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Week 1

Introduction to the saddle point method
Basic idea

This exercise will introduce a very useful tool to compute asymptotics of integral and show it in
practice in an example. Suppose we want to compute the integral Iβ for β ≫ 1:

Iβ =

∫
R

e−βf (t) dt

for a reasonably regular function f(t) on R.

1. Intuitively, what values of f(t) will affect the integral the most?
The values that minimize f(x).

Call T0 = arg mint f(t) ⊂ R the set of points for which f(t) is (globally) minimized. If f(t) is
not bounded from below, i.e. T0 = ∅, the integral is infinite. We assume T0 = {t0}, that is there
is a unique global minimum.

2. Taylor expand f(t) around t0. Argue that if f ′′(t0) > 0, then

Iβ ≈ e−βf (t0)
∫

R

e−βf ′′(t0)t2/2 dt

where the corrections to this integral are exponentially small in β.
Write:

f(t) = f(t0) +
1
2f ′′(t0)t

2 + O(t2)

where we used that f ′(t0) = 0 because f is stationary in t0. We obtain the result by
truncating this expression at second order and plugging it into the integral.
Let’s now take a step back and reflect on what we just did. If we were to be careful there
are the following steps:

(a) Split the integral over R in I0, an interval around t0, and R \ I0

(b) Realise that the integral over R \ I0 is asymptotically vanishing
(c) Realise that the integral over I0 of the original function is the same as the one of the

function expanded to the second order
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(d) Realise that the integral of the approximated function on I0 is the same as the one
on R

3. Conclude that

Iβ ≈

√
2π

βf ′′(t0)
e−βf (t0)

Recall that f ′′(t0) > 0, so the integral is a simple Gaussian integral. The result follows
from the well known formula valid for a > 0:∫

R

e−at2
dt =

√
π

a

4. Suppose T0 = {t0, t1} with t0 ̸= t1. As a consequence of the previous question, why do we
have that?

Iβ ≈

√
2π

βf ′′(t0)
e−βf (t0) +

√
2π

βf ′′(t1)
e−βf (t1)

Since exponential functions are rapidly decreasing we can consider any integral around the
minimum as integrals over the whole real line. As a consequence we can use the Gaussian
integration formula once again.

Concentration though the saddle point

In the class we will typically study systems with characteristic size N ≫ 1, and study quantities
of the form ⟨f(x)⟩:

⟨f(x)⟩ =
∫

dx f(x)eNϕ(x)∫
dx eNϕ(x)

(1)

1. Show that if N is large enough, then ⟨f(x)⟩ = f(x0), where x0 is the global maximum
of ϕ(x) As the name of the exercise suggests, we want to use the saddle point. We can
compute the denominator, which will simply be∫

dx eNϕ(x) = CeNϕ(x0) (2)

where C doesn’t really matter in this exercise. For the numerator, adding f(x) to the
integral doesn’t change the saddle point as it’s independent of N . In fact:∫

dx f(x)eNϕ(x) =

∫
dx eN [ϕ(x)+log f (x)/N ] (3)

So the saddle point is still x0, and∫
dx f(x)eNϕ(x) = Cf(x0)e

Nϕ(x0) (4)

This gives the result.
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2. What would happen if ϕ(x) has two global maxima {x1, x2}?
In this case we can use point 4 of the previous exercise. Notice that having two global
maxima means ϕ(x1) = ϕ(x2), but the curvature near these points can look quite different.
For the denominator we have√

2π

N
eNϕ(x1)

(
1√

det ∇2ϕ(x1)
+

1√
det ∇2ϕ(x2)

)
(5)

while for the numerator√
2π

N
eNϕ(x1)

(
f(x1)√

det ∇2ϕ(x1)
+

f(x2)√
det ∇2ϕ(x2)

)
(6)

A compact way to write the result is to introduce the ratio of the curvatures γ

γ =

√
det ∇2ϕ(x1)

det ∇2ϕ(x2)
(7)

then
⟨f(x)⟩ = f(x1) + f(x2)γ

1 + γ
(8)

Stirling’s formula

Let’s use the saddle point method to derive a famous approximation of the factorial.

