Solutions to exercice sheet 1

Schwartz space

1. Prove the Riesz & Fréchet theorem, namely, that given a Hilbert space H, the anti-linear map

$$J: H \ni x \mapsto \langle x, \rangle =: J(x) \in H'$$

is an isometric isomorphism.

(Hint: if $V \subset H$ is a closed subspace, then $H = V \oplus V^{\perp}$.)

Let $x \in H$ and we shall show, that $J(x) \in H'$. Indeed, for any $y \in H$, $|J(x)(y)| = |\langle x, y \rangle| \le ||x||_H ||y||_H$. This shows that $J(x) \in H'$.

For $x \neq 0$, one may take $y = \frac{x}{\|x\|_H}$, and one has $J(x)(y) = \|x\|$. This shows, that $\|J(x)\|_{H'} = \|x\|_H$ and J is hence isometric and injective.

Let $\xi \in H'$ and let us find an $x \in H$, so that $\xi = J(x)$. If $\xi = 0_{H'}$, then one may chose $x = 0_H$. Let's therefore assume that $\xi \neq 0_{H'}$. The continuity of ξ implies, that $\ker(\xi) = \xi^{-1}\{0\} = V$ is a closed subspace of H. One therefore has $H = V \oplus V^{\perp}$ and since $\xi \neq 0_{H'}$, one obviously has $V^{\perp} \neq \{0_H\}$.

Moreover, if $V^{\perp} \ni x, y \neq 0_H$, then $\xi(\xi(y)x - \xi(x)y) = 0$, so that $\xi(y)x - \xi(x)y \in V \cap V^{\perp} = \{0_H\}$. Consequently, V^{\perp} is a one-dimensional closed subspace of H.

Chose now $0_H \neq y \in V^{\perp}$ and set $x := \frac{y}{\|y\|_H^2} \overline{\xi(y)}$. For $v = \lambda y$, one has therefore

$$J(x)(v) = \langle x, \lambda y \rangle = \lambda \xi(y) = \xi(\lambda y) = \xi(v).$$

Thus, $J(x)\Big|_{V^{\perp}} = \xi\Big|_{V^{\perp}}$, $J(x)\Big|_{V} = \xi\Big|_{V}$, and since $H = V \oplus V^{\perp}$, one may conclude.

2. Let H be a Hilbert space and consider a Banach space B. Prove that any continuous and linear map $\xi: D \to B$, defined on a dense set $D \subset H$ has a unique and isometric extension $\overline{\xi}: H \to B$.

Let $x \in H$. Since $D \subset H$ is dense, there is a Cauchy sequence $(d_k)_{k \in \mathbb{N}} \subset D$ whose limit in H is x.

Consider then the sequence $(\xi(d_k))_{k\in\mathbb{N}}\subset B$. The continuity of the map $\xi:H\to B$ is equivalent to ξ being bounded, so that $(\xi(d_k))_{k\in\mathbb{N}}$ is Cauchy in B. This latter space being complete, there is a limit $B\ni y=\lim_k \xi(d_k)$.

If $(d'_k)_{k\in\mathbb{N}}\subset D$ is another Cauchy sequence whose limit in H is x, then $(d'_k-d_k)_{k\in\mathbb{N}}\subset D$ is a sequence converging to 0_H . The continuity of ξ then implies, that $\lim_k \xi(d'_k-d_k)=0_B$. Therefore, $\lim_k \xi(d'_k)=\lim_k \xi(d_k)=y$ and thus y depends only on x and not on the particular sequence $(d_k)_{k\in\mathbb{N}}\subset D$ chosen. We set $\overline{\xi}(x):=y$. It remains to show that this extension of the map ξ is isometric. For a given $\epsilon>0$, there is by construction some $d\in D$, so that $\|\overline{\xi}(x)-\xi(d)\|_B<\epsilon$. Consequently, $\|\overline{\xi}(x)\|_B\leq \|\xi(d)\|_B+\epsilon\leq \|\xi\|_{\mathcal{L}(D,B)}+\epsilon$. This being true for any $\epsilon>0$, one must have $\|\overline{\xi}(x)\|_B\leq \|\xi\|_{\mathcal{L}(D,B)}$. This being true for any $x\in H$, one concludes, that $\|\overline{\xi}\|_{\mathcal{L}(D,B)}\leq \|\xi\|_{\mathcal{L}(D,B)}$.

The inverse inequality follows from the fact that $\overline{\xi}\Big|_D = \xi$.

