
Statistical Physics of Computation - Exercises
Emanuele Troiani, Vittorio Erba, Yizhou Xu

September 2024

Week 6

Gibbs estimator for the teacher-student binary perceptron
This week we study again the linear classification (perceptron) problem, but with a twist. As
before we have P = αN points {ξµ}P

µ=1 of dimension N , each with a label σµ = ±1. We want
to train a perceptron (which we will call the student) to distinguish between the two samples.
In other works we want a vector J with ∥J∥2 = N such that

σµ

√
N

JT ξµ > 0 . (1)

The twist here is that the labels are not random, instead they are a function of the position of
the points ξµ, generated using a teacher vector J∗ (uniformly distributed on the sphere of radius√

N)

sign
(

1√
N

J∗T ξµ

)
= σµ . (2)

Thus, we have non-trivial correlations between points and label, which allows us to speak about
learning.

1. Why does it make no sense to study the satisfiability (SAT/UNSAT) transition in this
setting?
We are always in the SAT phase as J∗ is always a solution, i.e. the solution space is always
not empty.

We can imagine a setting in which we know everything about the data and its generation process
(as in we know the ξµ, the σµ, i.e. we know the training set, and we know that the labels are
generated with a perceptron) but we don’t have access to the specifics of the teacher (we know
that J∗ has a certain distribution, i.e. uniform on the sphere as J but not its values). Two
interesting question to ask are:

• How do we estimate J∗ from the data?

• Given an estimate of J∗, which may be imprecise, how likely are we to correctly classify a
new sample (usually called generalisation error)?

We saw during the lecture that one strategy to estimate J∗ is Gibbs learning, where we take
our estimate Ĵ uniformly from the space of classifiers that correctly classify the whole training
set (let’s call this the solution space). This is not necessarily a practical choice, as it may not be

1

simple to sample uniformly from the solution space, and in general actual algorithms may only
be able to access a limited part of the solution space. Yet, it is an instructive computation, and
it will allow us to study more realistic algorithms later in the course. Thus, today we will study
Gibbs learning, and we will estimate the generalisation error of the Gibbs estimator.

As we saw in the lecture, given that we want to compute average properties over the uniform
measure on the solution set, it is useful to introduce the measure

p(J) =
1
Z

δ (J ∈ solution space) . (3)

and we recognised that the normalisation factor Z, our partition function, is just Gardner’s
volume

Z =

∫
dµ(J)Πp

µ=1θ

(
σµ

√
N

N∑
i=1

Jiξ
µ
i

)
. (4)

Thus, we may study the averaged free entropy associated to Gardner’s volume to extract an
order parameter (likely the overlap), which will hopefully help us estimate the generalisation
error.

Derivation of the state equation

During the lecture, we saw that the (replicated) averaged partition function can be written as

Eξ,σ,J∗Zn = 2P Eξ

n∏
a=0

∫ dµ(Ja)
P∏

µ=1
θ

(
1√
N

N∑
i=1

Jiξ
µ
i

) . (5)

Notice that we are now averaging also over the teacher weights J∗, as they are an integral part of
the data generation procedure. Notice also that we explicitly keep the overall factor 2P coming
from summing over the labels: in previous computations we did not keep them as the alter the
partition function by an overall factor, but in this case it will be nice to be a bit more precise.

2. Re-derive Eq. (5) even if we derived it already during the lecture. Being at ease with
setting up a replica computation is a skill that you need to practice. This was done in the
lecture

We notice that Eq. (5) is the same as the averaged Gardner’s volume for random labels (the
model we looked at during lectures 3 and 4), just with n + 1 replicas instead of n: the teacher
acts as an additional replica, as its distribution, given the training data (ξ, σ), is uniform over
the solution set by definition. Thus, we can follow the same steps of the computation (keeping
track of the additional 2P) to get

Eξ,σ,J∗Zn =

∫
Πa<bdΣab

[
2
∫

Πad∆aN
(

{∆a}n
a=1

∣∣∣0, Σab
)

θ(∆a)

]P

×

[∫
Πadµ(Ja)Πa<bδ

(
NΣab −

N∑
i=1

Ja
i Jb

i

)] (6)

where Σab ∈ Rn+1×n+1 is the overlap order parameter for this problem. We switched notations
from q to Σ to highlight that we are dealing here with an a priori different order parameter, as
it also encodes the overlap between the teacher (0-th replica) and all the other replicas (entries
Σ0,a for a = 1 . . . n).

