Solutions to exercice sheet 2

Fréchet spaces and continuous maps

1. Let (X, d) be a metric space. Show that

$$\tau_d := \{ U \subset X : \forall x \in U, \exists r > 0 \text{ s.t. } B(x, r) \subset U \}$$

defines a topology on X. Show that if $(x_k)_{k\in\mathbb{N}}$ is a sequence in X so that $\lim_k d(x, x_k) = 0$, then $\lim_k d(x_l, x_k) = d(x, x_k)$ for all $k \in \mathbb{N}$.

For (X,d) a Fréchet space, show that for $n \in \mathbb{N}$ and r > 0, $nB(0,r) \subset B(0,nr)$ $(nB(0,r) := \{ny : y \in B(0,r)\}).$

Let $\{U_1, \ldots, U_n\} \subset \tau_d$ and let $x \in \cap_{k=1,\ldots,n} U_k$. Then $\forall k = 1,\ldots,n, \exists r_k > 0$ s.t. $B(x,r_k) \subset U_k$. Set $r := \min\{r_1,\ldots,r_n\}$. Obviously, $\forall k = 1,\ldots,n$ one has $B(x,r) \subset B(x,r_k) \subset U_k$ and $B(x,r) \subset \cap_{k=1,\ldots,n} U_k$.

Let $\mathcal{F} \subset \tau_d$ and $x \in \bigcup_{U \in \mathcal{F}} U$. By definition, there is then some $U \in \mathcal{F}$ s.t. $x \in U$. Again by definition, there is then some r > 0 s.t. $B(x,r) \subset U$ and consequently, $B(x,r) \subset \bigcup_{U \in \mathcal{F}} U$.

Let $(x_k)_{k\in\mathbb{N}}$ be a sequence in X so that $\lim_k d(x, x_k) = 0$, and let $\epsilon > 0$. Then there is an $N_{\epsilon} \in \mathbb{N}$ s.t. $l \geq N_{\epsilon}$ implies $d(x, x_l) < \epsilon$. Since $d(x, x_k) \leq d(x, x_l) + d(x_l, x_k)$ and $d(x_l, x_k) \leq d(x_l, x_l) + d(x_l, x_k)$, one has

$$-\epsilon < -d(x, x_l) \le d(x_k, x_l) - d(x, x_k) \le d(x_l, x) < \epsilon$$

and hence, for $l \ge N_{\epsilon}$, $|d(x, x_k) - d(x_l, x_k)| < \epsilon$.

If (X, d) is Fréchet and if $y \in B(0, r)$, then $d(0, ny) \leq \sum_{k=0}^{n-1} d(ky, (k+1)y) = \sum_{k=0}^{n-1} d(0, y) < nr$.

2. Let $\{\|\|_n\}_{n\in\mathbb{N}}$ be a family of norms on a vector space V. Show that

$$d(v,w) := \sum_{n \ge 0} 2^{-n} \frac{\|v - w\|_n}{1 + \|v - w\|_n}$$

defines a translation invariant distance on V (what can you say about the real function $\mathbb{R}_+ \ni x \mapsto \frac{x}{1+x}$?).

Show that in the case of $V = \mathcal{S}(\mathbb{R}^N)$ one has $\tau_d = \tau_{\mathcal{S}}$.

d is obviously positive (note that $\forall v, w \in V, 0 \leq d(v, w) \leq 2$) and $\forall v, w \in V, d(v, w) = d(w, v)$. It is also clear that $d(v, w) = 0 \iff v = w$. It remains to prove the trianguar inequality for d.

For $x, y \in \mathbb{R}_+$ we have

$$x \ge y \iff x + xy \ge y + yx \iff \frac{x}{1+x} \ge \frac{y}{1+y}.$$

The map $\mathbb{R}_+ \ni x \mapsto \frac{x}{1+x}$ is hence increasing. As a consequence, if $v, w, u \in V$

$$d(v,w) = \sum_{n\geq 0} 2^{-n} \frac{\|v-w\|_n}{1+\|v-w\|_n} \le \sum_{n\geq 0} 2^{-n} \frac{\|v-u\|_n + \|u-w\|_n}{1+\|v-u\|_n + \|u-w\|_n}$$

$$= \sum_{n\geq 0} 2^{-n} \frac{\|v-u\|_n}{1+\|v-u\|_n + \|u-w\|_n} + \sum_{n\geq 0} 2^{-n} \frac{\|u-w\|_n}{1+\|v-u\|_n + \|u-w\|_n}$$

$$\le \sum_{n\geq 0} 2^{-n} \frac{\|v-u\|_n}{1+\|v-u\|_n} + \sum_{n\geq 0} 2^{-n} \frac{\|u-w\|_n}{1+\|u-w\|_n} = d(v,u) + d(u,w).$$

Let now $x \in V, r > 0$ and we will show, that there are norms $\| \|_k$ for k = 1, ..., N and some $\epsilon > 0$, so that $U_{x,\epsilon,1,...,N} \subset B(x,r)$. Since $\sum_{k\geq 0} 2^{-k} = 2$, there is an $N \in \mathbb{N}$, so that $\sum_{k>N} 2^{-k} < \frac{r}{2}$. Set $\epsilon := \frac{r}{2(N+1)}$. For any $y \in U_{x,\epsilon,1,...,N}$ we thus have

$$d(y,x) = \sum_{0 \le k \le N} 2^{-k} \frac{\|x - y\|_k}{1 + \|x - y\|_k} + \sum_{n > N} 2^{-k} \frac{\|x - y\|_n}{1 + \|x - y\|_n}$$

$$< \sum_{0 \le k \le N} \|x - y\|_k + \sum_{n > N} 2^{-k} < \sum_{0 \le k \le N} \|x - y\|_k + \frac{r}{2} < (N+1) \frac{r}{2(N+1)} + \frac{r}{2} = r.$$

Therefore, $U_{x,\epsilon,1,...,N} \subset B(x,r)$. This being true for any $x \in V$ and any r > 0, we may conclude, that all open balls B(x,r) are open for the topology induced by the family of norms $\{\| _n \}_{n \in \mathbb{N}}$ which is hence finer than τ_d .