- **3.** Let V be a \mathbb{K} -vector space and let $\| \|_{1,2}: V \to \mathbb{R}_+$ be two norms:
 - (a) Show that if $\forall x \in V$, $||x||_1 \le ||x||_2$, then $\{x \in V : ||x||_2 < 1\} \subset \{x \in V : ||x||_1 < 1\}$.
 - (b) Show that the topology τ_2 defined by $\| \|_2$ is finer than the topology τ_1 defined by $\| \|_1$, i.e. $\tau_1 \subset \tau_2$. Prove as a consequence, that any sequence $(x_n)_{n \in \mathbb{N}} \subset V$ converges for τ_1 if it does so for τ_2 .
 - (c) Show that if W is a \mathbb{K} -vector space with a topology τ_W and if $f: V \to W$ is a continuous map with respect to τ_1 , then f is also continuous with respect to τ_2 .
 - (d) Show that if in addition, there is a positive constant C so that $\forall x \in V$, $||x||_2 \leq C||x||_1$, then $\tau_1 = \tau_2$.
 - (a) For a given $x \in V$, if $||x||_2 < 1$, then $||x||_1 \le ||x||_2 < 1$. Consequently, $\{x \in V : ||x||_2 < 1\} \subset \{x \in V : ||x||_1 < 1\}$.
 - (b) Let $U \in \tau_1$ be an open set for the topology induced by the norm $\|\cdot\|_1$. By definition, this means, that $\forall x \in U$, there is an $\epsilon > 0$, so that U contains the ball $\{y \in V : \|x y\|_1 < \epsilon\}$. By the previous point, this implies, that U contains the open ball $\{y \in V : \|x y\|_2 < \epsilon\}$ as well, so that by definition, $U \in \tau_2$.

A sequence $(x_n)_{n\in\mathbb{N}}\subset V$ converges for τ_2 iff there is a $x\in V$, so that for any open set $x\in U\in \tau_2$, there is an $N\in\mathbb{N}$, so that $n\geq N$ implies $x_n\in U$. By the previous point, $\tau_1\subset \tau_2$, so that if the statement holds for any $x\in U\in \tau_2$, it must hold for any $x\in U\in \tau_1$. As a consequence, the sequence $(x_n)_{n\in\mathbb{N}}\subset V$ converges for τ_1 if it does so for τ_2 .

- (c) If $f: V \to W$ is a continuous map with respect to τ_1 , then by definition, this means that for any $U \in \tau_W$, $f^{-1}\{U\} \in \tau_1$. But since $\tau_1 \subset \tau_2$, this then means, that $U \in \tau_W$, $f^{-1}\{U\} \in \tau_2$. Hence, f is continuous with respect to τ_2 as well.
- (d) Suppose that in addition, there is a positive constant C so that $\forall x \in V$, $||x||_2 \le C||x||_1$. Let $U \in \tau_2$. For any $x \in U$, there is hence an $\epsilon > 0$, so that $\{y \in V : ||x y||_1 < \epsilon/C\} \subset U$ as well and $\tau_1 = \tau_2$.
- **1.** (a) For $f, g \in C^n(\mathbb{R}^N)$ and $\alpha \in \mathbb{N}^N$ with $|\alpha| \leq n$, show that

$$\partial^{\alpha}(fg)(x) = \sum_{\substack{\beta, \gamma \in \mathbb{N}^{N}, \\ \beta + \gamma = \alpha}} {\alpha \choose \beta} \partial^{\beta} f(x) \partial^{\gamma} g(x).$$

- (b) Show that the cardinality of the set $\mathbb{N}_{\leq n}^N := \{\alpha \in \mathbb{N}^N : |\alpha| \leq n\}$ is $\binom{n+N}{n}$. (Hint: define $\mathbb{N}_{=k}^N := \{\alpha \in \mathbb{N}^N : |\alpha| = k\}$ and observe, that $\mathbb{N}_{\leq n}^N = \bigcup_{k=0}^n M_{=k}$.)
- (a) For fixed $N, n \in \mathbb{N}^*$ and $|\alpha| = 1$, this is juste the well-known Leibnitz rule. Suppose then that the result is true for $|\alpha| = k < n$. Set $\alpha' = \alpha + \delta$ with

 $|\delta| = 1$. One then has

$$\begin{split} \partial^{\alpha'}(fg) &= \partial^{\delta}(\partial^{\alpha}(fg)) = \partial^{\delta}\left(\sum_{\substack{\beta,\gamma \in \mathbb{N}^{N} \\ \beta+\gamma=\alpha}} \binom{\alpha}{\beta} \partial^{\beta} f \partial^{\gamma} g \right) \\ &= \sum_{\substack{\beta,\gamma \in \mathbb{N}^{N}, \\ \beta+\gamma=\alpha}} \binom{\alpha}{\beta} \partial^{\beta+\delta} f \partial^{\gamma} g + \sum_{\substack{\beta,\gamma \in \mathbb{N}^{N}, \\ \beta+\gamma=\alpha}} \binom{\alpha}{\beta} \partial^{\beta} f \partial^{\gamma+\delta} g \\ &= \sum_{\substack{\beta',\gamma' \in \mathbb{N}^{N}, \\ \beta'+\gamma'=\alpha', \ \beta' \geq \delta}} \binom{\alpha'-\delta}{\beta'-\delta} \partial^{\beta'} f \partial^{\gamma'} g + \sum_{\substack{\beta',\gamma' \in \mathbb{N}^{N}, \\ \beta'+\gamma'=\alpha', \ \gamma' \geq \delta}} \binom{\alpha'-\delta}{\beta'} \partial^{\beta'} f \partial^{\gamma'} g. \end{split}$$