2

The most general RS ansatz we could impose in this case is given by

Σab =


1 m m . . . m
m 1 q . . . q
m q 1 . . . q
...

...
... . . . q

m q q . . . 1

 (7)

where the meaning of m and q is

m =
J∗T Ja

N
, q =

JaT Jb

N
(8)

for a, b = 1, . . . , n. In words, m is the overlap between the teacher and one of the replicas of
the student, while q is the overlap between two replicas of the student. We will see in the future
problems in which m ̸= q, but in our case we can take m = q.

3. Explain why it makes sense to impose m = q.
The 0-th replica is a priori special, as it encodes the teacher. Yet in Eq (5) we see that the
teacher is not special, as it enters the partition function in a completely identical way as
to the other replicas. Thus, if we assume replica symmetry for the student replicas, there
is no reason not to assume also that the teacher is identical to them from the overlap point
of view, giving m = q.

4. Show that in the RS ansatz

1
nN

log
∫

Πadµ(Ja)Πa<bδ

(
NΣab −

N∑
i=1

Ja
i Jb

i

)
=

1
2 (log(1 − q) + q) (9)

in the large N limit, followed by the small n limit.
As we showed in the exercise in week 4∫

Πadµ(Ja)Πa<bδ

(
NΣab −

N∑
i=1

Ja
i Jb

i

)
=

N

2 log det Σab . (10)

Now, in the same week we learned that (remember that Σab is of size n + 1):

det Σab = (1 − q)n(1 + nq) , (11)
log det Σab = n log(1 − q) + log(1 + nq) = n(log(1 − q) + q) + . . . , (12)

giving the result.

5. Show that in the RS ansatz and small n limit

1
n

log 2
∫

Πad∆aN
(

{∆a}n
a=1

∣∣∣0, Σab
)

θ(∆a) = 2
∫

DzH

(√
qz

√
1 − q

)
log H

(√
qz

√
1 − q

)
(13)

You may find useful to know that ∫
DzH(az) =

1
2 . (14)

3

If we were to look in the notes for the storage problem we would find that (after shifting
n → n + 1)

log 2
∫

Πad∆aN
(

{∆a}n
a=1

∣∣∣0, Σab
)

θ(∆a) = log 2
∫

Dz exp
(
(n + 1) log H

(√
qz

√
1 − q

))
(15)

which we can then manipulate as

log 2
∫

Dz exp
(
(n + 1) log H

(√
qz

√
1 − q

))
(16)

= log 2
∫

DzH

(√
qz

√
1 − q

)(
1 + n log H

(√
qz

√
1 − q

)
+ . . .

)
(17)

= log 2
(∫

DzH

(√
qz

√
1 − q

)
+ n

∫
DzH

(√
qz

√
1 − q

)
log H

(√
qz

√
1 − q

)
+ . . .

)
(18)

= log 2
(

1
2 + n

∫
DzH

(√
qz

√
1 − q

)
log H

(√
qz

√
1 − q

)
+ . . .

)
(19)

≈ 2n

∫
Dz log H

(√
qz

√
1 − q

)
log
(∫

DzH

(√
qz

√
1 − q

))
+ . . . (20)

We also see that the 2P factor was instrumental to cancel the 0 order part of this term. If
we did not have the 2P factor, we would have an overall n-independent term not altering
the state equation, but shifting the overall value of the free entropy.

6. Conclude that the averaged free entropy associated to the partition function Z is given by
ϕ(q) evaluated at it’s critical point, where

ϕ(q) =
1
2 log(1 − q) +

q

2 + 2α

∫
DzH

(√
qz

√
1 − q

)
log H

(√
qz

√
1 − q

)
. (21)

Combine the previous Point 4 and 5 with Eq. (6), then take the saddle point and conclude
using the replica trick formula.

One can show that the state equation is given by

q√
1 − q

=
α

π

∫
Dz e− qz2

2 H (
√

qz)−1 (22)

The generalisation error

In principle q has all the information on the problem, but it’s not what people care about in
learning. As we mentioned, what we would really like to compute is the generalisation error, i.e.
the probability of correctly classifying a new, previously unseen data pair (ξnew, σnew).

