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Solutions to exercice sheet 1

Schwartz space

1. Prove the Riesz & Fréchet theorem, namely, that given a Hilbert space H, the anti-linear
map

J : H ∋ x 7→ ⟨x, ⟩ =: J(x) ∈ H ′

is an isometric isomorphism.
(Hint: if V ⊂ H is a closed subspace, then H = V ⊕ V ⊥.)

Let x ∈ H and we shall show, that J(x) ∈ H ′. Indeed, for any y ∈ H, |J(x)(y)| =
|⟨x, y⟩| ≤ ∥x∥H∥y∥H . This shows that J(x) ∈ H ′.
For x ̸= 0, one may take y = x

∥x∥H
, and one has J(x)(y) = ∥x∥. This shows, that

∥J(x)∥H′ = ∥x∥H and J is hence isometric and injective.
Let ξ ∈ H ′ and let us find an x ∈ H, so that ξ = J(x). If ξ = 0H′ , then one may
chose x = 0H . Let’s therefore assume that ξ ̸= 0H′ . The continuity of ξ implies,
that ker(ξ) = ξ−1{0} = V is a closed subspace of H. One therefore has H = V ⊕V ⊥

and since ξ ̸= 0H′ , one obviously has V ⊥ ̸= {0H}.
Moreover, if V ⊥ ∋ x, y ̸= 0H , then ξ (ξ(y)x− ξ(x)y) = 0, so that ξ(y)x − ξ(x)y ∈
V ∩ V ⊥ = {0H}. Consequently, V ⊥ is a one-dimensional closed subspace of H.
Chose now 0H ̸= y ∈ V ⊥ and set x := y

∥y∥2H
ξ(y). For v = λy, one has therefore

J(x)(v) = ⟨x, λy⟩ = λξ(y) = ξ(λy) = ξ(v).

Thus, J(x)
∣∣∣
V ⊥

= ξ
∣∣∣
V ⊥

, J(x)
∣∣∣
V
= ξ

∣∣∣
V
, and since H = V ⊕ V ⊥, one may conclude.

2. Let H be a Hilbert space and consider a Banach space B. Prove that any continuous
and linear map ξ : D → B, defined on a dense set D ⊂ H has a unique and isometric
extension ξ : H → B.

Let x ∈ H. Since D ⊂ H is dense, there is a Cauchy sequence (dk)k∈N ⊂ D whose
limit in H is x.
Consider then the sequence (ξ(dk))k∈N ⊂ B. The continuity of the map ξ : H → B
is equivalent to ξ being bounded, so that (ξ(dk))k∈N is Cauchy in B. This latter
space being complete, there is a limit B ∋ y = limk ξ(dk).
If (d′k)k∈N ⊂ D is another Cauchy sequence whose limit in H is x, then (d′k −
dk)k∈N ⊂ D is a sequence converging to 0H . The continuity of ξ then implies, that
limk ξ(d

′
k − dk) = 0B. Therefore, limk ξ(d

′
k) = limk ξ(dk) = y and thus y depends

only on x and not on the particular sequence (dk)k∈N ⊂ D chosen. We set ξ(x) := y.
It remains to show that this extension of the map ξ is isometric. For a given ϵ > 0,
there is by construction some d ∈ D, so that ∥ξ(x) − ξ(d)∥B < ϵ. Consequently,
∥ξ(x)∥B ≤ ∥ξ(d)|B + ϵ ≤ ∥ξ∥L(D,B) + ϵ. This being true for any ϵ > 0, one must

have ∥ξ(x)∥B ≤ ∥ξ∥L(D,B). This being true for any x ∈ H, one concludes, that

∥ξ∥L(D,B) ≤ ∥ξ∥L(D,B).

The inverse inequality follows from the fact that ξ
∣∣∣
D
= ξ.
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3. Let V be a K−vector space and let ∥ ∥1,2 : V → R+ be two norms:

(a) Show that if ∀x ∈ V, ∥x∥1 ≤ ∥x∥2, then {x ∈ V : ∥x∥2 < 1} ⊂ {x ∈ V : ∥x∥1 < 1}.
(b) Show that the topology τ2 defined by ∥ ∥2 is finer than the topology τ1 defined by

∥ ∥1, i.e. τ1 ⊂ τ2. Prove as a consequence, that any sequence (xn)n∈N ⊂ V converges
for τ1 if it does so for τ2.

