Exercice sheet 1

Schwartz space and tempered distributions

1. Prove the Riesz & Fréchet theorem, namely, that given a Hilbert space H, the anti-linear map

$$J: H \ni x \mapsto \langle x, \rangle =: J(x) \in H'$$

is an isometric isomorphism.

(Hint: if $V \subset H$ is a closed subspace, then $H = V \oplus V^{\perp}$.)

- **2.** Let H be a Hilbert space and consider a Banach space B. Prove that any continuous and linear map $\xi: D \to B$, defined on a dense set $D \subset H$ has a unique and isometric extension $\overline{\xi}: H \to B$.
- **3.** Let V be a \mathbb{K} -vector space and let $\| \|_{1,2}: V \to \mathbb{R}_+$ be two norms:
 - (a) Show that if $\forall x \in V$, $||x||_1 \le ||x||_2$, then $\{x \in V : ||x||_2 < 1\} \subset \{x \in V : ||x||_1 < 1\}$.
 - (b) Show that the topology τ_2 defined by $\| \|_2$ is finer than the topology τ_1 defined by $\| \|_1$, i.e. $\tau_1 \subset \tau_2$. Prove as a consequence, that any sequence $(x_n)_{n \in \mathbb{N}} \subset V$ converges for τ_1 if it does so for τ_2 .
 - (c) Show that if W is a \mathbb{K} -vector space with a topology τ_W and if $f: V \to W$ is a continuous map with respect to τ_1 , then f is also continuous with respect to τ_2 .
 - (d) Show that if in addition, there is a positive constant C so that $\forall x \in V$, $||x||_2 \le C||x||_1$, then $\tau_1 = \tau_2$.
- **4.** (a) For $f, g \in C^n(\mathbb{R}^N)$ and $\alpha \in \mathbb{N}^N$ with $|\alpha| \leq n$, show that

$$\partial^{\alpha}(fg)(x) = \sum_{\substack{\beta, \gamma \in \mathbb{N}^{N}, \\ \beta + \gamma = \alpha}} {\alpha \choose \beta} \partial^{\beta} f(x) \partial^{\gamma} g(x).$$

- (b) Show that the cardinality of the set $\mathbb{N}_{\leq n}^N := \{\alpha \in \mathbb{N}^N : |\alpha| \leq n\}$ is $\binom{n+N}{n}$. (Hint: define $\mathbb{N}_{=k}^N := \{\alpha \in \mathbb{N}^N : |\alpha| = k\}$ and observe, that $\mathbb{N}_{\leq n}^N = \cup_{k=0}^n M_{=k}$.)
- **5.** Let X be a \mathbb{K} -vector space endowed with a family $\{\|\ \|_j\}_{j\in I}$ of norms. For $\epsilon > 0$, $x \in X$ and $\{j_1, \ldots, j_n\} \subset I$, one defines

$$U_{x,\epsilon,j_1,\ldots,j_n} := \{ y \in X : \forall k = 1,\ldots,n, \|y - x\|_{j_k} < \epsilon \}.$$

Show that the collection of all subsets $U \subset X$, so that

$$\forall x \in U, \exists \epsilon > 0, \exists \{j_1, \dots, j_n\} \subset I \text{ s.t. } U_{x, \epsilon, j_1, \dots, j_n} \subset U$$

is a topology τ_X on X, i.e.:

- $\forall \mathcal{F} \subset \tau_X, |\mathcal{F}| \in \mathbb{N} \text{ implies } \cap_{U \in \mathcal{F}} U \in \tau_X,$
- $\forall \mathcal{F} \subset \tau_X, \cup_{U \in \mathcal{F}} U \in \tau_X$.

- **6.** Let $(f_k)_{k\in\mathbb{N}}\subset\mathcal{S}(\mathbb{R}^N)$ be a sequence which is Cauchy for all the norms $\|\| \|_n$. Show, that this sequence converges to some $f\in\mathcal{S}(\mathbb{R}^N)$ for τ_S . (Hint: you might wanna use the completeness of spaces like C(K) or $C_0(K)$ for the uniform norm $\| \|_{\infty}$ on a compact set K and the uniform continuity of the Riemann integral.)
- 7. Let $g \in L^2(\mathbb{R}^N, \mu_L)$. For $x \in \mathbb{R}^N$, set $E_x := \{ y \in \mathbb{R}^N : y = \delta x \text{ s.t. } \delta \in [0, 1]^N \}$. Show that the function

$$\mathbb{R}^N \ni x \mapsto G(x) := \operatorname{sgn}(x) \int_{E_x} g(y) \mu_L(dy)$$

is well-defined, continuous and polynomially bounded. If $f \in \mathcal{S}(\mathbb{R}^N)$, show that

$$\int_{\mathbb{R}^N} G(x)\partial^{\overline{1}} f(x)\mu_L(dx) = (-1)^N \int_{\mathbb{R}^N} g(x)f(x)\mu_L(dx).$$

(Hint: for the second part, show it first when $g(x) = \prod_{k=1}^{N} g_k(x)$ and all $g_k(t)$ are continuous and compactly supported on \mathbb{R} . Use then a density argument.)

8. Find an $n \in \mathbb{N}$ and continuous and polynomially bounded functions $(g_{\alpha}(x))_{\alpha \in \mathbb{N}_{\leq n}^{N}}$ on \mathbb{R} , so that

$$\varphi(f) = \sum_{\alpha \in \mathbb{N}_{\leq n}^N} \int_{\mathbb{R}} g_{\alpha}(x) \partial^{\alpha} f(x) \mu_L(dx)$$

for

- (a) $\varphi = \delta(x)$,
- (b) $\varphi = \text{p.v.}(\frac{1}{x}).$

Can you find more than one such representations?

- **9.** Prove that sequence $(h_k)_{k\in\mathbb{N}^*}\subset \mathcal{S}'(\mathbb{R})$ converges in the weak* topology to $\varphi\in \mathcal{S}'(\mathbb{R}^N)$ for
 - (a) $\varphi = \delta(x)$ and $h_k(x) = 1_{[-1,1]} \frac{k}{2} e^{-k|x|}$,
 - (b) $\varphi = \text{p.v.}(\frac{1}{x})$ and $h_k(x) = \frac{x}{x^2 + k^{-2}}$.
- 10. Prove that the weak* topology on $\mathcal{S}'(\mathbb{R}^N)$ is a topology (see exercice 5). Prove that $\mathcal{S}'(\mathbb{R}^N)$ is complete when endowed with this topology.