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Solutions to exercice sheet 5

’ Construction of Wiener process ‘

.| Find a basis and a sub-basis for the canonical topology on R.

Consider the set
f:={la,00[: a € R}U{] —00,d] : a € R}.

Then S is a collection of open sets on R and intersections of elements in § yield all
open intervals on R. But this last collection is a basis for the Euclidean topology
on R, so that [ is a basis for this topology.

.|Let (£2,7) be a topological space. Let S C P(7) be a totally ordered set (for the partial
order being the set inclusion) so that no element of S has a finite sub-cover for 2. Show
then that Uges has no finite sub-cover of €2.

For k =1,...,nlet M be a finite collection of open sets of some topological space (2, 7).
For each k, Let By, € 7 so that M U{ By} covers 2. Show then that (U}_; M)U{N}_, By}
covers ().

.|Let {(€2,73) }ier is a family of topological spaces. Provide the cartesian product [],.; €
with the collection 7 of sets consisting of arbitrary unions of sets of the form [[,.; Vi,
where all but a finite number of the V/s are equal to €.

Show that 7 is a topology. For some fixed i € I, let m; : [[,o; % — Qs, (2i)ier — x; € ; be
the canonical projection. Show that the collection of sets {m; (V) : i € [ and V € 7;}
is a sub-basis for 7. Prove that the product topology is then the coarsest topology for
which all the maps m; are continuous.

iel

.| The one-point compactification of RV is defined as the set RN := RN U {*}, where
* ¢ RV provided with the topology 7 consisting of the canonical open sets in RY together
with sets of the form {*} U (R \ K), with K C RV,

Prove that RY is a compact set. Prove that f € C’(RN) iff f =X+ g with g € Cy(RY)
and A € R. _

Consider €, := [],.,RY, provided with the product topology, and the set of finite func-
tions Ch,(€2). Prove that Cq, () € C(€r) and that Cq,(27) is uniformly dense in
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5.|For a fixed zog € RY and for some Ffy, 4. € Cun(Q1), we define

Lo (Ffiyotn) = / p?f,...,tm (1, oy @) f(@1, ) pn(dzy X oo X day,),

RmN

K 1 (z—wp_1)>

Lo ceeydm) = 7m’ fo=0
ptl,...,tm(xlv  Tm) kll (2m(ty — tk—l))N/2€ i

Check that I,,(1) := 1. For Fyy 4, and 0 < t with {t1,....t,} N {t} = 0, if
Gf,tl,...,tk,t,tkﬂ,“.,tm (w) = Ff,tl,...,tm (w), check that

]zo (Gf,tl7~~~,tk7t,tk+1,~-,tm) - Iﬁ?o (Ff7t17--~atm)‘
or some constant C' > 0 and for ¢,¢ > 0, prove that

c _e

Exo,W(l{wEQL:|wt7xo|>E}) < ?6 2Nt |

If we set
p(e,0) = supp{pzew({w € Q : |wy — x| > €}) : 0 <t <6},

1
th ify that  lim — 0) =0.
en verify that  lim 6/)(6, )

6.|Let 6,¢ > 0 and consider a finite set S C Ry so that Vt € S, |t — tiins)| < 6. Fort € S,
let

€
Ct,e,S = {w € QL : ‘wt - wmax(S)‘ > 5}7
Dyes:={w e Qp : |w — Wnines)| > € and Vs € S with s < ¢, [ws — Win(s)| < €}
Shoe then that Vt € S,

€
a)

,U:J:O,W(Ct,e,S N Dt,e,S) S ,0(2

0)paow (Die.s)-

Let f(xz,w) := ljz—wj>5, 80 that 1e, ¢ = Ftmax(s)-
Similarly, let {¢q,...,t,} = SN|min(S), [ and define

m
9y, 21, T, ) = Lgy e H 12 —yl<e-
k=1

Then 1Dt7€’s = Ggmin(8),t1,....tm,t a0d

fzow (Cres N Dics)
— /RN(erS) pﬁfm(s)’tl7“.7tm7t’max(s) (Y1, oy Ty T, W) G(Y, X1y ooy Ty @) [, w)pp (dy X . X dw).
Observe now that

0 _ 1 T0 T
pmin(S),tl,...,tm,t,max(S) (y’ L1y ey Tmy Ty w) - pmin(S),tl,.,.,tm,t(y7 L1y ooy Tm x)pt,max(S) (1"7 UJ)



EPFL - Physics’ section Mathematical methods in quantum physics

We now may calculate the integral over w first and notice, that the result is bounded
by p(5,6). Integration over the remaining variables result in ji, w(Dyes) which
yields the announced inequality.

7.|Let d,e > 0 and consider a finite set S C R, so that V¢t € S, |t — tmin(5)| <. Let
Acs ={weQp : Is €S s.t. [wy — Wnines)| > €}

Prove then that .

500,

:u:Eo,W (AE,S) S 2p(

Define
Bes = {w € Q.1 |Wnin(s) — Wmax(s)| > %},
forte S, Cies:={weQr : |w — Wnaxs)| > %}7
Dyics i ={w € Qp : |wy — Wmines)| > € and Vs € S with s <1, |ws — Win(s)| < €}

If we A.g, then w € Dy g for some t € S.
If w ¢ B, g and if for some t € S w € D, g, then w € C g, since w has to move a
distance at least § to go back from outside the ball of radius € into the ball of radius

5. Therefore
Ae,S C BE,S U (U Ot,e,S N Dt,e,S) .

tesS

Thus,

oW (Acs) < fiaow(Bes) + Z trzo.w (Cre,s N Dics)

tes

S/‘LLL‘O,W( eS +P Zﬂxo, DteS
tes

by the previous exercice. Since D, s and Dy . g are by definition disjoint for .S >
t #t €S, one has

€
Nxo,W(Ae,S) < Nxo,W(Be,S) + p(_v 5) < 29<_ (5)'

2

8.|Let 0,e > 0 and consider 0 < tg < t; with ¢; — ty < . Define
B :={weQp : 3s,t € [to, t1] s.t. |ws — wy| > 2€}.

Prove then that
Mxo,W(Eto,the) < 2p(— 6)

Consider some finite set S € [to, t1] with tg,¢; € S and notice, that if one defines

E.g:={weQy :3t,seS st. |ws —w| > 2},
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then F. g C Ac s with
Acs ={weQp : Is €S s.t. [ws — Wmin(s)| > €},

since if |ws — wy| > 2¢, then |wg — wy,|, |wy — wy,| < € cannot both hold. Hence, by
the previous exercice,

€
Paow (Ees) < 2,0(5, J).

We now are going to make use of the regularity of the measure 1, v and note that
the aforementioned sets E g are open in the product topology for any finite set
S C [to,tl] with toy,t1 € S.

If we consider the collection of open sets

Letory :={Fes : S C [to,t1] is a finite set with £o,¢ € S},

then

Bone= |J V

Vel e tg,t1

and by the regularity of the measure fiz, w,

,U;(;O,W<Et0,t1,e) = Sup{ﬂxo,W(Eﬁs)} < 20(_ 5)

Let




