
Statistical Physics of Computation - Exercises
Emanuele Troiani, Vittorio Erba

September 2024

Week 2

Blume-Capel model
Consider the following variation of the Curie-Weiss model with spin 1:

H [s] = − 1
2N

∑
i, j

sisj + ∆
∑

i

s2
i (1)

where ∆ > 0, si ∈ {−1, 0, 1} and the model has N spins. In the following we will use the
physics naming conventions: a configuration is a specific choice of spins s ∈ {−1, 0, 1}N . A
ground state is a configurations that minimise the energy H [s]. A paramagnetic configuration
is a configuration such that 1

N

∑
i si = 0 (i.e. with zero magnetisation), and a ferromagnetic

one is such that 1
N

∑
i si ̸= 0 (i.e. with non-zero magnetisation). Notice that contrary to the

Curie-Weiss model, in the Blume-Capel model there are paramagnetic configurations in which
all spins are aligned, such as si = 0 for all i.

Physical intuition

1. Argue that at zero temperature the Gibbs distribution concentrates on the ground states,
i.e. it assigns the same weight to the ground state configurations and zero probability to
all others.

2. Argue that at infinite temperature the spins are distributed uniformly in their domain.

3. Consider the ∆ = 0 case. Which is the ground state? Compute the magnetisation at zero
and infinite temperature in the large N limit. Draw a guess for the phase diagram and
recognize the ferromagnetic and paramagnetic phase. If there are multiple configurations
in the ground state, you can consider adding an infinitesimal bias for one of them, i.e.
consider adding a perturbation to the Hamiltonian that lifts the degeneracy.

4. Now consider the general ∆ > 0 case. Show that you can have a paramagnetic ground state
at large N . How does this ground state look like? (Hint: try to compute the energy for a
special paramagnetic state, and show it’s actually lower than the two ground states you
found for ∆ = 0 for a certain choice of parameters). Draw a guess for the phase diagram
and recognize the ferromagnetic and paramagnetic phase.
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Phase diagram with the canonical ensemble

In this section we obtain an asymptotic description of the system in the large N limit. To do
this, we compute the partition function Z:

Z =
∑

s

e−βH [s] (2)

where β = 1/T is the inverse of the temperature and
∑

s is the sum over all possible values
of s.

1. Introduce the magnetisation using a Dirac delta and its Fourier representation to obtain
the expression

Z =

∫
dm dm̂

∑
s

exp
{

N

2 βm2 + Nmm̂ +
∑

i

(
−β∆s2

i − sim̂
)}

(3)

2. Sum over the spins to write
Z =

∫
dm dm̂eNf (m,m̂) (4)

where
f(m, m̂) =

βm2

2 + mm̂ + log
(

1 + 2e−β∆ cosh m̂
)

(5)

3. Show that in the large N limit that the magnetisation m obeys the state equation

2e−β∆ sinh βm

1 + 2e−β∆ cosh βm
= m (6)

4. Find one (easy) solution of the state equation.

5. Take ∆ = 0.3 and ∆ = 0.49 and plot numerically g(m) as a function of the magnetisation
for different values of the temperature. Use the programming language / plotting software
that you prefer. Which value of ∆ has a second order phase transition and which has a
first order one?

6. Obtain the critical temperature, i.e. the temperature at which the paramagnetic minimum
at m = 0 of g(m) changes concavity and becomes a local maximum, at ∆ = 0. You can
assume that at ∆ = 0, and in a neighbourhood of it, the behaviour is qualitatively the
same as the one that you observed for ∆ = 0.3 in the previous point. What can we say
about generic ∆?

7. Use all your knowledge to make a better sketch of the phase diagram

8. Consider ∆ > 1/2. We know we are in a paramagnetic m = 0 phase. Is it the one with
random spins or with s = 0? Study this looking at the observable q:

q =
1
N

∑
i

s2
i (7)

Show that q concentrates around the derivative of the free energy

q = − 1
βNZ

∂

∂∆
e−βH [s] =

2e−∆/T

1 + 2e−∆/T
(8)
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