Note that in the first sum, if $\beta' + \gamma' = \alpha'$ and $\gamma' \geq \delta$ is false, then $\beta' \delta = \alpha' \delta$. Similarly, if $\beta' + \gamma' = \alpha'$ and $\beta' \geq \delta$ is false, then $\gamma' \delta = \alpha' \delta$. We thus split the sums accordingly and obtain

$$\begin{split} \partial^{\alpha'}(fg) &= \sum_{\substack{\beta',\gamma' \in \mathbb{N}^N, \\ \beta'+\gamma'=\alpha', \ \beta' \geq \delta}} \binom{\alpha'-\delta}{\beta'-\delta} \partial^{\beta'} f \partial^{\gamma'} g + \sum_{\substack{\beta',\gamma' \in \mathbb{N}^N, \\ \beta'+\gamma'=\alpha', \ \gamma' \geq \delta}} \binom{\alpha'-\delta}{\beta'} \partial^{\beta'} f \partial^{\gamma'} g \\ &= \sum_{\substack{\beta',\gamma' \in \mathbb{N}^N, \\ \beta'+\gamma'=\alpha', \ \beta'\delta=\alpha'\delta}} \binom{\alpha'-\delta}{\beta'-\delta} \partial^{\beta'} f \partial^{\gamma'} g + \sum_{\substack{\beta',\gamma' \in \mathbb{N}^N, \\ \beta'+\gamma'=\alpha', \ \gamma\delta=\alpha'\delta}} \binom{\alpha'-\delta}{\beta'} \partial^{\beta'} f \partial^{\gamma'} g \\ &+ \sum_{\substack{\beta',\gamma' \in \mathbb{N}^N, \\ \beta'+\alpha'=\alpha', \ \beta',\gamma' \in \mathbb{N}^N, \\ \beta'+\alpha'=\alpha', \ \beta',\gamma' \in \mathbb{N}^N, \\ \beta'-\delta \end{pmatrix}} \binom{\alpha'-\delta}{\beta'} \partial^{\beta'} f \partial^{\gamma'} g. \end{split}$$

In the first sum, note that if $\beta' + \gamma' = \alpha'$ and $\beta'\delta = \alpha'\delta$, then $\binom{\alpha'-\delta}{\beta'-\delta} = \binom{\alpha'}{\beta'}$. A similar argument for the second sum shows, that $\binom{\alpha'-\delta}{\beta'} = \binom{\alpha'-\delta}{\alpha'-\delta-\beta'} = \binom{\alpha'-\delta}{\gamma'-\delta} = \binom{\alpha'}{\beta'} = \binom{\alpha'}{\beta'}$.

In the last sum, observe that $\binom{\alpha'-\delta}{\beta'-\delta} + \binom{\alpha'-\delta}{\beta'} = \binom{\alpha'}{\beta'}$. Adding therefore these three sums gives the desired result.

(b) $\mathbb{N}_{=k}^N$ may be viewed as the number of sampling with replacement of k indistinguishable elements among N distinguishable ones. Hence, the cardinality of $\mathbb{N}_{=k}^N$ is $\binom{N+k-1}{k}$.

This may be shown as follows: For a given $N \geq 1$, k = 0 and k = 1, one obviously has $\mathbb{N}_{=0}^N = 1$ and $\mathbb{N}_{=1}^N = N$. Obviously, one also has $\mathbb{N}_{=k}^1 = 1$. One then proceeds by induction on N and k: the possible choices for $\mathbb{N}_{=k+1}^N$ are then to chose the first element as the $N+1^{\text{th}}$ and the other k elements among all N+1 choices, or to chose all k+1 elements among the first N elements. Therefore:

$$\mathbb{N}_{=k+1}^{N+1} = \mathbb{N}_{=k}^{N+1} + \mathbb{N}_{=k+1}^{N} = \binom{N+1+k-1}{k} + \binom{N+k+1-1}{k+1} = \binom{N+k+1}{k+1}.$$

Again by induction on k, one then has

$$\mathbb{N}_{\leq k+1}^{N+1} = \mathbb{N}_{=k+1}^{N+1} + \mathbb{N}_{\leq k}^{N+1} = \binom{N+1+k}{k+1} + \binom{N+k+1}{k} = \binom{N+k+2}{k+1}.$$

5. Let X be a \mathbb{K} -vector space endowed with a family $\{\| \|_j\}_{j\in I}$ of norms. For $\epsilon > 0$, $x \in X$ and $\{j_1, \ldots, j_n\} \subset I$, one defines

$$U_{x,\epsilon,j_1,\ldots,j_n} := \{ y \in X : \forall k = 1,\ldots,n, \|y - x\|_{j_k} < \epsilon \}.$$