Reciprocally, consider some $U_{x,\epsilon,1,\dots,N}$ for a given $\epsilon > 0$, $N \in \mathbb{N}$ and $x \in V$. Let $y \in B(x,r)$. Then $r > d(x,y) > 2^{-k} \frac{\|y-x\|_k}{1+\|y-x\|_k}$, so that for $k = 1,\dots,N$ one has $1 + \|y-x\|_k > 2^{-N}r^{-1}\|y-x\|_k$, which is to say $1 > (2^{-N}r^{-1} - 1)\|y-x\|_k$. If one choses $r < 2^{-N} \frac{\epsilon}{1+\epsilon}$, then $B(x,r) \subset U_{x,\epsilon,1,\dots,N}$. This shows that τ_d is finer than the topology induced by the norms $\{\| _n \}_{n \in \mathbb{N}}$.

3. Let $q: \mathbb{R} \to \mathbb{R}/\mathbb{Z}$ be the quotient map. Identify any $z \in S^1$ with some $x \in \mathbb{R}/\mathbb{Z}$. This permits one to identify any $f \in C^{\infty}(S^1)$ with the periodic smooth function $f \circ q \in C^{\infty}(\mathbb{R})$. For a compact $K \subset S^1$ let $C^{\infty}(S^1 \setminus K) := \{ f \in C^{\infty}(S^1) : \forall \alpha \in \mathbb{N}^N, \partial^{\alpha} f \big|_{K} = 0 \}$. On $C^{\infty}(S^1 \setminus K)$ consider the norms

$$p_n(f) := \max_{\alpha \in \mathbb{N}_{\leq n}} \{ \|\partial^{\alpha} f\|_{\infty} \}.$$

Show that $(C^{\infty}(S^1 \setminus K), \{p_n\}_{n \in \mathbb{N}})$ is a Fréchet space.

The fact that p_n are norms on $C^{\infty}(S^1 \setminus K)$ for all $n \in \mathbb{N}$ is clear. To show completeness of $C^{\infty}(S^1)$ under the topology induced by the family of norms $\{p_n\}_{n\in\mathbb{N}}$, one may use again the fact that $C(S^1)$, S^1 being compact, is complete for the uniform norm $\|\cdot\|_{\infty}$ and then invoke uniform continuity of the Riemann integral.

The fact that $C^{\infty}(S^1 \setminus K)$ is complete under the topology induced by the family of norms $\{p_n\}_{n\in\mathbb{N}}$ follows now from the fact that a sequence of smooth functions $(f_n)_{n\in\mathbb{N}} \subset C^{\infty}(S^1 \setminus K)$ can only converge to 0 on K.

 $(C^{\infty}(S^1 \setminus K), \{p_n\}_{n \in \mathbb{N}})$ is hence complete and the topology may also be induced by the distance $d(f,g) := \sum_{n \geq 0} 2^{-n} \frac{p_n(f-g)}{1+p_n(f-g)}$.

- **4.** Let $T: \mathcal{S}(\mathbb{R}^N) \to \mathcal{S}(\mathbb{R}^N)$ be a linear map. Show that the following statements are equivalent:
 - (a) T is continuous
 - (b) For any norm $\| \|_n$, there is a positive constant C and a norm $\| \|_m$, so that for any $f \in \mathcal{S}(\mathbb{R}^N)$, $\| T(f) \|_n \leq C \| f \|_m$.
 - (c) For any sequence $(f_k)_{k\in\mathbb{N}}$, if $\lim_k f_k = 0$ for $\tau_{\mathcal{S}}$, then $\lim_k T(f_k) = 0$ for $\tau_{\mathcal{S}}$.
 - (d) For any sequence $(f_k)_{k\in\mathbb{N}}$, if $\lim_k f_k = f \in \mathcal{S}(\mathbb{R}^N)$ for $\tau_{\mathcal{S}}$, then $\lim_k T(f_k) = T(f)$ for $\tau_{\mathcal{S}}$.
 - $(a) \Rightarrow (b)$: By continuity of T, the set $T^{-1}\{U_{0,1,n}\}$ is open in $\tau_{\mathcal{S}}$. Since $0 \in T^{-1}\{U_{0,1,n}\}$, there is an $\epsilon > 0$ and some $K \in \mathbb{N}$, so that if $f \in U_{0,\epsilon,0,1,\ldots,K}$, then $T(f) \in U_{0,1,n}$. The norms in $\mathcal{S}(\mathbb{R}^N)$ being increasing, one has that $U_{0,\epsilon,K} = U_{0,\epsilon,0,1,\ldots,K}$. Setting therefore m = K and $C = \frac{1}{\epsilon}$, one has that $||f||_m < \frac{1}{C}$ implies $||T(f)||_n < 1$. Hence, $||f||_m \leq \frac{1}{C}$ implies $||T(f)||_n \leq 1$, so that for any $f \in \mathcal{S}(\mathbb{R}^N) \setminus \{0\}$, $||T(f)||_n = ||T(C||f||_m \frac{f}{C||f||_m})||_n = C||f||_m ||T(\frac{f}{C||f||_m})||_n \leq C||f||_m$.
 - $(b) \Rightarrow (c)$: We have to show, that for any norm $\|\|_n$, one has $\lim_k \|T(f_k)\|_n = 0$ if $\lim_k f_k = 0$ for $\tau_{\mathcal{S}}$. By assumption, there is a positive constant C and a norm $\|\|_m$, so that $\|T(f_k)\|_m \leq C\|f_k\|_m$. But $\lim_k f_k = 0$ for $\tau_{\mathcal{S}}$ implies in particular, that $\lim_k \|f_k\|_m = 0$. Hence the conclusion.
 - $(c) \Rightarrow (d)$: Since all norms $\| \|_m$ are clearly translation invariant, $\lim_k f_k = f$ is equivalent to $\lim_k (f f_k) = 0$ in τ_s . By assumption we then have $\lim_k (T(f f_k)) = 0$ for τ_s , which then is again equivalent to $\lim_k T(f_k) = T(f)$.
 - $(d) \Rightarrow (a)$: We prove the contraposition. Suppose T is not continuous. There is therefore an open set $U \in \tau_{\mathcal{S}}$ so that $T^{-1}\{U\} \notin \tau_{\mathcal{S}}$. Thus, there is an $f \in T^{-1}\{U\}$, so that for any open set $f \ni V \in \tau_{\mathcal{S}}$, $V \not\subset T^{-1}\{U\}$. In particular, for any $n \in \mathbb{N}^*$, there is an $f_n \in U_{f,n^{-1},n}$ so that $f_n \notin T^{-1}(U)$. Clearly, $\lim_n f_n = f$, but $T(f) \in U$ and $\forall n > 0$, $T(f_n) \notin U$. This contradicts (d).
- 5. Show that if the sequences $(f_k)_{k\in\mathbb{N}}$, $(g_k)_{k\in\mathbb{N}}\subset\mathcal{S}(\mathbb{R}^N)$ converge for $\tau_{\mathcal{S}}$ to f and g respectively, then one has $\lim_k f_k g_k = fg$ and $\lim_k (f_k + g_k) = f + g$. Show that if the sequences $(\varphi_k)_{k\in\mathbb{N}}$, $(\eta_k)_{k\in\mathbb{N}}\subset\mathcal{S}'(\mathbb{R}^N)$ converge for $\tau(\mathcal{S}'(\mathbb{R}^N,\mathcal{S}(\mathbb{R}^N)))$ to φ and η respectively, then one has $\lim_k (\varphi_k + \eta_k) = \varphi + \eta$.

