
EPFL - Physics’ section Mathematical methods in quantum physics

Exercice sheet 3

Fourier transforms

1. Prove that if an associative multiplication × on S ′(R) satisfies

• ∀φ ∈ S ′(R), φ0 × φ = φ0 and φ× φ1 = φ = φ1 × φ,

• for any polynomially bounded and µL-measurable functions f, g,

φf × φg = φfg and φf+g = φf + φg,

• for any polynomially bounded and µL-measurable functions f, g,

f(x) =

∫ x

0

g(t)µL(dt) ⇒ Dφf = φg,

• ∀φ, η ∈ S ′(R), D(φ× η) = (Dφ)× η + φ× (Dη),

then φxδ0 = φ0 = δ0 × φx and φx × P.v.( 1
x
) = φ1, where δ0 = DφΘ and P.v.( 1

x
) =

D2(x(ln(|x|)− 1).

2. Prove the Leibnitz integral rule:

Let U ⊂ R be open, and let (X,Σ, µ) be a measure space. Suppose f : U ×X → K
satisfies:

• For each t ∈ U , f ∈ L1(X,µ),

• there is a µ-null set N ∈ Σ, so that ∂tf(t, x) exists ∀t ∈ U and ∀x ∈ X \N ,

• ∀t ∈ U , ∃r > 0, ∃gt,r ∈ L1(X,µ), s.t. |∂sf(s, x)| ≤ gt,r ∀s ∈]t − r, t + r[ and
∀x ∈ X \N .

Then d
dt

∫
X
f(t, x)dµ =

∫
X\N ∂tf(t, x)dµ.

Use the Leibnitz integral rule to show, that ∂αf̂(x)(p) = ̂(−ix)αf(x)(p) and that

(ip)αf̂(x)(p) = ∂̂αf(x).

3. Prove that the Fourier transform is a continuous endomorphism on S(RN).
(Hint: use continuity of the maps ∂α and (−ix)α previously proven.)

4. Use a contour integral to prove that

F(exp(−x · x
2

))(p) = exp(−p · p
2

).

Consider then for ϵ > 0 the integrals

Iϵ(x) :=
1

(2π)N

∫
R2N

f(y) exp(ik · (x− y)) exp(−ϵ2k · k
2

)µL(dk × dy).

Use Fubini and dominated convergence, to prove that

F ◦ F∗ = 1S(RN ) = F∗ ◦ F .
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5. For a given ϵ > 0 define the following functions

∆̂C
ϵ,± :=

−1

(2π)2
1

(p0 ∓ iϵ+ Ep)(p0 ∓ iϵ− Ep)
,

∆̂F
ϵ,± :=

−1

(2π)2
1

(p0 ∓ iϵ+ Ep)(p0 ± iϵ− Ep)
,

where Ep =
√
m2 + p21 + p22 + p23. Show that ∆̂C

± := limϵ→0+ φ∆̂C
ϵ,±

and ∆̂F
± :=

limϵ→0+ φ∆̂C
ϵ,±

exist in S ′(R4).

Show then that (□+m2)∆C
± = δ

(4)
0 = (□+m2)∆F

±.

6. Consider the Schrödinger equation i∂tψ(t) = − 1
2m

∆Ψ(t) together with an L2(R3, µL)
solution Ψ(t) to it, i.e.:

• (1 + p21 + p22 + p23)Ψ̂(0)(p) ∈ L2(R3, µL),

• ∀t ∈ R, Ψ̂(t)(p) = exp(−i t(p
2
1+p22+p23)

2m
)Ψ̂(0)(p).

Suppose supp(Ψ(0)) ⊂ B(0, r). What may one conclude on supp(Ψ(t))?
(Hint: use Schwarz’s Paley & Wiener theorem).

7. Consider the relativistic Fourier transform f̂(p) := 1
(2π)2

∫
R4 exp(−iptηx)f(x)µL(dx).

For a fixed f ∈ S(R4), let Cf := {y ∈ R4 : ∀x ∈ supp(f), ytηx ≤ 0}.
Show that Cf is convex and that on p + iy ∈ R + iC̊f , L(f, y)(p) is well-defined,
holomorphic and obeys the same estimates as in Paley & Wiener’s theorem, but for
the exponential term.

8. Use the previous exercice to show, that for f ∈ S(R4) with sup(f) ⊂ R± × R3,
L(f, y)(p) is holomorphic in p0 + iy if y ∈ R∗

∓ × {(0, 0, 0)}.
Show that if f ∈ S(R4) with sup(f) ⊂ R∓ × R3, L∗(f, y)(p) := L(f,−y)(−p) is
holomorphic in p0 + iy if y ∈ R∗

∓ × {(0, 0, 0)}.
Use this to show, that ∆C

± have causal supports.

9. A solution to the Cauchy problem

(□+m2)φ = 0, φ(0) = f and (∂tφ)(0) = ft, f, ft ∈ S ′(R3)

is a function φ : R → S ′(R3), so that limτ→0
φ(t+τ)−φ(t)

τ
= φt(t) and limτ→0

φt(t+τ)−φt(t)
τ

=
φtt(t) exist in the weak∗-topology and so that φtt(t)−∆φ(t) +m2φ(t) = 0.
Use Schwartz’s Paley & Wiener theorem to show, that if both f and ft have compact
support, then φ(t) has causal support.
What happens if one considers positive and negative energy frequencies separately?

(Hint:
√
a+ ib = ±

(√√
a2+b2+a

2
+ i b

|b|

√√
a2+b2−a

2

)
)

10. Let f, ft ∈ S(R3) and show, that the solution obtained in this case by the previous
exercice reads

lim
k→∞

(
(Dt∆

C
+) ∗ (dk(t)f) + ∆C

+ ∗ (dk(t)ft)
)
,

where (dk)k∈N∗ ⊂ S(R) is a Dirac sequence.
What happens when one substitutes ∆C

+ by ∆C
− or ∆F

±?



EPFL - Physics’ section Mathematical methods in quantum physics

(Hints: compute the Fourier transform of the convolution of a tempered distribution
with a test function. Apply Paley & Wiener’s theorem to the Dirac sequence and
use a contour integral on p0.)