Show that the collection of all subsets $U \subset X$, so that

$$\forall x \in U, \exists \epsilon > 0, \exists \{j_1, \dots, j_n\} \subset I \text{ s.t. } U_{x,\epsilon,j_1,\dots,j_n} \subset U$$

is a topology τ_X on X, i.e.:

- $\forall \mathcal{F} \subset \tau_X, |\mathcal{F}| \in \mathbb{N} \text{ implies } \cap_{U \in \mathcal{F}} U \in \tau_X,$
- $\forall \mathcal{F} \subset \tau_X, \cup_{U \in \mathcal{F}} U \in \tau_X.$
- Let $\mathcal{F} \subset \tau_X$, $|\mathcal{F}| \in \mathbb{N}$. Without loss of generality, we may suppose $\mathcal{F} = \{U_1, \ldots, U_n\}$. Let $x = \cap_{U \in \mathcal{F}} U$. By definition, there are positive numbers $\epsilon_1, \ldots, \epsilon_n > 0$ and finite sets of indices I_1, \ldots, I_n , so that for each $k = 1, \ldots$,

$$U_{x,\epsilon_k,j\in I_k}\subset U_k$$
.

Set now $\epsilon := \min\{\epsilon_1, \dots, \epsilon_n \text{ and } I = \bigcup_{k=1}^n I_k$. It is then clear, that

$$U_{x,\epsilon,j\in I}\subset \cap_{U\in\mathcal{F}}U,$$

which shows that $\cap_{U \in \mathcal{F}} U \in \tau_X$.

• Let $\mathcal{F} \subset \tau_X$ and $x \in \bigcup_{U \in \mathcal{F}} U$. There is hence some $U \in \mathcal{F}$ so that $x \in U$. By definition, there is then an $\epsilon > 0$ and finite indices j_1, \ldots, j_n , so that

$$U_{x,\epsilon,j_1,\ldots,j_n} \subset U$$
.

But it is the clear, that

$$U_{x,\epsilon,j_1,\ldots,j_n} \subset \cup_{U\in\mathcal{F}} U$$

as well, showing that $\bigcup_{U \in \mathcal{F}} U \in \tau_X$.

We end by the remark, that by convention, if $\tau_X \supset \mathcal{F} = \emptyset$, then $\cap_{U \in \mathcal{F}} U = X$ and $\cup_{U \in \mathcal{F}} U = \emptyset$, so that as a consequence, $\emptyset, X \in \tau_X$ as a consequence of the two previously checked rules.

6. Let $(f_k)_{k\in\mathbb{N}}\subset\mathcal{S}(\mathbb{R}^N)$ be a sequence which is Cauchy for all the norms $\|\| \|_n$. Show, that this sequence converges to some $f\in\mathcal{S}(\mathbb{R}^N)$ for τ_S .

(Hint: you might wanna use the Stone-Weierstrass theorem and the uniform continuity of the Riemann integral.)

Since $(f_k)_{k\in\mathbb{N}}\subset\mathcal{S}(\mathbb{R}^N)$ is Cauchy for all the norms $\|\| \|_n$, then for any $\alpha\in\mathbb{N}^N$ and any $n\in\mathbb{N}$, we have that $(\partial^{\alpha}f_k)_{k\in\mathbb{N}}\subset\mathcal{S}(\mathbb{R}^N)$ and $((1+x\cdot x)^n\partial^{\alpha}f_k(x))_{k\in\mathbb{N}}\subset\mathcal{S}(\mathbb{R}^N)$ are Cauchy for the norm $\|\| \|_{\infty}$.

By the Stone Weierstrass theorem, all sequences $(\partial^{\alpha} f_k)_{k \in \mathbb{N}} \subset \mathcal{S}(\mathbb{R}^N)$ converge uniformly on \mathbb{R}^N to some continuous functions f_{α} , which are all of rapid decrease.

(Strictly speaking, one has to apply the Stone Weierstrass theorem to the one-point compactification $(\mathbb{R}^N)^+$. This space is defined as the set $\mathbb{R}^N \cup \{\star\}$, endowed with the topology consisting of all open sets in \mathbb{R}^N and the sets $(\mathbb{R}^N \setminus K) \cup \{\star\}$, where $K \subset \mathbb{R}^N$ are compact sets. A sequence $(f_k)_{k \in \mathbb{N}}$ of continuous functions on \mathbb{R}^N which converge to 0 as $x \cdot x \to \infty$ can then be extended to a sequence $(F_k)_{k \in \mathbb{N}}$ of continuous functions on $(\mathbb{R}^N)^+$, defined by $F_k(\star) = 0$ and $F\Big|_{\mathbb{R}^N} = f_k$. If $(f_k)_{k \in \mathbb{N}}$ is Cauchy for $\| \cdot \|_{\infty}$ on $(\mathbb{R}^N)^+$, so that The Stone-Weierstrass theorem can be applied to this sequence, which converges uniformly to a continuous function F on $(\mathbb{R}^N)^+$. Obviously, $F(\star) = 0$ and $(f_k)_{k \in \mathbb{N}}$ converges uniformly on \mathbb{R}^N to the continuous function $f = F\Big|_{\mathbb{R}^N}$.