Since the sequences $(\varphi_k)_{k\in\mathbb{N}}$, $(\eta_k)_{k\in\mathbb{N}}\subset \mathcal{S}'(\mathbb{R}^N)$ converge for $\tau(\mathcal{S}'(\mathbb{R}^N,\mathcal{S}(\mathbb{R}^N)))$ to φ and η respectively, this implies, that for any fixed $f\in\mathcal{S}(\mathbb{R}^N)$, one has

$$\lim_{k} \varphi_k(f) = \varphi(f)$$
 and $\lim_{k} \eta_k(f) = \eta(f)$.

By linearity of all the functionals in play and of the limit in complex numbers, one has therefore that

$$\lim_{k} (\varphi_k + \eta_k)(f) = \lim_{k} \varphi_k(f) + \lim_{k} \eta_k(f) = \varphi(f) + \eta(f) = (\varphi + \eta)(f).$$

Note first, that for two Schwartz functions f and g, one has

$$|||fg|||_{n} = \max\{||(1+x\cdot x)^{n}\partial^{\alpha}(fg)||_{\infty} : \alpha \in \mathbb{N}_{\leq n}^{N}\}$$

$$= \max\{||(1+x\cdot x)^{n}\sum_{\beta+\gamma=\alpha} {\alpha \choose \beta}(\partial^{\beta}f)(\partial^{\gamma}g)||_{\infty} : \alpha \in \mathbb{N}_{\leq n}^{N}\}$$

$$\leq \max\{\sum_{\beta+\gamma=\alpha} {\alpha \choose \beta}||(1+x\cdot x)^{n}\partial^{\beta}f||_{\infty}||\partial^{\gamma}g)||_{\infty} : \alpha \in \mathbb{N}_{\leq n}^{N}\}$$

$$\leq {N+n \choose n}n!|||f|||_{n}|||g|||_{n} = \frac{(N+n)!}{N!}|||f|||_{n}|||g|||_{n}.$$

Let $0 \in U \in \tau_{\mathcal{S}}$ and we shall prove, that for sufficiently large $k \in \mathbb{N}$, $fg - f_k g_k$, $f + g - f_k - g_k \in U$.

Since U is open and contains 0, there is an $n \in \mathbb{N}$, so that $U_{0,\epsilon,\|\|\|_n} \subset U$. Since $\lim_k f_k = f$ and $\lim_k g_k = g$ for $\tau_{\mathcal{S}}$:

- there is a $k_1 \in \mathbb{N}$ so that $k \geq k_1$ implies $|||f f_k|||_n < \epsilon \frac{N!}{2(||g||_n + 1)(N+n)!}$,
- there is a $k_2 \in \mathbb{N}$ so that $k \geq k_2$ implies $|||g g_k|||_n < \epsilon \frac{N!}{2(||f|||_n + 1)(N+n)!}$,
- there is a $k_3 \in \mathbb{N}$ so that $k \geq k_3$ implies $|||g_k|||_n < |||g|||_n + 1$,

For $k \ge \max\{k_1, k_2, k_3\}$ one has

$$|||fg - f_k g_k|||_n = |||fg - fg_k + fg_k - f_k g_k|||_n \le |||fg - fg_k|||_n + |||fg_k - f_k g_k|||_n$$

$$= |||f(g - g_k)|||_n + |||(f - f_k)g_k|||_n$$

$$\le \frac{(N+n)!}{N!} (|||f|||_n |||g - g_k|||_n + |||f - f_k|||_n |||g_k|||_n) < \epsilon,$$

$$|||f + g - f_k - g_k|||_n \le |||f - f_k|||_n + |||g - g_k|||_n < \epsilon.$$

6. Prove that if $T: \mathcal{S}(\mathbb{R}^N) \to \mathcal{S}(\mathbb{R}^N)$ is a continuous linear map, then

$$T^t: \mathcal{S}'(\mathbb{R}^N) \to \mathcal{S}'(\mathbb{R}^N), \quad (T^t \varphi)(f) := \varphi(Tf)$$

is well-defined and continuous for $\tau(\mathcal{S}'(\mathbb{R}^N), \mathcal{S}(\mathbb{R}^N))$.

