

]
(11)

can be expressed as

ϕ = extrq,q̂

[
1
2

(
λ

3 q3 − qq̂

)
+

∫
DzP0 (x0) dx0 log

(∫
P0 (x) dx exp

{
− q̂

2x2 +
√

q̂xz + q̂xx0

})]
(12)

In the RS ansatz and at leading order in n, we have

Ienergy(qαβ , q̂αβ) =
λ

3
n(n + 1)

2 q3 − n(n + 1)
2 qq̂ ≈ n

2

(
λ

3 q3 − qq̂

)
. (13)

The entropic term is the same as in the matrix model, see ex 9.1.7 and 9.1.8.

We now consider the case P0(x) = N(x, 0, 1), i.e. over each component the prior is a standard
Gaussian distribution.

7. Show that the free entropy simplifies to

ϕ(q, q̂) =
λ

6 q3 − 1
2qq̂ +

q̂

2 − 1
2 log(1 + q̂) (14)

By performing all the Gaussian integrals we get

ϕ(q, q̂) =
λ

6 q3 − 1
2qq̂ +

q̂

2 − 1
2 log(1 + q̂) (15)

See also ex 10.1.1 and 10.1.2.

8. Show that the state equation for m = q is

m =
λm2

λm2 + 1 . (16)

The saddle point equations for the free entropy of point 11.1.7 are q̂ = λq2 and

q = 1 − 1
1 + q̂

=
q̂

1 + q̂
(17)

which we can combine to get the solution, using also m = q from Nishimori’s identities.

9. Solve the state equation. In particular, make sure you answer clearly to the following
subquestions as a function of λ:

(a) How many solutions there are?
(b) Which of the solutions is the dominant one for each value of λ?
(c) If there is any phase transition, specify at which value of λ it happens and its order.
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(d) What is the interpretation of the phase transitions, if any, in terms of the inference
problem?

Hint: not all questions above have nice analytical answers. Use your favorite numerical
tools to explore this question, and feel free to provide approximate numerical answers. In
your submitted homework, include all plots you used to motivate your answer.
It may be useful to generate a plot of all solutions m to the state equation as a function of
λ, where you highlight which of the solutions is dominant.
We have the trivial solution m0 = 0. If m ̸= 0, we have

λm2 − λm + 1 = 0 (18)

giving

m± =
λ ±

√
λ2 − 4λ

2λ
. (19)

The two solutions are real for λ > 4. Thus, for λ < 4 we have only the trivial solution, and
for λ > 4 we have 3 coexisting solutions. Notice that m±(λ ≥ 4) are both bounded away
from zero for any finite λ, so that if there is a phase transition at finite λ, it will necessarily
be of the first order.
We expect that the dominant solution for λ ≫ 4 will be

m+ =
λ +

√
λ2 − 4λ

2λ
, (20)

as for λ → ∞ it is the only solution that converges to m = 1, and is the only solution which
is monotone increasing (we expect that as the SNR increases, m increases). We can check
whether this is the case explicitly by computing the free entropy in the three solutions. We
have

ϕ(m) =
λ

6 m3 − λ

2 m3 +
λm2

2 − 1
2 log(1 + λm2) = −λ

3 m3 +
λ

2 m2 − 1
2 log(1 + λm2) (21)

It is easy to check numerically that ϕ(m0) = 0, that ϕ(m−) < 0 for all λ > 4, and that
ϕ(m+) > 0 for λ ⪆ 4.4. Thus, we have a first order phase transition at λ ≈ 4.4. Before
the trivial solution is dominant, after the m+ solution is dominant.
Thus

a) For λ < 4 there is only one trivial solution, while for λ ≥ 4 there are three distinct
solutions.

b) For λ ⪅ 4.4 we have m∗ = m0 = 0, while for λ ⪆ 4.4 we have m∗ = m+(λ).
c) The phase transition is of the first order, as the order parameter m is discontinuous.
d) The phase transition can be interpreted as a weak recovery transition, the minimal

value of λ for which m∗ ̸= 0.

10. Suppose you were to derive and run the AMP algorithm for this problem. How do you
expect the magnetization of the iterates of AMP evolve iteration by iteration? How is the
magnetization initialized?
AMP is tracked by state evolution, which is just the following iterative scheme for the state
equations

mt+1 =
λm2

t

λm2
t + 1

(22)

with initialization mt=0 = 0+.
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11. To which value of the magnetization will AMP converge for any finite λ when initialized
for m = 0+, i.e. very small but still positive magnetization? Discuss for which value of
λ the problem has an impossible phase, for which ones has an hard phase, and for which
ones has an easy phase.
For λ < 4, it can only converge to m = 0. For λ > 4, we study the iteration at first order
around m = 0+. We have

mt+1 ≈ λm2
t =⇒ mt = λ−1(λm0)

2t (23)

from which we see that for any fixed λ > 4, we can always pick a m0 small enough, i.e.
m0 = 0+, such that λm0 < 1. This implies that the state evolution of AMP converges
always to m = 0 for any finite λ.
Thus, the problem has an impossible phase for λ ⪅ 4.4, where AMP converges to the only
solution m = 0 of the state equations, which is also the BO solution. It has instead a big
hard phase λ ⪆ 4.4 for which the BO estimator achieves good performance m > 0, while
AMP remains stuck at m = 0. Finally, there is no easy phase. The spiked-tensor problem
is particularly hard for algorithms.

