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Week 1

Introduction to the saddle point method
Basic idea

This exercise will introduce a very useful tool to compute asymptotics of integral and show it in
practice in an example. Suppose we want to compute the integral Iβ for β ≫ 1:

Iβ =

∫
R

e−βf (t) dt

for a reasonably regular function f(t) on R.

1. Intuitively, what values of f(t) will affect the integral the most?

Call T0 = arg mint f(t) ⊂ R the set of points for which f(t) is (globally) minimized. If f(t) is
not bounded from below, i.e. T0 = ∅, the integral is infinite. We assume T0 = {t0}, that is there
is a unique global minimum.

2. Taylor expand f(t) around t0. Argue that if f ′′(t0) > 0, then

Iβ ≈ e−βf (t0)
∫

R

e−βf ′′(t0)t2/2 dt

where the corrections to this integral are exponentially small in β.

3. Conclude that

Iβ ≈

√
2π

βf ′′(t0)
e−βf (t0)

4. Suppose T0 = {t0, t1} with t0 ̸= t1. As a consequence of the previous question, why do we
have that?

Iβ ≈

√
2π

βf ′′(t0)
e−βf (t0) +

√
2π

βf ′′(t1)
e−βf (t1)

1



Concentration though the saddle point

In the class we will typically study systems with characteristic size N ≫ 1, and study quantities
of the form ⟨f(x)⟩:

⟨f(x)⟩ =
∫

dx f(x)eNϕ(x)∫
dx eNϕ(x)

(1)

1. Show that if N is large enough, then ⟨f(x)⟩ = f(x0), where x0 is the global maximum of
ϕ(x)

2. What would happen if ϕ(x) has two global maxima {x1, x2}?

Stirling’s formula

Let’s use the saddle point method to derive a famous approximation of the factorial.

1. Show that for n ∈ N, n! =
∫ ∞

0 xne−x dx

2. Write n! = nn+1 ∫ ∞
0 e−nf (x) dx for a certain function f(x)

3. Use the saddle point method to show that for n ≫ 1 we have:

n! ≈
√

2πn
(n

e

)n

Entropy and free entropy
In this exercise, we review some useful relationship between entropy and free entropy. Recall
that, given a system with degrees of freedom s and Hamiltonian H[s], the free entropy is defined
as

Φ = log Z = log
∫

ds e−βH[s] , (2)

where we also defined the partition function Z. Recall that the Hamiltonian is extensive in the
thermodynamic limit, i.e. H[s] = O(N).

1. Show that for any model with free entropy Φ we have:

⟨H⟩ = −∂Φ
∂β

, (3)

where the angular average is w.r.t. the Gibbs distribution

⟨f⟩ =
∫

ds e−βH[s]f(s)∫
ds e−βH[s]

. (4)

Is this relationship true for all N , or only in the thermodynamic limit N → ∞?

2. Defining the entropy at fixed energy S(E) as the logarithm of the number of configurations
at energy E, show that you can write the partition function as:

Z =

∫
e−βE+S(E) dE (5)

Is this relationship true for all N , or only in the thermodynamic limit N → ∞?
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3. Combine the last two results to argue that in the large N limit:

S(Eeq) = Φ(Eeq) + βEeq (6)

where Eeq is the energy given from the saddle point approximation maximisation condition.
What is the condition that determines Eeq? (Hint: both E and S(E) are extensive,
meaning that they are proportional to N).

Central Limit Theorem using field theory
Consider N independent samples x1, ... xN of a random variable x ∼ p(x), where p has mean µ
and variance σ2. We define the random variable yN as the average of the N samples:

yN =
1
N

∑
n

xn , (7)

then in the large N limit yN converges in distribution to y ∼ q(y) = N (µ, σ2/N). This basic
fact of probability theory is called the Central Limit Theorem. As an exercise we will derive it
using field theory techniques.

Recall the definition of the Dirac’s delta distribution δ∫
dxδ(x − x0)f(x) = f(x0) , (8)

and its Fourier representation
δ(x) =

∫
dx̂

2π
expix̂x . (9)

1. Write the distribution of yn, which we want to show it converges to q(y), as a function of
p(x) by using the delta function to impose the definition of y.

2. Rewrite the delta in Fourier representation (also called informally exponential form).

3. We start with a weaker form of the result (the law of large numbers): let’s show that at the
zeroth order in N , ŷN converges in distribution to q(y) = δ(y − µ). Do it by expanding
the exponential in power series, keep the zeroth order terms in N , then resum.

4. (Bonus) As we saw from the previous computation, y = µ at leading order in N . Thus,
in the previous computation, we could have avoided enforcing the definition of y using the
δ distribution, as y naturally respects the constraint enforced by the delta in the large N
limit (recall that

∑
i xi/N → µ for large N). Whenever this is the case, i.e. whenever

we enforce a ”vacuous” constraint using a delta function, we can take ŷ ≈ 0. Intuitively,
ŷ is an external field that enforces the constraint (very much like a magnetic field used
to induce a magnetisation in a magnetic system), and if the system satisfies already the
constraint, no external field is needed.
Thus, it’s reasonable to expand around ŷ = 0. Expand the exponential in power series and
keep only the leading order terms up to second order in ŷ, then ”resum” the exponential
to show that the fluctuations are Gaussian
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