Prove that for a given $\alpha \in \mathbb{N}^N$, the maps

$$\mathcal{S}(\mathbb{R}^N) \ni f \mapsto \partial^{\alpha} f \in \mathcal{S}(\mathbb{R}^N) \quad \text{ and } \quad \mathcal{S}(\mathbb{R}^N) \ni f(x) \mapsto x^{\alpha} f(x) \in \mathcal{S}(\mathbb{R}^N)$$

are continuous for $\tau_{\mathcal{S}}$.

Since $T: \mathcal{S}(\mathbb{R}^N) \to \mathcal{S}(\mathbb{R}^N)$ and if $\varphi \in \mathcal{S}'(\mathbb{R}^N)$, then $T^t(\varphi) = \varphi \circ T$ is certainly a linear map from $\mathcal{S}(\mathbb{R}^N)$ to $\mathcal{S}(\mathbb{R}^N)$.

If U is an open set in \mathbb{C} , then $(T^t(\varphi)^{-1}\{U\} = (\varphi \circ T)^{-1}\{U\} = T^{-1}\{\varphi^{-1}\{U\}\}$. Since φ is a tempered distribution, $\varphi^{-1}\{U\} \in \tau_{\mathcal{S}}$ and since T is continuous, $T^{-1}\{\varphi^{-1}\{U\}\} \in \tau_{\mathcal{S}}$ again. Hence, $T^t(\varphi)$ is a continuous linear map on $\mathcal{S}(\mathbb{R}^N)$ for $\tau_{\mathcal{S}}$.

T is then indeed a linear map from $\mathcal{S}'(\mathbb{R}^N)$ to $\mathcal{S}'(\mathbb{R}^N)$. Let us show that it is also continuous for $\tau(\mathcal{S}'(\mathbb{R}^N), \mathcal{S}(\mathbb{R}^N))$.

Let $U \in \tau(\mathcal{S}'(\mathbb{R}^N), \mathcal{S}(\mathbb{R}^N))$ and let $\varphi \in (T^t)^{-1}\{U\}$. Since U is open, there are Schwartz functions f_1, \ldots, f_n , so that $U_{T^t(\varphi), f_1, \ldots, f_n} = \{\eta \in \mathcal{S}'(\mathbb{R}^N) : \forall k = 1, \ldots, n, |\eta(f_k) - T^t(\varphi)(f_k)| < 1\} \subset U$.

Define then $h_k := T(f_k)$ for all k = 1, ..., n and consider the open set $U_{\varphi,h_1,...,h_n} \in \tau(\mathcal{S}'(\mathbb{R}^N), \mathcal{S}(\mathbb{R}^N))$. If $\psi \in U_{\varphi,h_1,...,h_n}$, then $\forall k = 1, ..., n$, $|\psi(h_k) - \varphi(h_k)| < 1$, so that $T^t(\psi) \in U_{T^t(\varphi),f_1,...,f_n}$. Hence, $U_{\varphi,h_1,...,h_n} \subset (T^t)^{-1}\{U_{T^t(\varphi),f_1,...,f_n}\} \subset (T^t)^{-1}\{U\}$, which shows, that the latter is open.

For $n \in \mathbb{N}$ and $\alpha \in \mathbb{N}^N$, we have that

$$\begin{split} \|\|\partial^{\alpha}f\|\|_{n} &= \max\{\|(1+x\cdot x)^{n}\partial^{\alpha+\beta}f\|_{\infty} : \beta \in \mathbb{N}_{\leq n}^{N}\} \\ &\leq \max\{\|(1+x\cdot x)^{n+|\alpha|}\partial^{\beta}f\|_{\infty} : \beta \in \mathbb{N}_{\leq n+|\alpha|}^{N}\} = \|\|f\|\|_{n+|\alpha|}, \\ \|\|x^{\alpha}f\|\|_{n} &= \max\{\|(1+x\cdot x)^{n}\partial^{\beta}(x^{\alpha}f)\|_{\infty} : \beta \in \mathbb{N}_{\leq n}^{N}\} \\ &\leq \max\{\sum_{\gamma+\delta=\beta} \binom{\beta}{\gamma}\|(1+x\cdot x)^{n}(\partial^{\gamma}x^{\alpha})(\partial^{\delta}f)\|_{\infty} : \beta \in \mathbb{N}_{\leq n}^{N}\} \\ &= \max\{\sum_{\gamma+\delta=\beta} \binom{\beta}{\gamma}\frac{\alpha!}{(\alpha-\gamma)!}\|(1+x\cdot x)^{n}(x^{\alpha-\gamma})(\partial^{\delta}f)\|_{\infty} : \beta \in \mathbb{N}_{\leq n}^{N}\} \\ &\leq \max\{\sum_{\gamma+\delta=\beta} \binom{\beta}{\gamma}(\alpha!)\|(1+x\cdot x)^{n+|\alpha|}(\partial^{\delta}f)\|_{\infty} : \beta \in \mathbb{N}_{\leq n}^{N}\} \\ &\leq \max\{\sum_{\gamma<\beta} \binom{\beta}{\gamma}(\alpha!)\|f\|_{n+|\alpha|} : \beta \in \mathbb{N}_{\leq n}^{N}\} \leq \binom{N+n}{n}2^{n}(\alpha!)\|f\|_{n+|\alpha|}. \end{split}$$

7. The Poincaré group is defined as the set of couples $(\Lambda, d) \in \mathbb{M}_4(\mathbb{R}^4) \times \mathbb{R}^4$, so that $\Lambda^t \eta \Lambda = \eta$, where $\eta = \operatorname{diag}(1, -1, -1, -1)$. The group product is defined as $(\Lambda_1, d_1) \cdot (\Lambda_2, d_2) := (\Lambda_1 \Lambda_2, d_1 + \Lambda_1 d_2)$.