(c) Show that if W is a K−vector space with a topology τW and if f : V → W is a
continuous map with respect to τ1, then f is also continuous with respect to τ2.

(d) Show that if in addition, there is a positive constant C so that ∀x ∈ V, ∥x∥2 ≤ C∥x∥1,
then τ1 = τ2.

(a) For a given x ∈ V , if ∥x∥2 < 1, then ∥x∥1 ≤ ∥x|2 < 1. Consequently, {x ∈ V :
∥x∥2 < 1} ⊂ {x ∈ V : ∥x∥1 < 1}.

(b) Let U ∈ τ1 be an open set for the topology induced by the norm ∥ |1. By
definition, this means, that ∀x ∈ U , there is an ϵ > 0, so that U contains the
ball {y ∈ V : ∥x − y∥1 < ϵ}. By the previous point, this implies, that U
contains the open ball {y ∈ V : ∥x − y∥2 < ϵ} as well, so that by definition,
U ∈ τ2.
A sequence (xn)n∈N ⊂ V converges for τ2 iff there is a x ∈ V , so that for any
open set x ∈ U ∈ τ2, there is an N ∈ N, so that n ≥ N implies xn ∈ U . By
the previous point, τ1 ⊂ τ2, so that if the statement holds for any x ∈ U ∈ τ2,
it must hold for any x ∈ U ∈ τ1. As a consequence, the sequence (xn)n∈N ⊂ V
converges for τ1 if it does so for τ2.

(c) If f : V → W is a continuous map with respect to τ1, then by definition, this
means that for any U ∈ τW , f−1{U} ∈ τ1. But since τ1 ⊂ τ2, this then means,
that U ∈ τW , f−1{U} ∈ τ2. Hence, f is continuous with respect to τ2 as well.

(d) Suppose that in addition, there is a positive constant C so that ∀x ∈ V, ∥x∥2 ≤
C∥x∥1. Let U ∈ τ2. For any x ∈ U , there is hence an ϵ > 0, so that {y ∈ V :
∥x− y∥2 < ϵ} ⊂ U . But then, the set {y ∈ V : ∥x− y∥1 < ϵ/C} ⊂ U as well
and τ1 = τ2.

4. (a) For f, g ∈ Cn(RN) and α ∈ NN with |α| ≤ n, show that

∂α(fg)(x) =
∑

β,γ∈NN ,
β+γ=α

(
α

β

)
∂βf(x)∂γg(x).

(b) Show that the cardinality of the set NN
≤n := {α ∈ NN : |α| ≤ n} is

(
n+N
n

)
.

(Hint: define NN
=k := {α ∈ NN : |α| = k} and observe, that NN

≤n = ∪n
k=0M=k.)

(a) For fixed N, n ∈ N∗ and |α| = 1, this is juste the well-known Leibnitz rule.
Suppose then that the result is true for |α| = k < n. Set α′ = α + δ with
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|δ| = 1. One then has

∂α′
(fg) = ∂δ(∂α(fg)) = ∂δ

 ∑
β,γ∈NN

β+γ=α

(
α

β

)
∂βf∂γg


=

∑
β,γ∈NN ,
β+γ=α

(
α

β

)
∂β+δf∂γg +

∑
β,γ∈NN ,
β+γ=α

(
α

β

)
∂βf∂γ+δg

=
∑

β′,γ′∈NN ,
β′+γ′=α′, β′≥δ

(
α′ − δ

β′ − δ

)
∂β′

f∂γ′
g +

∑
β′,γ′∈NN ,

β′+γ′=α′, γ′≥δ

(
α′ − δ

β′

)
∂β′

f∂γ′
g.