It remains to be shown, that $f_{\alpha} = \partial^{\alpha} f$. In order to do so we proceed by induction on $\alpha \in \mathbb{N}^{N}$. For $\alpha = \overline{0}$ this is just stating $f = f_{\overline{0}} = \partial^{\overline{0}} f = f$. Suppose then that $f_{\alpha} = \partial^{\alpha} f$ and let $\delta \in \mathbb{N}_{\leq 1}^{N}$. We then have for a given $x \in \mathbb{R}^{N}$

$$f_{\alpha}(x) = \lim_{k \to \infty} \partial^{\alpha} f_{k}(x) = \lim_{k \to \infty} \int_{-\infty}^{x \cdot \delta} \partial^{\alpha + \delta} f_{k}(x(\overline{1} - \delta) + y\delta) d(\delta \cdot y).$$

Since $(\partial^{\alpha+\delta} f_k)_{k\in\mathbb{N}}$ converges uniformly on \mathbb{R}^N to $f_{\alpha+\delta}$, one may exchange the limit and the Riemann integration to get

$$f_{\alpha}(x) = \int_{-\infty}^{x \cdot \delta} f_{\alpha + \delta}(x(\overline{1} - \delta) + y\delta) d(\delta \cdot y).$$

 $f_{\alpha+\delta}$ is a continuous function, so that by the fundamental theorem of calculus, this last equality yields

$$\partial^{\delta} f_{\alpha}(x) = f_{\alpha+\delta}(x).$$

7. Let $g \in L^2(\mathbb{R}^N, \mu_L)$. For $x \in \mathbb{R}^N$, set $E_x := \{ y \in \mathbb{R}^N : y = \delta x \text{ s.t. } \delta \in [0, 1]^N \}$. Show that the function

$$\mathbb{R}^N \ni x \mapsto G(x) := \operatorname{sgn}(x) \int_{E_x} g(y) \mu_L(dy)$$

is well-defined, continuous and polynomially bounded. If $f \in \mathcal{S}(\mathbb{R}^N)$, show that

$$\int_{\mathbb{R}^N} G(x)\partial^{\overline{1}} f(x)\mu_L(dx) = (-1)^N \int_{\mathbb{R}^N} g(x)f(x)\mu_L(dx).$$

(Hint: for the second part, show it first when $g(x) = \prod_{k=1}^{N} g_k(x)$ and all $g_k(t)$ are continuous and compactly supported on \mathbb{R} . Use then a density argument.)

The set E_x is obviously compact and consequently, $1_{E_x} \in L^2(\mathbb{R}^N, \mu_L)$. Since $\int_{E_x} g(y) \mu_L(dy) = \int_{\mathbb{R}^N} 1_{E_x}(y) g(y) \mu_L(dy) = \langle 1_{E_x}, g \rangle_{L^2}$, it is well-defined and if $x \to x'$, then manifestly $1_{E_x}(y) \to 1_{E_{x'}}(y)$ for all $y \in \mathbb{R}^N$ and by the dominated convergence theorem, $\lim_{x \to x'} G(x) = G(x)$.

Using the Cauchy-Schwarz inequality, one gets that $|G(x)| \leq ||g||_{L^2} \text{Vol}(E_x)$, which is obviously bounded by $(x \cdot x)^{N/2}$.

Consider first the case where $g = \prod_{k=1}^{N} g_k(x_k)$, where all functions $g_k(t)$ are continuous and compactly supported. Clearly, $g(x) \in L^2(\mathbb{R}^N, \mu_L(dx))$ and all functions

 $g_k(t)$ have continuous primitive functions $G_k(t)$, which are constant outside a compact support. For a given $x \in \mathbb{R}^N$ and by integrating all N dimensions in successive order, one gets $G(x) = \prod_{k=1}^N (G_k(x_k) - G_k(0))$.

Now, $G(x)\partial^1 f(x)$ is continuous and square summable, so that one may replace the Lebesgue integral by Riemann integration to get

$$\int_{\mathbb{R}^{N}} G(x) \partial^{\overline{1}} f(x) \mu_{L}(dx)$$

$$= \int_{\mathbb{R}} dx_{N} \dots \int_{\mathbb{R}} dx_{2} \int_{\mathbb{R}} dx_{1} \prod_{k=1}^{N} (G_{k}(x_{k}) - G_{k}(0)) \frac{\partial}{\partial x_{1}} \left(\frac{\partial^{N-1}}{\partial x_{2} \dots \partial x_{N}} f(x_{1}, x_{2} \dots, x_{N}) \right)$$

$$= \int_{\mathbb{R}} dx_{N} \dots \int_{\mathbb{R}} dx_{2} \prod_{k=2}^{N} (G_{k}(x_{k}) - G_{k}(0))$$