Define the action of this group on $\mathcal{S}(\mathbb{R}^4)$ by

$$\mathcal{S}(\mathbb{R}^4) \ni f(x) \mapsto ((\Lambda, d) \circ f)(x) := f((\Lambda, d)^{-1}x)$$

and show that this action is continuous for $\tau_{\mathcal{S}}$.

(Hint: for a linear map $\varphi: \mathbb{R}^N \to \mathbb{R}^N$ and a function $f \in C^{\infty}(\mathbb{R}^N)$, Faà di Bruno's formula reads

$$\partial^{\alpha}(f \circ \varphi) = \sum_{\beta \in \mathbb{N}_{=|\alpha|}^{N}} (\partial^{\beta} f)(\varphi(x)) \sum_{\substack{\gamma_{1}, \dots, \gamma_{N} \in \mathbb{N}^{N}, \\ \forall 1 \leq j \leq N, \ |\gamma_{j}| = \alpha_{j}, \\ \sum_{j=1}^{N} \gamma_{j} = \beta}} \alpha! \prod_{j=1}^{N} \frac{1}{\gamma_{j}!} (\frac{\partial \varphi(x)}{\partial x_{j}})^{\gamma_{j}}.$$

For a given $x \in \mathbb{R}^4$ and a fixed element (Λ, d) in the Poincaré group, let us denote

 $x \cdot x$ by $|x|^2$ and $\sup\{|\Lambda x| : |x| \le 1\}$ by $\|\Lambda\|$. One then has

$$1 + (\Lambda x + d) \cdot (\Lambda x + d) = 1 + |\Lambda x + d|^{2}$$

$$\leq 1 + (\|\Lambda\| |x| + |d|)^{2} = 1 + \|\Lambda\|^{2} x \cdot x + 2\|\Lambda\| |x| |d| + |d|^{2}$$

$$\leq 1 + x \cdot x + \|\Lambda\|^{2} (1 + x \cdot x) + \|\Lambda\| |d| (1 + x \cdot x) + |d|^{2} (1 + x \cdot x)$$

$$\leq (1 + |d| + \|\Lambda\|)^{2} (1 + x \cdot x).$$

Also, for a fixed $\alpha \in \mathbb{N}^4$, one has

$$\partial^{\alpha} ((\Lambda, d) \circ f) = \partial^{\alpha} \left(f((\Lambda, d)^{-1}x) \right) = \partial^{\alpha} \left(f(\Lambda^{-1}x - \Lambda^{-1}d) \right)$$

$$= \sum_{\beta \in \mathbb{N}_{=|\alpha|}^{4}} (\partial^{\beta} f) (\Lambda^{-1}x - \Lambda^{-1}d) \sum_{\substack{\gamma_{1}, \dots, \gamma_{4} \in \mathbb{N}^{4}, \\ \forall 1 \leq j \leq 4, \ |\gamma_{j}| = \alpha_{j}, \\ \sum_{j=1}^{4} \gamma_{j} = \beta}} \alpha! \prod_{j=1}^{4} \frac{1}{\gamma_{j}!} (\frac{\partial \Lambda x}{\partial x_{j}})^{\gamma_{j}}.$$

Therefore, if $\alpha \in \mathbb{N}^4_{\leq n}$,

$$\begin{split} &|(1+x\cdot x)^n\partial^\alpha(\Lambda,d)\circ f|\\ &=|(1+x\cdot x)^n\sum_{\beta\in\mathbb{N}_{=|\alpha|}^4}(\partial^\beta f)(\Lambda^{-1}x-\Lambda^{-1}d)\sum_{\substack{\gamma_1,\ldots,\gamma_4\in\mathbb{N}_+^4,\\ \sum_{j=1}^4\gamma_j=\beta}}\alpha!\prod_{j=1}^4\frac{1}{\gamma_j!}(\frac{\partial\Lambda x}{\partial x_j})^{\gamma_j}|\\ &\leq\alpha!(1+x\cdot x)^n\left(\sum_{\beta\in\mathbb{N}_{=|\alpha|}^4}|(\partial^\beta f)(\Lambda^{-1}x-\Lambda^{-1}d)\sum_{\substack{\gamma_1,\ldots,\gamma_4\in\mathbb{N}_+^4,\\ \sum_{j=1}^4\gamma_j=\beta}}\|\Lambda\|^{|\beta|}|\right)\\ &\leq\alpha!(1+x\cdot x)^n\left(\sum_{\beta\in\mathbb{N}_{=|\alpha|}^4}|(\partial^\beta f)(\Lambda^{-1}x-\Lambda^{-1}d)|\prod_{j=1}^4\binom{4+\alpha_j-1}{\alpha_j}\|\Lambda\|^{|\beta|}\right)\\ &\leq\alpha!\left(\frac{3+\alpha}{\alpha}\right)\|\Lambda\|^{|\alpha|}(1+x\cdot x)^n\sum_{\beta\in\mathbb{N}_{=|\alpha|}^4}|(\partial^\beta f)(\Lambda^{-1}x-\Lambda^{-1}d)|\\ &\underset{y=\Lambda^{-1}x-\Lambda^{-1}d}=\alpha!\binom{\overline{3}+\alpha}{\alpha}\|\Lambda\|^{|\alpha|}(1+|\Lambda y+d|^2)^n\sum_{\beta\in\mathbb{N}_{=|\alpha|}^4}|(\partial^\beta f)(y)|\\ &\leq\alpha!\left(\frac{\overline{3}+\alpha}{\alpha}\right)\|\Lambda\|^{|\alpha|}(1+|\Lambda\|+|d|)^{2n}\sum_{\beta\in\mathbb{N}_{=|\alpha|}^4}|(1+y\cdot y)^n(\partial^\beta f)(y)|\\ &\leq\alpha!\left(\frac{\overline{3}+\alpha}{\alpha}\right)\|\Lambda\|^{|\alpha|}(1+|\Lambda\|+|d|)^{2n}\sum_{\beta\in\mathbb{N}_{=|\alpha|}^4}|(1+y\cdot y)^n(\partial^\beta f)(y)|\\ &\leq\alpha!\left(\frac{\overline{3}+\alpha}{\alpha}\right)\|\Lambda\|^{|\alpha|}(1+|\Lambda\|+|d|)^{2n}\sum_{\beta\in\mathbb{N}_{=|\alpha|}^4}|(1+y\cdot y)^n(\partial^\beta f)(y)|\\ &\leq((3+n)!)^5\|\Lambda\|^n(1+|\Lambda\|+|d|)^{2n}\|f\|_n, \end{split}$$

