Exercice sheet 3

Fourier transforms

- 1. Prove that if an associative multiplication \times on $\mathcal{S}'(\mathbb{R})$ satisfies
 - $\forall \varphi \in \mathcal{S}'(\mathbb{R}), \quad \varphi_0 \times \varphi = \varphi_0 \text{ and } \varphi \times \varphi_1 = \varphi = \varphi_1 \times \varphi,$
 - for any polynomially bounded and μ_L -measurable functions f, g,

$$\varphi_f \times \varphi_g = \varphi_{fg}$$
 and $\varphi_{f+g} = \varphi_f + \varphi_g$,

• for any polynomially bounded and μ_L -measurable functions f, g,

$$f(x) = \int_0^x g(t)\mu_L(dt) \quad \Rightarrow \quad D\varphi_f = \varphi_g,$$

• $\forall \varphi, \eta \in \mathcal{S}'(\mathbb{R}), \quad D(\varphi \times \eta) = (D\varphi) \times \eta + \varphi \times (D\eta),$

then $\varphi_x \delta_0 = \varphi_0 = \delta_0 \times \varphi_x$ and $\varphi_x \times \text{P.v.}(\frac{1}{x}) = \varphi_1$, where $\delta_0 = D\varphi_\Theta$ and $\text{P.v.}(\frac{1}{x}) = D^2(x(\ln(|x|) - 1))$.

2. Prove the Leibnitz integral rule:

Let $U \subset \mathbb{R}$ be open, and let (X, Σ, μ) be a measure space. Suppose $f: U \times X \to \mathbb{K}$ satisfies:

- For each $t \in U$, $f \in \mathcal{L}^1(X, \mu)$,
- there is a μ -null set $N \in \Sigma$, so that $\partial_t f(t,x)$ exists $\forall t \in U$ and $\forall x \in X \setminus N$,
- $\forall t \in U, \exists r > 0, \exists g_{t,r} \in \mathcal{L}^1(X,\mu), \text{ s.t. } |\partial_s f(s,x)| \leq g_{t,r} \ \forall s \in]t-r,t+r[\text{ and } \forall x \in X \setminus N.$

Then $\frac{d}{dt} \int_X f(t,x) d\mu = \int_{X \setminus N} \partial_t f(t,x) d\mu$.

Use the Leibnitz integral rule to show, that $\partial^{\alpha} \widehat{f(x)}(p) = (-ix)^{\alpha} \widehat{f(x)}(p)$ and that $(ip)^{\alpha} \widehat{f(x)}(p) = \widehat{\partial^{\alpha} f(x)}$.

- **3.** Prove that the Fourier transform is a continuous endomorphism on $\mathcal{S}(\mathbb{R}^N)$. (Hint: use continuity of the maps ∂^{α} and $(-ix)^{\alpha}$ previously proven.)
- 4. Use a contour integral to prove that

$$\mathcal{F}(\exp(-\frac{x \cdot x}{2}))(p) = \exp(-\frac{p \cdot p}{2}).$$

Consider then for $\epsilon > 0$ the integrals

$$I_{\epsilon}(x) := \frac{1}{(2\pi)^N} \int_{\mathbb{R}^{2N}} f(y) \exp(ik \cdot (x - y)) \exp(-\epsilon^2 \frac{k \cdot k}{2}) \mu_L(dk \times dy).$$

Use Fubini and dominated convergence, to prove that

$$\mathcal{F} \circ \mathcal{F}^* = \mathbb{1}_{\mathcal{S}(\mathbb{R}^N)} = \mathcal{F}^* \circ \mathcal{F}.$$

5. For a given $\epsilon > 0$ define the following functions

$$\hat{\Delta}_{\epsilon,\pm}^{C} := \frac{-1}{(2\pi)^2} \frac{1}{(p_0 \mp i\epsilon + E_p)(p_0 \mp i\epsilon - E_p)},$$

$$\hat{\Delta}_{\epsilon,\pm}^{F} := \frac{-1}{(2\pi)^2} \frac{1}{(p_0 \mp i\epsilon + E_p)(p_0 \pm i\epsilon - E_p)},$$

where $E_p = \sqrt{m^2 + p_1^2 + p_2^2 + p_3^2}$. Show that $\hat{\Delta}_{\pm}^C := \lim_{\epsilon \to 0^+} \varphi_{\hat{\Delta}_{\epsilon,\pm}^C}$ and $\hat{\Delta}_{\pm}^F := \lim_{\epsilon \to 0^+} \varphi_{\hat{\Delta}_{\epsilon,\pm}^C}$ exist in $\mathcal{S}'(\mathbb{R}^4)$.