Note that in the first sum, if β′ + γ′ = α′ and γ′ ≥ δ is false, then β′δ = α′δ.
Similarly, if β′ + γ′ = α′ and β′ ≥ δ is false, then γ′δ = α′δ. We thus split the
sums accordingly and obtain

∂α′
(fg) =

∑
β′,γ′∈NN ,

β′+γ′=α′, β′≥δ

(
α′ − δ

β′ − δ

)
∂β′

f∂γ′
g +

∑
β′,γ′∈NN ,

β′+γ′=α′, γ′≥δ

(
α′ − δ

β′

)
∂β′

f∂γ′
g

=
∑

β′,γ′∈NN ,
β′+γ′=α′, β′δ=α′δ

(
α′ − δ

β′ − δ

)
∂β′

f∂γ′
g +

∑
β′,γ′∈NN ,

β′+γ′=α′, γδ=α′δ

(
α′ − δ

β′

)
∂β′

f∂γ′
g

+
∑

β′,γ′∈NN ,
β′+γ′=α′, β′,γ′≥δ

((
α′ − δ

β′ − δ

)
+

(
α′ − δ

β′

))
∂β′

f∂γ′
g.

In the first sum, note that if β′ + γ′ = α′ and β′δ = α′δ, then
(
α′−δ
β′−δ

)
=

(
α′

β′

)
. A

similar argument for the second sum shows, that
(
α′−δ
β′

)
=

(
α′−δ

α′−δ−β′

)
=

(
α′−δ
γ′−δ

)
=(

α′

γ′

)
=

(
α′

β′

)
.

In the last sum, observe that
(
α′−δ
β′−δ

)
+

(
α′−δ
β′

)
=

(
α′

β′

)
. Adding therefore these

three sums gives the desired result.

(b) NN
=k may be viewed as the number of sampling with replacement of k indistin-

guishable elements among N distinguishable ones. Hence, the cardinality of
NN

=k is
(
N+k−1

k

)
.

This may be shown as follows: For a given N ≥ 1, k = 0 and k = 1, one
obviously has NN

=0 = 1 and NN
=1 = N . Obviously, one also has N1

=k = 1.
One then proceeds by induction on N and k: the possible choices for NN

=k+1 are
then to chose the first element as the N +1th and the other k elements among
all N + 1 choices, or to chose all k + 1 elements among the first N elements.
Therefore:

NN+1
=k+1 = NN+1

=k +NN
=k+1 =

(
N + 1 + k − 1

k

)
+

(
N + k + 1− 1

k + 1

)
=

(
N + k + 1

k + 1

)
.

Again by induction on k, one then has

NN+1
≤k+1 = NN+1

=k+1 + NN+1
≤k =

(
N + 1 + k

k + 1

)
+

(
N + k + 1

k

)
=

(
N + k + 2

k + 1

)
.
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5. Let X be a K−vector space endowed with a family {∥ ∥j}j∈I of norms. For ϵ > 0, x ∈ X
and {j1, . . . , jn} ⊂ I, one defines

Ux,ϵ,j1,...,jn := {y ∈ X : ∀k = 1, . . . , n, ∥y − x∥jk < ϵ}.

Show that the collection of all subsets U ⊂ X, so that

∀x ∈ U, ∃ϵ > 0, ∃{j1, . . . , jn} ⊂ I s.t. Ux,ϵ,j1,...,jn ⊂ U

is a topology τX on X, i.e.:

• ∀F ⊂ τX , |F| ∈ N implies ∩U∈FU ∈ τX ,

• ∀F ⊂ τX , ∪U∈FU ∈ τX .

• Let F ⊂ τX , |F| ∈ N. Without loss of generality, we may suppose F =
{U1, . . . , Un}. Let x = ∩U∈FU . By definition, there are positive numbers
ϵ1, . . . , ϵn > 0 and finite sets of indices I1, . . . , In, so that for each k = 1, . . .,

Ux,ϵk,j∈Ik ⊂ Uk.

Set now ϵ := min{ϵ1, . . . , ϵn and I = ∪n
k=1Ik. It is then clear, that

Ux,ϵ,j∈I ⊂ ∩U∈FU,

which shows that ∩U∈FU ∈ τX .

• Let F ⊂ τX and x ∈ ∪U∈FU . There is hence some U ∈ F so that x ∈ U . By
definition, there is then an ϵ > 0 and finite indices j1, . . . , jn, so that

Ux,ϵ,j1,...,jn ⊂ U.

But it is the clear, that
Ux,ϵ,j1,...,jn ⊂ ∪U∈FU

as well, showing that ∪U∈FU ∈ τX .

We end by the remark, that by convention, if τX ⊃ F = ∅, then ∩U∈FU = X
and ∪U∈FU = ∅, so that as a consequence, ∅, X ∈ τX as a consequence of the two
previously checked rules.