$$\times \int_{\mathbb{R}} dx_{1} (G_{1}(x_{1}) - G_{1}(0)) \frac{\partial}{\partial x_{1}} \left(\frac{\partial^{N-1}}{\partial x_{2} \dots \partial x_{N}} f(x_{1}, x_{2} \dots, x_{N}) \right)$$

$$= \int_{\mathbb{R}} dx_{N} \dots \int_{\mathbb{R}} dx_{2} \prod_{k=2}^{N} (G_{k}(x_{k}) - G_{k}(0))$$

$$\times \left[\int_{\mathbb{R}} dx_{1} (-1) g_{1}(x_{1}) \left(\frac{\partial^{N-1}}{\partial x_{2} \dots \partial x_{N}} f(x_{1}, x_{2} \dots, x_{N}) \right) + (G(x_{1}) - G(0)) \frac{\partial^{N-1}}{\partial x_{2} \dots \partial x_{N}} f(x_{1}, x_{2} \dots, x_{N}) \right]_{-\infty}^{\infty} \right]$$

$$= -\int_{\mathbb{R}} dx_{N} \dots \int_{\mathbb{R}} dx_{2} \prod_{k=2}^{N} (G_{k}(x_{k}) - G_{k}(0)) \int_{\mathbb{R}} dx_{1} g_{1}(x_{1}) \left(\frac{\partial^{N-1}}{\partial x_{2} \dots \partial x_{N}} f(x_{1}, x_{2} \dots, x_{N}) \right).$$

By iteration, one finally gets

$$\int_{\mathbb{R}^N} G(x)\partial^{\overline{1}} f(x)\mu_L(dx) = (-1)^N \int_{\mathbb{R}^N} g(x)f(x)\mu_L(dx).$$

Linearity of the integral implies that this last relation remains valid for g(x) being a linear combination of the type $g(x) = \sum_{l=1}^{M} \prod_{k=1}^{N} g_{l,k}(x_k)$ with all $g_{l,k}(t)$ being continuous and of compact support.

We know use the density of these latter functions in $L^2(\mathbb{R}^N, \mu(dx))$. Let $g \in L^2(\mathbb{R}^N, \mu(dx))$ and consider a sequence $(g_k)_{k \in \mathbb{N}} \subset L^2(\mathbb{R}^N, \mu(dx))$, so that $\lim_k g_k = g$ in $L^2(\mathbb{R}^N, \mu(dx))$. Suppose that for any $k \in \mathbb{N}$, the relation $\int_{\mathbb{R}^N} G_k(x) \partial^{\overline{1}} f(x) \mu_L(dx) = (-1)^N \int_{\mathbb{R}^N} g_k(x) f(x) \mu_L(dx)$ holds. We then have

$$G(x) = \operatorname{sgn}(x) \int_{E_x} g(y) \mu_L(dy) = \operatorname{sgn}(x) \langle I_{E_x}, g \rangle_{L^2}$$
$$= \operatorname{sgn}(x) \langle I_{E_x}, \lim_k g_k \rangle_{L^2} = \lim_k \operatorname{sgn}(x) \langle I_{E_x}, g_k \rangle_{L^2} = \lim_k G_k(x),$$

and since $|G(x) - G_k(x)| = |\langle I_{E_x}, g - g_k \rangle_{L^2}| \le ||I_{E_x}||_{L^2} ||g - g_k||_{L_2} = \operatorname{Vol}(E_x)^{1/2} ||g - g_k||_{L_2}$, which is polynomially bounded in x, we have that $G_k(x)\partial^{\overline{1}}f(x)$ converges

uniformly to $G(x)\partial^{\overline{1}}f(x)$. Hence,

$$\int_{\mathbb{R}^N} G(x)\partial^{\overline{1}} f(x)\mu_L(dx) = \lim_k \int_{\mathbb{R}^N} G_k(x)\partial^{\overline{1}} f(x)\mu_L(dx)$$
$$= (-1)^N \lim_k \int_{\mathbb{R}^N} g_k(x)f(x)\mu_L(dx) = (-1)^N \int_{\mathbb{R}^N} g(x)f(x)\mu_L(dx),$$

where the last limit is in $L^2(\mathbb{R}^N, \mu_L)$.

8. Find an $n \in \mathbb{N}$ and continuous and polynomially bounded functions $(g_{\alpha}(x))_{\alpha \in \mathbb{N}_{\leq n}^{N}}$ on \mathbb{R} , so that

$$\varphi(f) = \sum_{\alpha \in \mathbb{N}_{\leq n}^{N}} \int_{\mathbb{R}} g_{\alpha}(x) \partial^{\alpha} f(x) \mu_{L}(dx)$$

for

- (a) $\varphi = \delta(x)$,
- (b) $\varphi = \text{p.v.}(\frac{1}{x}).$

Can you find more than one such representations?