and taking the supremum over all $x \in \mathbb{R}^4$ shows continuity.

8. Let $f, g \in \mathcal{S}(\mathbb{R}^N)$ and let $h \in \mathcal{L}^1(\mathbb{R}^N, \mu_L)$. Show that $f * h \in C^{\infty}(\mathbb{R}^N)$ and that $f * g \in \mathcal{S}(\mathbb{R}^N)$ again.

(Hint: for differentiability, you might wanna use dominated convergence and Rolle's theorem.)

Prove then that for $\alpha \in \mathbb{N}^N$, $\partial^{\alpha}(f * g) = (\partial^{\alpha} f) * g$ and that $\mathcal{S}(\mathbb{R}^N) \ni g \mapsto f * g$ is continuous for $\tau_{\mathcal{S}}$.

 $\int_{\mathbb{R}^N} f(x-y)h(y)\mu_L(dy) \text{ is certainly well-defined for any fixed } x \in \mathbb{R}^N \text{ since } f(x-y) \in \mathcal{S}(\mathbb{R}^N), \text{ implying } f(x-y)h(y) \in \mathcal{L}^1(\mathbb{R}^N, \mu_L).$

Moreover, by Rolle's theorem, for any $x, x' \in \mathbb{R}^N$, there is a number 0 < c < 1, so that $f(x-y)h(y) - f(x'-y)h(y) = (J_f(x'-y+c(x-x'))\cdot(x-x'))h(y)$, where $J_f(x)$ is the gradient of f.

For $(x'-x)\cdot(x'-x)\leq 1$, this then shows, that both f(x-y)h(y)-f(x'-y)h(y) and $|x'-x|^{-1}(f(x-y)-f(x'-y))h(y)$ are absolutely bounded by $N|||f||_1|h(y)|$. Applying dominated convergence, one gets

$$\lim_{x'\to x}(f*h)(x')=(f*h)(x)\quad\text{ and }$$

$$\forall \delta\in\mathbb{N}_{=1}^N,\quad \lim_{a\to 0}\frac{1}{a}\left((f*h)(x+a\delta)\right)-(f*h)(x))=\left((\partial^{\overline{1}\delta}f)*h\right)(x).$$

Since $\partial^{\overline{1}\delta}f$ s again a Schwartz function, this shows continuity and differentiability of the function f*h. By induction, this shows also that f*h is smooth and that for any multi-index α , $\partial^{\alpha}(f*h) = (\partial^{\alpha}f)*h$.

If in addition $g \in \mathcal{S}(\mathbb{R}^N)$, then for any fixed $x \in \mathbb{R}^N$, one has

$$|(1+x\cdot x)^{n}(f*g)(x)| = |\int_{\mathbb{R}^{N}} (1+x\cdot x)^{n} f(x-y)g(y)\mu_{L}(dy)|$$

$$\leq \int_{\mathbb{R}^{N}} (1+x\cdot x)^{n} |f(x-y)g(y)|\mu_{L}(dy)$$

$$\leq \int_{\mathbb{R}^{N}} (1+|x|)^{2n} |f(x-y)g(y)|\mu_{L}(dy)$$

$$\leq \int_{\mathbb{R}^{N}} (1+|x-y|)^{2n} (1+|y|)^{2n} |f(x-y)g(y)|\mu_{L}(dy)$$

$$\leq \int_{\mathbb{R}^{N}} 2^{n} (1+(x-y)\cdot (x-y))^{n} 2^{n} (1+y\cdot y)^{n} |f(x-y)g(y)|\mu_{L}(dy)$$

$$\leq 4^{n} ||(1+x\cdot x)^{n} f(x)||_{L^{2}} ||(1+x\cdot x)^{n} g(x)||_{L^{2}} \leq 4^{n} ||f||_{2n} ||g||_{2n},$$

which shows that $(1+x\cdot x)^n(f*g)(x)$ has to remain bounded for any $n\in\mathbb{N}$. Hence, $f*g\in\mathcal{S}(\mathbb{R}^N)$.

