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10.1 Phase diagrams of low-rank matrix denoising

This week we will take the result of the replica computation we previously did for the low-rank

denoising problem and study its implications on the hardness of the problem. Our starting point

is the state equation on m:
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which is the extremisation equation of the free entropy ¢
¢ = maxpy,o(m)
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where Dz denotes integration against a standard Gaussian variable.

Gaussian prior. We start with a simple case, i.e. Gaussian prior on the components of x:
x, o ~N(0,1). (3)

1. Show that the state equation becomes
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We start with the integral
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which is a Gaussian integral
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Similarly we have
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We can take the ratio to have
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The last two steps are just taking the expectation over xqg, z, which are both standard
Gaussian variables, giving
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2. Compute the variational free entropy ¢(m) for this prior.

Using one of the integral computed above, we have
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3. Solve the state equation. In principle it should have two solutions. How should one choose
the right one? Use this criterion to find the correct m(A) for each A.

The first step is to simply solve the state equation. We can write it as a second degree

polynomial
m2X+m(1—X\) =0 (7)
It has a trivial solution m = 0 and a non-trivial one
1
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The dominant solution is the one with largest free entropy. One can compute that the
free entropy of the trivial solution is zero, while the free entropy of the non-trivial solution
is positive only for A > 1. Thus, the trivial solution dominates for 0 < A < 1, and the
non-trivial one dominates for A > 1.

Sparse binary prior. A more interesting case is the sparse binary prior. The elements of x
have a probability 0 < p < 1 of being one and 1 — p of being zero

Po(z;) = pd(x; — 1)+ (1 — p)d(x;) Vi, (9)

where ¢ is the Dirac’s delta.



4. Show that the state equation becomes
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We start with the integral
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The prior is
Py (z) = (1=p)(x) + po(z —1) (12)

which means the integral is just a simple sum.
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Similarly we have
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Now we have to integrate over xg. This is again a sum. The case zg = 0 will give zero
contribution, thus we have
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The last integral must be done numerically.

5. We would like to solve the state equation, but it would only be possible to do so numerically.
Luckily we know that the state equation is the fixed point of the state evolution on m!
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Figure 1: Overlaps as a function of the SNR ratio A for the binary prior.

Iterate numerically the state evolution until convergence for a large value of p (for example
p = 0.8) for several value of . Use m!=? = 0.01 and m!=° = 0.99 as initializations. What
do you observe? Is the behavior of m at convergence dependent on the initialization? Are
there any phase transitions?

Hint: you will need to integrate (possibly by quadrature) over z. We advise to choose a
suitable integration interval (something like [—5, 5] would do).

You can see the result in Figure There is no phase transition (no non-analyticity of
the free entropy) for such a high p, and both informed m!=° = 0.99 and non-informed
mt=Y = 0.01 initializations converge to the same value. Notice how the overlap ranges
from p? to p, as you can expect from looking at the state equation in the limits of large
and small .

We want to repeat the same numerical experiment for small p. First, it is useful to estimate
the magnitude of the SNR and of the magnetization in that limit. Show that

Q=Q.=E,;.pa’=p. (14)

Argue that this implies m < p, so that it is useful to plot m/p as our order parameter for
small p. Argue that the strength of the signal scales linearly with p, hence the effective
signal to noise ratio of the model is \p?.

Q@+« can be computed by simply computing the averaged Euclidean norm of the prior, giving
Q = Q. = p. By the Cauchy—Schwarz inequality we have m = ¢ < @, so m < p. As for A,
it’s reasonable to assume that the intensity of the signal scales with the number of non-zero
elements in x, which on average is p. We thus want to reabsorb this dependency on p in
the SNR, so we define the rescaled SNR v/ X = v/Ap, leading to X' = \p?

Show numerically that for p = 0.02 small enough there is a first order phase transition by
plotting m at convergence for the state evolution as a function of A. Hint: In order to see
anything from your plot you should use the scaling in m and A from the previous point.
Remember to initialize the state equation both in m*=% = 0.01 and m!=% = 0.99.



You can see the result in Figure Notice in particular how the informed and uninformed
initializations lead to different solutions in a range of SNRs. This is the signature of a first
order phase transition, as the two solutions correspond to two different maxima of the free
entropy, which as A varies exchange as the dominating maximum of the free entropy in a
discontinuous manner.

8. To which value of m, would the AMP algorithm converge in this problem?

AMP is tracked in the high-dimensional limit by state evolution, which is precisely the
way we iterated the state equation numerically. The only thing to remember is that at
initialization AMP satisfies my—g ~ 0™. Thus, AMP would converge to the solution corre-
sponding to the mg = 0 initialization, even when this solution is not the one dominating
the free entropy.

As discussed in class, to find the precise point at which the first order phase transition happens
one needs to compare the value of the free entropy at the two solutions involved in the transition.
For this prior, this is not so simple to do, as computing numerically the free entropy for small
p leads to numerical instabilities. The solution is to expand the free entropy for small p after
rescaling the magnetization and the SNR to highlight their natural dependence on p, in order
to obtain a numerically more manageable approximate expression. This whole procedure starts
being outside of the scope of these lectures, so we do not cover it here.
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