(a) A simple integration, that for $\varphi = \delta(x)$, one has

$$\forall f \in \mathcal{S}(\mathbb{R}), \quad \varphi(f) = -\int_{\mathbb{R}^+} f'(x) dx.$$

Hence, integration by parts yields

$$\varphi(f) = \int_{\mathbb{R}} (0 \vee x) f''(x) dx.$$

Therefore, one may chose n = 2, $g_0(x) = g_1(x)$ and $g_2(x) = (0 \lor x)$. This last function is certainly continuous and bounded by x^2 .

One may also chose $g_2(x) = (0 \lor x) + cx + d$ for any constant c, d.

(b) Two integration by parts show, that for $\varphi = \text{p.v.}(\frac{1}{x})$, one has

$$\forall f \in \mathcal{S}(\mathbb{R}), \quad \varphi(f) = \int_{\mathbb{R}^+} x(\ln(x) - 1)(f''(x) - f''(-x))dx.$$

Hence,

$$\varphi(f) = \int_0^\infty x(\ln(x) - 1)f''(x)dx + \int_0^\infty (-x)(\ln(x) - 1)f''(-x)dx$$

$$= \int_0^\infty x(\ln(x) - 1)f''(x)dx + \int_0^\infty (-x)(\ln(x) - 1)f''(-x)dx$$

$$= \int_0^\infty x(\ln(|x|) - 1)f''(x)dx.$$

Therefore, one may chose n=2, $g_0(x)=g_1(x)$ and $g_2(x)=x(\ln(|x|)-1)$. This last function is certainly continuous (since $\lim_{x\to 0} x \ln(|x|)=0$) and bounded by x^2 .

One may also chose $g_2(x) = x(\ln(|x|) - 1) + cx + d$ for any constant c, d.

- 9. Prove that the sequence $(h_k)_{k\in\mathbb{N}^*}\subset\mathcal{S}'(\mathbb{R})$ converges in the weak* topology to $\varphi\in\mathcal{S}'(\mathbb{R}^N)$

 - (a) $\varphi = \delta(x)$ and $h_k(x) = 1_{[-1,1]} \frac{n}{2} e^{-n|x|}$, (b) $\varphi = \text{p.v.}(\frac{1}{x})$ and $h(k) = \frac{x}{x^2 + k^{-2}}$.
 - (a) For a given $k \in \mathbb{N}$ and a fixed $f \in \mathcal{S}(\mathbb{R})$, one has

$$\langle \overline{h_k}, f \rangle_{L^2} = \int_{\mathbb{R}} 1_{[-1,1]} \frac{k}{2} e^{-k|x|} f(x) \mu_L(dx)$$
$$= \int_{\mathbb{R}} 1_{[-k,k]} \frac{1}{2} e^{-|y|} f(yk^{-1}) \mu_L(dy).$$

The integrand is bounded by $\frac{1}{2}e^{-|y|}||f|_{\infty}$, which is certainly in $L^1(\mathbb{R},\mu_L)$. By the dominated convergence theorem, we therefore may conclude, that

$$\lim_{k\to\infty} \langle \overline{h_k}, f \rangle_{L^2} = \int_{\mathbb{R}} \frac{1}{2} e^{-|y|} f(0) \mu_L(dy) = \delta(x)(f).$$

(b) For a given $k \in \mathbb{N}$ and a fixed $f \in \mathcal{S}(\mathbb{R})$, one has

$$\langle \overline{h_k}, f \rangle_{L^2} = \int_{\mathbb{R}} \frac{xf(x)}{x^2 + k^{-2}} \mu_L(dx)$$

$$= \frac{1}{2} \int_{\mathbb{R}} f(x) \left(\frac{1}{x + ik^{-1}} + \frac{1}{x - ik^{-1}} \right) \mu_L(dx)$$

$$= -\frac{1}{2} \int_{\mathbb{R}} f'(x) \left(\ln(x + ik^{-1}) + \ln(x - ik^{-1}) \right) \mu_L(dx)$$

$$= \frac{1}{2} \int_{\mathbb{R}} f''(x) \left((x + ik^{-1}) \ln(x + ik^{-1}) - x + (x - ik^{-1}) \ln(x - ik^{-1}) - x \right) \mu_L(dx)$$

$$= \int_{\mathbb{R}} f''(x) \left(\frac{x}{2} \ln(x^2 + k^{-2}) - x + \frac{i}{2k} \ln(\frac{x + ik^{-1}}{x - ik^{-1}}) \right) \mu_L(dx).$$

Because f''(x) is rapidly decreasing, the integrand is bounded by $|f''(x)|(x^2 + |x| + |x + 1|^2)$, which is in $L^1(\mathbb{R}, \mu_L)$. By the dominated convergence theorem, we therefore may conclude, that

$$\lim_{k \to \infty} \langle \overline{h_k}, f \rangle_{L^2} = \int_{\mathbb{R}} x(\ln(|x|) - 1) f''(x) \mu_L(dx) = \text{p.v.}(\frac{1}{x})(f).$$

10. Prove that the weak* topology on $\mathcal{S}'(\mathbb{R}^N)$ is a topology (see exercice 5). Prove that $\mathcal{S}'(\mathbb{R}^N)$ is complete when endowed with this topology.