11.2 Mixed spiked-tensor model
We now consider a mixed inference problem for generic factorized prior P0. We observe both a
matrix y(2) and a tensor y(3)

y
(2)
ij =

√
λ2
N

x∗
i x∗

j + ξ
(2)
ij

y
(3)
ijk =

√
2λ3
N2 x∗

i x∗
j x∗

k + ξ
(3)
ijk

(24)

1. Argue without doing additional computations that the RS free entropy associated to the
posterior distribution equals

ϕ = extrq,q̂

[
1
2

(
λ2
2 q2 +

λ3
3 q3 − qq̂

)
+

∫
DzP0 (x0) dx0 log

(∫
P0 (x) dx exp

{
− q̂

2x2 +
√

q̂xz + q̂xx0

})] (25)

and for Gaussian priors equals

ϕ = extrq,q̂

[
1
2

(
λ2
2 q2 +

λ3
3 q3 − qq̂

)
+

q̂

2 − 1
2 log(1 + q̂)

]
(26)

In the mixed model, the posterior distribution is just the prior term, times the output
channel of the matrix model, times the output channel of the tensor model. The disorders
in the matrix and tensor parts are independent, so the averages can be performed separately
and lead to an energetic term which is just the sum of the matrix and the tensor energetic
terms. The entropic term is the same, as it depend only on the unchanged prior and on
the unchanged definition of the order parameter q.
Note about the grading: many of you were very quick on this answer, not providing
much detail at all. Even if all computations are known and can be skipped, there are at
least the following points that should be clearly made in this answer:
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• that the posterior distribution is the usual prior term, times the output channel of
the matrix observation, times the out channel of the tensor observation.

• that the disorder ξ for the matrix and tensor output channel are independent, so that
when averaging over the disorder I can average them separately.

• that the final energetic term is just then the sum of the 2 previous cases.
• that the prior term does not change.

Missing any of these points produces a partial answer!

2. From now on consider the Gaussian prior. Show that the state equation for m = q equals

m =
λ2m + λ3m2

1 + λ2m + λ3m2 (27)

The saddle-point equations are
q̂ = λ2q + λ3q2 (28)

and
q = 1 − 1

1 + q̂
=

q̂

1 + q̂
(29)

giving the answer. We report for completeness the free entropy

ϕ(m) =
1
2

(
λ2
2 m2 +

λ3
3 m3 − λ2m2 − λ3m3

)
+

λ2m + λ3m2

2 − 1
2 log(1 + λ2m + λ3m2)

= −λ2
4 m2 − λ3

3 m3 +
λ2
2 m +

λ3
2 m2 − 1

2 log(1 + λ2m + λ3m2)

(30)

3. How does the dominant solution m∗ of the state equation behave in the two limit λ3 = 0
and λ2 = 0?
For λ3 = 0 we have the matrix model we studied in the lecture. We know that m∗ = 0 up
to λ2 = 1, and then m∗ > 0 with a second order phase transition for λ2 > 1.
For λ2 = 0 we have the tensor model studied in the exercise above. We know that m∗ = 0
up to roughly m∗ ≈ 4.4, and then m∗ > 0 with a first order phase transition.

4. Study numerically the phase diagram. To do that:

(a) Fix a value of λ3, and then using your favorite tool plot as a function of λ2 the
dominant solution m to the state equation. Repeat for several values of λ3.

(b) Combine the information obtained from all the plots above into a single phase diagram,
i.e. a plot in the (λ2, λ3) plane where for each value of (λ2, λ3) you specify whether
m∗ = 0 or m∗ > 0, and you highlight the order of the phase transitions separating
the two regions. The plot can be qualitative, i.e. the location of the transitions
may be approximate as long as the overall phenomenology is well described. Even a
hand-drawn qualitative phase diagram can be acceptable for this question if clearly
drawn.
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(a) Overlap as a function of λ2 for different
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Figure 1: Overlaps as a function of the SNR ratio λ for the binary prior.

Hints: discard a priori all solutions for which m /∈ [0, 1]. A good choice for λ3 in point (a)
is λ3 = [0.01, 0.5, 1, 1.5, 2, 3.5, 4, 4.3, 4.4, 4.5, 5], but feel free to explore more values.
You can see the curves of point (a) in Figure 1a. We can see that increasing λ3 the kind
of phase transition changes drastically. For all 0 < λ3 < 1 there is a second order phase
transition at λ2 = 1 from zero to non-zero m. This is what we observed in the spiked
matrix model. For 1 < λ3 ⪅ 4.4 there is a first order phase transition at 0 < λc

2(λ3) < 1
from zero to finite m, as we observed in the first part of this homework. For λ3 ⪆ 4.4 there
is no phase transition in λ2. The point (λ2, λ3) is a tricritical point, where a first order
transition boundary vanishes into a second order phase transition.
In Figure 1b you can see the phase diagram requested in point (b). The region surrounding
(λ2, λ3) = (0, 0) has m = 0, so that all phase transitions observed are weak recovery
transitions, meaning that the BO estimator goes non-analytically from being completely
uninformed to having a non-zero overlap with the ground though. Depending on the
precise path in the phase diagram, the weak recovery can be either a first or second order
phase transition. As expected in noisy estimation problems there is no perfect recovery
transition, as there is always some residual noise that we cannot eliminate unless λ → ∞.
The the second order phase transition happens for 0 < λ3 < 1 and λ2 = 1. The point
(λ2, λ3) = (1, 1) is a tricritical point, the point at which the first order transition line
becomes a second order transition line.
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