But it also shows continuity, since for all $n \in \mathbb{N}$ and any $\alpha \in \mathbb{N}_{\leq n}^N$,

$$|||f * g - f * h||_n = |||f * (g - h)||_n \le {N + n \choose n} 4^n ||f||_{2n} ||g - h||_{2n}.$$

9. For a given Schwartz function f, show that for any $n \in \mathbb{N}$, there is a constant $C_{n,f}$ and a function h(y) with $\lim_{|y|\to 0} h(y) = 0$, so that

$$||(1+x\cdot x)^n(f(x+y)-f(x))||_{\infty} \le C_{n,f}h(y).$$

Let $(d_n(x))_{n\in\mathbb{N}}$ be a Dirac sequence. Use the previous estimation to show that

$$\forall n \in \mathbb{N}, \quad \lim_{k} \||f - d_k * f||_n = 0.$$

For $f \in \mathcal{S}(\mathbb{R}^N)$ and $x, y \in \mathbb{R}^N$, one has by Rolle's theorem

$$|(1+x\cdot x)^n(f(x+y)-f(x))| = |(1+x\cdot x)^n(\nabla f)(x+ty)\cdot y|$$

for some $t \in]0,1[$ and where (∇f) is the gradient of f. Now, if $|x| = x \cdot x^{1/2}$, then $|x+y| \le |x| + |y|$ and $2|x| \le 1 + x \cdot x$, so that

$$(1+x\cdot x) = (1+|x+ty-ty|^2) \le (1+|x+ty|^2+2|x+ty||ty|+|ty|^2)$$

$$\le (1+|x+ty|^2+(1+|x+ty|^2)|ty|+|ty|^2) \le 2(1+|x+ty|^2)(1+|ty|)^2.$$

Therefore, for some $t \in]0,1[$,

$$|(1+x\cdot x)^n(f(x+y)-f(x))| \le 2^n|(1+|x+ty|^2)^n(\nabla f)(x+ty)\cdot y(1+|y|^2)^n|$$

$$\le 2^nN|||f||_n|y|(1+|y|^2)^n.$$

Hence, $||f(x+y) - f(x)||_n \le 2^n ||f||_{n+1} |y| (1+|y|^2)$, which shows, that $\lim_{|y| \to 0} (f(x+y) - f(y)) = 0$ for $\tau_{\mathcal{S}}$. For $f \in \mathcal{S}(\mathbb{R}^N)$ one has

$$|f(x) - (d_n * f)(x)| = |f(x) - \int_{\mathbb{R}^N} d_n(x - y) f(y) \mu_L(dy)|$$

$$= |f(x) \int_{\mathbb{R}^N} d_n(y) \mu_L(dy) - \int_{\mathbb{R}^N} d_n(y) f(x - y) \mu_L(dy)|$$

$$= |\int_{\mathbb{R}^N} d_n(y) (f(x) - f(x - y)) \mu_L(dy)|.$$

Since $(d_k)_{k\in\mathbb{N}}$ is a Dirac sequence, there is an $n_r \in \mathbb{N}$, so that $k \geq n_r$ implies $\operatorname{supp}(d_k) \subset D(0,r)$. For such a $k \in \mathbb{N}$, one therefore has

$$|(1+x\cdot x)^{n} (f(x) - (d_{k}*f)(x))| \leq \int_{\mathbb{R}^{N}} (1+x\cdot x)^{n} d_{k}(y) |f(x) - f(x-y)| \mu_{L}(dy)$$

$$= \int_{D(0,r)} d_{k}(y) (1+x\cdot x)^{n} |f(x) - f(x-y)| \mu_{L}(dy)$$

$$\leq r4^{n} |||f|||_{n+1} \int_{D(0,r)} d_{k}(y) \mu_{L}(dy) = r4^{n} |||f|||_{n+1}.$$

Consequently, $k \ge n_r$ implies $\|(1+x\cdot x)^n(f-d_k*f)\|_{\infty} \le r4^n \|f\|_{n+1}$, which converges to 0.

For a given $n \in \mathbb{N}$ and $\alpha \in \mathbb{N}_{\leq n}^N$, one has that $\partial^{\alpha} f$ is again a Schwartz function, so that here also, there is an n_{α} , so that $k \geq n_{\alpha}$ implies

$$\|(1+x\cdot x)^n (\partial^{\alpha} f - \partial^{\alpha} (d_k * f))\|_{\infty} = \|(1+x\cdot x)^n (\partial^{\alpha} f - d_k * \partial^{\alpha} f)\|_{\infty}$$
$$\leq r4^n \|\partial^{\alpha} f\|_{n+1} \leq r4^n \|f\|_{2n+1}.$$

Since there are finitely many such α 's in $\mathbb{N}_{\leq n}^N$, one may take $N_r = \max\{n_\alpha : \alpha \in \mathbb{N}_{\leq n}^N\}$ and for $k \geq N_r$, one has

$$|||f - d_k * f||_n \le r4^n |||f||_{2n+1}.$$

Therefore, $\lim_k d_k * f = f$ for $\tau_{\mathcal{S}}$.

10. Let $(d_n(x))_{n\in\mathbb{N}}$ be a Dirac sequence. Prove that the functionals

$$\mathbb{S}(\mathbb{R}^N) \ni \mapsto \delta_n(f) := \int_{\mathbb{R}^N} (d_n * f) \mu_L(dx)$$

converge in the weak* topology to φ_1 .

Show that for $\varphi \in \mathcal{S}'(\mathbb{R}^N)$, $(d_n * \varphi)_{n \in \mathbb{N}}$ defines a sequence of C^{∞} -functions converging to φ for the topology $\tau(\mathcal{S}'(\mathbb{R}^N), \mathcal{S}(\mathbb{R}^N))$.

Since we clearly have $d_n \in \mathcal{S}(\mathbb{R}^N)$ for all $n \in \mathbb{N}$, the map $f \mapsto d_n^* f$ is continuous for $\tau_{\mathcal{S}}$ and for each fixed $n \in \mathbb{N}$. Hence, $(\delta_n)_{n \in \mathbb{N}} \subset \mathcal{S}'(\mathbb{R}^N)$.