Let $\mathcal{F} \subset \tau(\mathcal{S}'(\mathbb{R}^N), \mathcal{S}(\mathbb{R}^N))$ and $|\mathcal{F}| \in \mathbb{N}$. Let $\varphi \in \cap_{U \in \mathcal{F}} U$. Then $\forall U \in \mathcal{F}, x \in U$, and there are for every $U \in \mathcal{F}$ a finite number of Schwartz functions $f_1^U, \ldots, f_{n_U}^U$, so that

$$\{\eta \in \mathcal{S}'(\mathbb{R}^N) : \forall k = 1, \dots, n_U, |\eta(f_k^U) - \varphi(f_k^U)| < 1\} \subset U.$$

But then, $\bigcup_{U \in \mathcal{F}} \{f_1^U, \dots, f_{n_U}^U\}$ is also a finite set of Schwartz functions and

$$\{\eta \in \mathcal{S}'(\mathbb{R}^N) : \forall U \in \mathcal{F}, \forall k = 1, \dots, n_U, |\eta(f_k^U) - \varphi(f_k^U)| < 1\} \subset \cap_{U \in \mathcal{F}} U$$

and $\cap_{U \in \mathcal{F}} U \in \tau(\mathcal{S}'(\mathbb{R}^N), \mathcal{S}(\mathbb{R}^N)).$

Let $\mathcal{F} \subset \tau(\mathcal{S}'(\mathbb{R}^N), \mathcal{S}(\mathbb{R}^N))$ and suppose $\varphi \in \bigcup_{U \in \mathcal{F}} U$. Then there is an open set $U \in \mathcal{F}$, so that $\varphi \in U$ and there is a finite number of Schwartz functions $f_1^U, \ldots, f_{n_U}^U$, so that

$$\{\eta \in \mathcal{S}'(\mathbb{R}^N) : \forall k = 1, \dots, n_U, |\eta(f_k^U) - \varphi(f_k^U)| < 1\} \subset U.$$

But then obviously

$$\{\eta \in \mathcal{S}'(\mathbb{R}^N) : \forall k = 1, \dots, n_U, |\eta(f_k^U) - \varphi(f_k^U)| < 1\} \subset \bigcup_{U \in \mathcal{F}} U$$

and $\bigcup_{U \in \mathcal{F}} U \in \tau(\mathcal{S}'(\mathbb{R}^N), \mathcal{S}(\mathbb{R}^N)).$

Let $\{\varphi_k\}_{k\in\mathbb{N}}$ be a Cauchy sequence for $\tau(\mathcal{S}'(\mathbb{R}^N), \mathcal{S}(\mathbb{R}^N))$. Then this means, that for any $U \in \tau(\mathcal{S}'(\mathbb{R}^N), \mathcal{S}(\mathbb{R}^N))$ with $\varphi_0 \in U$, there is an $n_U \in \mathbb{N}$, so that $k, l \geq n_U$ implies $\varphi_k - \varphi_l \in U$.

In particular, this means, that for any fixed $f \in \mathcal{S}(\mathbb{R}^N)$ and any $\epsilon > 0$, there is an $N_{f,\epsilon}$, so that for $k, l \geq N_{f,\epsilon}$, $\varphi_k - \varphi_l \in \{ \eta \in \mathcal{S}'(\mathbb{R}^N) : |\eta(\frac{f}{\epsilon})| < 1 \}$.

Thus, for any fixed $f \in \mathcal{S}(\mathbb{R}^N)$ and any $\epsilon > 0$, there is an $N_{f,\epsilon}$, so that $k, l \geq N_{f,\epsilon}$ implies $|\varphi_k(f) - \varphi_l(f)| < \epsilon$. Consequently, for any fixed $f \in \mathcal{S}(\mathbb{R}^N)$, $(\varphi_k(f))_{k \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{C} and the limit $\lim_k \varphi_k(f)$ exists in \mathbb{C} .

By linearity of the limits and all tempered distributions φ_k , this implies, that the map

$$\mathcal{S}(\mathbb{R}^N) \ni f \mapsto \lim_k \varphi_k(f) =: \varphi(f)$$

is a linear functional on $\mathcal{S}(\mathbb{R}^N)$. It remains to be shown, that φ is continuous. The family of tempered distributions $\{\varphi_k\}_{k\in\mathbb{N}}$ is simply bounded for any $f\in\mathcal{S}(\mathbb{R}^N)$, since $(\varphi_k(f))_{k\in\mathbb{N}}$ is Cauchy in \mathbb{C} . By the uniform boundedness principle, this family is therefore equicontinuous, meaning there is an open set $0\in U\subset\mathcal{S}(\mathbb{R}^N)$, so that $\forall f\in U, |\varphi_k(f)|<\frac{1}{2}$ for any $k\in\mathbb{N}$. By simple convergence, $\forall f\in U, |\varphi(f)|\leq \frac{1}{2}<1$, and $\varphi\in\mathcal{S}'(\mathbb{R}^N)$.