Show then that $(\Box + m^2)\Delta^C_{\pm} = \delta^{(4)}_0 = (\Box + m^2)\Delta^F_{\pm}$.

- **6.** Consider the Schrödinger equation $i\partial_t \psi(t) = -\frac{1}{2m} \Delta \Psi(t)$ together with an $L^2(\mathbb{R}^3, \mu_L)$ solution $\Psi(t)$ to it, i.e.:
 - $(1+p_1^2+p_2^2+p_3^2)\widehat{\Psi(0)}(p) \in L^2(\mathbb{R}^3,\mu_L),$
 - $\bullet \ \forall t \in \mathbb{R}, \quad \widehat{\Psi(t)}(p) = \exp(-i\frac{t(p_1^2 + p_2^2 + p_3^2)}{2m})\widehat{\Psi(0)}(p).$

Suppose $\operatorname{supp}(\Psi(0)) \subset B(0,r)$. What may one conclude on $\operatorname{supp}(\Psi(t))$? (Hint: use Schwarz's Paley & Wiener theorem).

- 7. Consider the relativistic Fourier transform $\hat{f}(p) := \frac{1}{(2\pi)^2} \int_{\mathbb{R}^4} \exp(-ip^t \eta x) f(x) \mu_L(dx)$. For a fixed $f \in \mathcal{S}(\mathbb{R}^4)$, let $C_f := \{y \in \mathbb{R}^4 : \forall x \in \operatorname{supp}(f), y^t \eta x \leq 0\}$. Show that C_f is convex and that on $p + iy \in \mathbb{R} + i\mathring{C}_f$, $\mathcal{L}(f,y)(p)$ is well-defined, holomorphic and obeys the same estimates as in Paley & Wiener's theorem, but for the exponential term.
- 8. Use the previous exercice to show, that for $f \in \mathcal{S}(\mathbb{R}^4)$ with $\sup(f) \subset \mathbb{R}_{\pm} \times \mathbb{R}^3$, $\mathcal{L}(f,y)(p)$ is holomorphic in $p_0 + iy$ if $y \in \mathbb{R}_{\mp}^* \times \{(0,0,0)\}$. Show that if $f \in \mathcal{S}(\mathbb{R}^4)$ with $\sup(f) \subset \mathbb{R}_{\mp} \times \mathbb{R}^3$, $\mathcal{L}^*(f,y)(p) := \mathcal{L}(f,-y)(-p)$ is holomorphic in $p_0 + iy$ if $y \in \mathbb{R}_{\mp}^* \times \{(0,0,0)\}$. Use this to show, that Δ_{\pm}^C have causal supports.
- 9. A solution to the Cauchy problem

$$(\Box + m^2)\varphi = 0$$
, $\varphi(0) = f$ and $(\partial_t \varphi)(0) = f_t$, $f, f_t \in \mathcal{S}'(\mathbb{R}^3)$

is a function $\varphi : \mathbb{R} \to \mathcal{S}'(\mathbb{R}^3)$, so that $\lim_{\tau \to 0} \frac{\varphi(t+\tau)-\varphi(t)}{\tau} = \varphi_t(t)$ and $\lim_{\tau \to 0} \frac{\varphi_t(t+\tau)-\varphi_t(t)}{\tau} = \varphi_{tt}(t)$ exist in the weak*-topology and so that $\varphi_{tt}(t) - \Delta\varphi(t) + m^2\varphi(t) = 0$. Use Schwartz's Paley & Wiener theorem to show, that if both f and f_t have compact support, then $\varphi(t)$ has causal support.

What happens if one considers positive and negative energy frequencies separately?

(Hint:
$$\sqrt{a+ib} = \pm \left(\sqrt{\frac{\sqrt{a^2+b^2}+a}{2}} + i\frac{b}{|b|}\sqrt{\frac{\sqrt{a^2+b^2}-a}{2}}\right)$$
)

10. Let $f, f_t \in \mathcal{S}(\mathbb{R}^3)$ and show, that the solution obtained in this case by the previous exercice reads

$$\lim_{k \to \infty} \left((D_t \Delta_+^C) * (d_k(t)f) + \Delta_+^C * (d_k(t)f_t) \right),$$

where $(d_k)_{k \in \mathbb{N}^*} \subset \mathcal{S}(\mathbb{R})$ is a Dirac sequence. What happens when one substitutes Δ_+^C by Δ_-^C or Δ_\pm^F ? (Hints: compute the Fourier transform of the convolution of a tempered distribution with a test function. Apply Paley & Wiener's theorem to the Dirac sequence and use a contour integral on p_0 .)