Furthermore, for $f \in \mathcal{S}(\mathbb{R}^N)$, then $d_n(y)f(x-y)$ is clearly in $\mathcal{S}(\mathbb{R}^{2N})$, so that one may apply Fubini's theorem to obtain

$$\delta_n(f) = \int_{\mathbb{R}^N} (d_n * f)(x) \mu_L(dx) = \int_{\mathbb{R}^N} \left(\int_{\mathbb{R}^N} d_n(x - y) f(y) \mu_L(dy) \right) \mu_L(dx)$$

$$= \int_{\mathbb{R}^N} \left(\int_{\mathbb{R}^N} d_n(y) f(x - y) \mu_L(dy) \right) \mu_L(dx)$$

$$= \int_{\mathbb{R}^N} \left(\int_{\mathbb{R}^N} d_n(y) f(x - y) \mu_L(dx) \right) \mu_L(dy)$$

$$= \int_{\mathbb{R}^N} d_n(y) \varphi_1(f) \mu_L(dx) = \varphi_1(f).$$

It is then clear that $(\delta_n)_{n\in\mathbb{N}}$ converges *-weakly to φ_1 .

By the previous exercice, if $f \in \mathcal{S}(\mathbb{R}^N)$ then $\lim_k d_k * f = f$ for the topology $\tau_{\mathcal{S}}$. Since $(P^t d_k)_{k \in \mathbb{N}}$ is again a Dirac sequence, one has $\lim_k P^t(d_k) * f = f$ as well. If $\varphi \in \mathcal{S}'(\mathbb{R}^N)$, then by continuity one has $\lim_k (d_k * \varphi)(f) = \lim_k \varphi(P^t(d_k) * f) = \varphi(\lim_k P^t(d_k) * f) = \varphi(f)$. Therefore, $\lim_k (d_k * \varphi) = \varphi$ for $\tau(\mathcal{S}'(\mathbb{R}^N), \mathcal{S}(\mathbb{R}^N))$. It remains to show, that for each $k \in \mathbb{N}$, $(d_k * \varphi)(f)$ is integration of f against a C^{∞} -function g_k . By Schwartz representation theorem, there is a polynomially bounded function $g \in C(\mathbb{R}^N)$ and a multi-index α , so that for any Schwartz function f,

$$\varphi(f) = \int_{\mathbb{R}^N} g \partial^{\alpha} f \mu_L(dx).$$

Therefore,

$$(d_k * \varphi)(f) = \varphi((P^t d_k) * f) = \int_{\mathbb{R}^N} g \partial^\alpha \left((P^t d_k) * f \right) \mu_L(dx)$$
$$= \int_{\mathbb{R}^N} g(x) \partial^\alpha \left(\int_{\mathbb{R}^N} d_k(y - x) f(y) \mu_L(dy) \right) \mu_L(dx)$$
$$= \int_{\mathbb{R}^N} g(x) \left(\int_{\mathbb{R}^N} d_k(y - x) \partial^\alpha f(y) \mu_L(dy) \right) \mu_L(dx).$$

The function g(x) being polynomially bounded and continuous, there is an $m \in \mathbb{N}$, so that $g(x)(1+x\cdot x)^{-m} \in \mathcal{L}^1(\mathbb{R}^N, \mu_L)$. Furthermore,

$$|g(x)d_{k}(y-x)\partial^{\alpha}f(y)| = |g(x)(1+x\cdot x)^{-m}(1+x\cdot x)^{m}d_{k}(x-y)\partial^{\alpha}f(y)|$$

$$\leq |g(x)(1+x\cdot x)^{-m}(1+|x|)^{2m}d_{k}(x-y)\partial^{\alpha}f(y)|$$

$$\leq |g(x)(1+x\cdot x)^{-m}(1+|x-y|+|y|)^{2m}d_{k}(x-y)\partial^{\alpha}f(y)|$$

$$\leq |g(x)(1+x\cdot x)^{-m}(1+|x-y|)^{2m}d_{k}(x-y)(1+|y|)^{2m}\partial^{\alpha}f(y)|$$

$$\leq 4^{2m}|g(x)(1+x\cdot x)^{-m}d_{k}(x-y)(1+y\cdot y)^{m}\partial^{\alpha}f(y)|,$$

which is in $\mathcal{L}^1(\mathbb{R}^{2N}, \mu_L)$, since $(1 + y \cdot y)^m \partial^{\alpha} f(y)$ is again a Schwartz function. Therefore, we may apply Fubini's theorem and obtain

$$(d_k * \varphi)(f) = \int_{\mathbb{R}^N} g(x) \left(\int_{\mathbb{R}^N} d_k(y - x) \partial^{\alpha} f(y) \mu_L(dy) \right) \mu_L(dx)$$
$$= \int_{\mathbb{R}^N} \partial^{\alpha} f(y) \left(\int_{\mathbb{R}^N} d_k(y - x) g(x) \mu_L(dx) \right) \mu_L(dy).$$

The integral $\int_{\mathbb{R}^N} d_k(y-x)g(x)\mu_L(dx)$ results in a function $h_k(y)$ and by using again a Rolle-type argument can be shown to be C^{∞} . Partial integration permits one to conclude, that the C^{∞} -function $g_k(y) = (-1)^{|\alpha|} \partial^{\alpha} h_k(y)$ satisfies

$$(d_k * \varphi)(f) = \int_{\mathbb{R}^N} g_k f d\mu_L.$$

Remark: The sequence of C^{∞} -functions $(g_k)_{k \in \mathbb{N}}$ is sometimes called a **regularisation** of φ . This sequence however does only converge in the distributional sense (i.e. in the weak* topology) to φ .