1. Show that for n ∈ N, n! =
∫∞

0 xne−x dx

We do it by induction: first notice that:

0! =
∫ ∞

0
e−x dx = e0 = 1

then with integration by parts :

n!(n + 1) = (n + 1)
∫ ∞

0
xne−x dx =

∫ ∞

0
xn+1e−x dx = (n + 1)!

2. Write n! = nn+1 ∫∞
0 e−nf (x) dx for a certain function f(x)

We first do some manipulations:∫ ∞

0
xne−x dx =

∫ ∞

0
en log x−x dx

Now we want all the terms in the exponent to scale with the same power of n, so we do a
change of variable x → nx:

n

∫ ∞

0
en log x−nx+n log n dx = nn+1

∫ ∞

0
e−nf (x) dx

where f(x) = x − log x
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3. Use the saddle point method to show that for n ≫ 1 we have:

n! ≈
√

2πn
(n

e

)n

Let’s study f(t):
f ′(t) = 1 − 1

x

f ′′(t) =
1
x2

f ′(t) = 0 =⇒ x = 1

f(1) = f ′′(1) = 1

So with using the saddle point method we get:

n! ≈
√

2π

n
nn+1e−n

We get the final formula using some algebraic manipulation

Entropy and free entropy
In this exercise, we review some useful relationship between entropy and free entropy. Recall
that, given a system with degrees of freedom s and Hamiltonian H[s], the free entropy is defined
as

Φ = log Z = log
∫

ds e−βH[s] , (9)

where we also defined the partition function Z. Recall that the Hamiltonian is extensive in the
thermodynamic limit, i.e. H[s] = O(N).

1. Show that for any model with free entropy Φ we have:

⟨H⟩ = −∂Φ
∂β

, (10)

where the angular average is w.r.t. the Gibbs distribution

⟨f⟩ =
∫

ds e−βH[s]f(s)∫
ds e−βH[s]

. (11)

Is this relationship true for all N , or only in the thermodynamic limit N → ∞?
We have the following identity:

∂

∂β
Z =

∫
∂

∂β
e−βH[s] ds = −

∫
H[s]e−βH[s] ds = −Z⟨E⟩

So we have:
⟨H⟩ = − 1

Z
∂Z
∂β

= −∂ log Z
∂β

= −∂Φ
∂β

This is true for any N .
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2. Defining the entropy at fixed energy S(E) as the logarithm of the number of configurations
at energy E, show that you can write the partition function as:

Z =

∫
e−βE+S(E) dE (12)

Is this relationship true for all N , or only in the thermodynamic limit N → ∞?
We have:

Z =

∫
e−βH[s] ds =

∫
e−βEδ(H[s] − E) dEds =

∫
e−βE dE

∫
δ(H[s] − E) ds

The result follows from the definition of S(E):

S(E) = log
[∫

δ(H[s] − E) ds

]

3. Combine the last two results to argue that in the large N limit:

S(Eeq) = Φ(Eeq) + βEeq (13)

where Eeq is the energy given from the saddle point approximation maximisation condition.
What is the condition that determines Eeq?
Notice that both E and S(E) scale linearly with N , so in the large N limit e and s(e) are
finite (and can take non-zero values):

e =
E

N
s(e) =

S(e)

N

We can now apply the saddle point method on equation (12) to obtain that up to a constant
independent from N we have:

Φ = −βEeq + S(Eeq)

where
Eeq = arg min

E
(S(E) − βE) , (14)

which gives the condition

β =
∂S(E)

∂E
. (15)

Similarly in this limit ⟨E⟩ = Eeq and Φ = Φ(Eeq).