10. Show that the generalisation error for a classifier Ĵ is given by

ϵ(Ĵ) = Eξnewθ

(
1√
N

ĴT ξnew
1√
N

J∗T ξnew

)
(23)

This identity comes from writing σnew as a function of J∗ and ξnew. Then, one simply
averages over the position of the point ξnew the function returning 1 if teacher and student
assign the same label to the point, and zero otherwise.

4

0 2 4 6 8

Sample complexity α = P/N

0.0

0.2

0.4

0.6

0.8

1.0

O
ve

rl
ap

q

0 2 4 6 8

Sample complexity α = P/N

0.5

0.6

0.7

0.8

0.9

1.0

G
en

er
al

is
at

io
n

er
ro

r
ε

Figure 1: Overlap and generalisation error for our problem

11. Manipulate the expression to write

ϵ(Ĵ) = Ez,z∗θ (zz∗) (24)

where z, z∗ are zero mean Gaussian variables. What is their covariance?
z and z∗ are nothing other than the gap variables ∆ associated to the teacher and the
student. We already saw in the lecture that the gaps are jointly Gaussian with mean zero
and covariance given by the overlap between, in this case, Ĵ and J∗. As we argued in the
lecture, the overlap converges in the high dimensional limit to the RS overlap q. Thus, the
covariance equals E[z∗2] = E[z2] = 1, E[z∗z] = q

Finally, one can solve analytically the Gaussian expectation to get

ϵ(Ĵ) =
1

π
√

1 − q2

∫ ∞

0

∫ ∞

0
dzdz∗ exp

{
−z2 + z∗2 + 2qzz∗

2(1 − q2)

}
=

1
2 +

1
π

arcsin(q) (25)

Notice that the generalisation error does not depend on Ĵ in the high dimensional limit. This
is due to the concentration of the overlap: in the solution set, if we fix a random vector (the
teacher) and extract a second random vector (the student), their overlap will always be q (with
probability approaching 1 as N → ∞). The non-trivial observation here is that, given the data,
the teacher is a totally normal random vector in the solution set, which is what we where arguing
when we put m = q in point 3. In other problems, where m ̸= q, the teacher vector is special. In
that case, two random vectors from the solution set would have overlap q, but a random vector
from the solution set would have overlap m with the teacher.

Numerical solution of the state equation

Eq 22 is not really useful unless we can actually plot q(α). Fortunately, there is a standard way
of solving numerically such equations. The idea is to guess a starting value for q0, say q0 = 0,
and then iterates a suitable map qt+1 = F [qt] until convergence to a solution of eq (22). More

5

precisely, define

F [q] =
α

√
1 − q

π

∫
Dz

e− qz2
2

H
(√

qz
) (26)

and iterate the map
qt+1 = δF [qt] + (1 − δ)qt (27)

for some δ ∈ (0, 1). δ is called damping, and is a helpful feature to stabilise and speed-up
convergence of these iterative algorithm.

7. Show that the fixed points of Eq. 27 are solutions to the state equation Eq. 22.
Set qt+1 = qt = q at convergence and rearrange Eq. 27 to get (22) for q.

Such an algorithm is very similar to what we will see in the rest of the class, but for the moment
you can think of it as a gradient descent iteration on the free entropy. For your reference, we
have implemented this procedure and plotted the results in Figure 1.

8. Code Eq. 27 and reproduce Figure 1. You can use the programming language that you
prefer, but we recommend Python. Hints:

• You should regularise the denominator in Eq 27, i.e. substitute H
(√

qz
)

→ H
(√

qz
)
+

0.0001, where 0.0001 is any small numeric constant. This will prevent the denominator
to diverge when H goes to zero.

• There is no need to code the function H. Indeed, H(x) = erfc(x/
√

2)/2, and the erfc
function is implemented in most languages (such as in the Scipy python library).

• To integrate scalar function you can find many libraries, such as scipy.integrate.quad
in Python. For the integration interval, which a priori is R, use (−M , M) for a large
but finite M . M ≈ 10 should work. Indeed, the Gaussian measure basically puts to
zero the integrand ouside this modified interval.

See attached Python notebook.

6