Central Limit Theorem using field theory
Consider N independent samples x1, ... xN of a random variable x ∼ p(x), where p has mean µ
and variance σ2. We define the random variable yN as the average of the N samples:

yN =
1
N

∑
n

xn , (16)

then in the large N limit yN converges in distribution to y ∼ q(y) = N (µ, σ2/N). This basic
fact of probability theory is called the Central Limit Theorem. As an exercise we will derive it
using field theory techniques.
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Recall the definition of the Dirac’s delta distribution δ∫
dxδ(x − x0)f(x) = f(x0) , (17)

and its Fourier representation
δ(x) =

∫
dx̂

2π
expix̂x . (18)

1. Write the distribution of yn, which we want to show it converges to q(y), as a function of
p(x) by using the delta function to impose the definition of y.

q(y) =

∫
δ

(∑
n

xn/N − y

)∏
n

p(xn) dxn (19)

2. Rewrite the delta in Fourier representation (also called informally exponential form).

q(y) =

∫
dŷ e−ŷy+ŷ

∑
n

xn/N
∏
n

p(xn) dxn (20)

where ŷ is integrated along the imaginary line.

3. We start with a weaker form of the result (the law of large numbers): let’s show that at the
zeroth order in N , ŷN converges in distribution to q(y) = δ(y − µ). Do it by expanding
the exponential in power series, keep the zeroth order terms in N , then resum.
We will only write the relevant piece∫

eŷ
∑

n
xn/N

∏
n

p(xn) dxn ≈ (21)

∫  ∞∑
k=0

ŷk

k!Nk

(∑
n

xn

)k
∏

n

p(xn) dxn ≈ (22)

∫  ∞∑
k=0

ŷk

k!Nk

∑
n1 ̸=... ̸=nk

xn1 ... xnk

∏
n

p(xn) dxn ≈ (23)

∫ ∞∑
k=0

ŷk

k!
µk = (24)

eŷµ (25)

Here we suppressed all the subleading pieces in the sum: we need Nk elements to be
summed, so all the indices need to be different. Then, we can integrate all terms xni

independently obtaining the mean µ, and argue that

N−k
∑

n1 ̸=... ̸=nk

1 = 1 (26)

at leading order. We can now plug this in our expression for q(y).

q(y) =

∫
dŷ eŷ(µ−y) = δ(y − µ) (27)
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4. (Bonus) As we saw from the previous computation, y = µ at leading order in N . Thus,
in the previous computation, we could have avoided enforcing the definition of y using the
δ distribution, as y naturally respects the constraint enforced by the delta in the large N
limit (recall that

∑
i xi/N → µ for large N). Whenever this is the case, i.e. whenever

we enforce a ”vacuous” constraint using a delta function, we can take ŷ ≈ 0. Intuitively,
ŷ is an external field that enforces the constraint (very much like a magnetic field used
to induce a magnetisation in a magnetic system), and if the system satisfies already the
constraint, no external field is needed.
Thus, it’s reasonable to expand around ŷ = 0. Expand the exponential in power series and
keep only the leading order terms up to second order in ŷ, then ”resum” the exponential
to show that the fluctuations are Gaussian
We will only write the relevant piece∫

eŷ
∑

n
xn/N

∏
n

p(xn) dxn ≈ (28)

∫ 1 + ŷ

N

∑
n

xn +
ŷ2

2N2

(∑
n

xn

)2
∏

n

p(xn) dxn = (29)

∫ 1 + ŷ

N

∑
n

xn +
ŷ2

2N2

∑
n

x2
n +

∑
n ̸=m

xnxm

∏
n

p(xn) dxn = (30)

1 + ŷµ +
ŷ2σ2

2N
+

ŷ2µ2

2 (31)

This is again the same at leading order to the exponential

eŷµ+ ŷ2σ2
2N (32)

We are left with ∫
dŷ eŷ(y−µ)+ ŷ2σ2

2N (33)

Which is exactly a Gaussian distribution after integrating over ŷ.
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