6. Let (fk)k∈N ⊂ S(RN) be a sequence which is Cauchy for all the norms ||| |||n. Show, that
this sequence converges to some f ∈ S(RN) for τS.
(Hint: you might wanna use the Stone-Weierstrass theorem and the uniform continuity
of the Riemann integral.)

Since (fk)k∈N ⊂ S(RN) is Cauchy for all the norms ||| |||n, then for any α ∈ NN and
any n ∈ N, we have that (∂αfk)k∈N ⊂ S(RN) and ((1 + x · x)n∂αfk(x))k∈N ⊂ S(RN)
are Cauchy for the norm ∥ ∥∞.
By the Stone Weierstrass theorem, all sequences (∂αfk)k∈N ⊂ S(RN) converge uni-
formly on RN to some continuous functions fα, which are all of rapid decrease.
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(Strictly speaking, one has to apply the Stone Weierstrass theorem to the one-point
compactification (RN)+. This space is defined as the set RN ∪ {⋆}, endowed with
the topology consisting of all open sets in RN and the sets (RN \K) ∪ {⋆}, where
K ⊂ RN are compact sets. A sequence (fk)k∈N of continuous functions on RN

which converge to 0 as x · x → ∞ can then be extended to a sequence (Fk)k∈N of

continuous functions on (RN)+, defined by Fk(⋆) = 0 and F
∣∣∣
RN

= fk. If (fk)k∈N

is Cauchy for ∥ ∥∞ on RN , then (Fk)k∈N is Cauchy for ∥ ∥∞ on (RN)+, so that
The Stone-Weierstrass theorem can be applied to this sequence, which converges
uniformly to a continuous fonction F on (RN)+. Obviously, F (⋆) = 0 and (fk)k∈N

converges uniformly on RN to the continuous fonction f = F
∣∣∣
RN

.)

It remains to be shown, that fα = ∂αf . In order to do so we proceed by induction
on α ∈ NN . For α = 0 this is just stating f = f0 = ∂0f = f .
Suppose then that fα = ∂αf and let δ ∈ NN

≤1. We then have for a given x ∈ RN

fα(x) = lim
k→∞

∂αfk(x) = lim
k→∞

∫ x·δ

−∞
∂α+δfk(x(1− δ) + yδ)d(δ · y).

Since (∂α+δfk)k∈N converges uniformly on RN to fα+δ, one may exchange the limit
and the Riemann integration to get

fα(x) =

∫ x·δ

−∞
fα+δ(x(1− δ) + yδ)d(δ · y).

fα+δ is a continuous function, so that by the fundamental theorem of calculus, this
last equality yields

∂δfα(x) = fα+δ(x).

7. Let g ∈ L2(RN , µL). For x ∈ RN , set Ex := {y ∈ RN : y = δx s.t. δ ∈ [0, 1]N}. Show
that the function

RN ∋ x 7→ G(x) := sgn(x)

∫
Ex

g(y)µL(dy)

is well-defined, continuous and polynomially bounded. If f ∈ S(RN), show that∫
RN

G(x)∂1f(x)µL(dx) = (−1)N
∫
RN

g(x)f(x)µL(dx).

(Hint: for the second part, show it first when g(x) =
∏N

k=1 gk(x) and all gk(t) are contin-
uous and compactly supported on R. Use then a density argument.)

The set Ex is obviously compact and consequently, 1Ex ∈ L2(RN , µL). Since∫
Ex

g(y)µL(dy) =
∫
RN 1Ex(y)g(y)µL(dy) = ⟨1Ex , g⟩L2 , it is well-defined and if x → x′,

then manifestly 1Ex(y) → 1Ex′
(y) for all y ∈ RN and by the dominated convergence

theorem, limx→x′ G(x) = G(x).
Using the Cauchy-Schwarz inequality, one gets that |G(x)| ≤ ∥g∥L2Vol(Ex), which
is obviously bounded by (x · x)N/2.
Consider first the case where g =

∏N
k=1 gk(xk), where all functions gk(t) are contin-

uous and compactly supported. Clearly, g(x) ∈ L2(RN , µL(dx)) and all functions
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gk(t) have continuous primitive functions Gk(t), which are constant outside a com-
pact support. For a given x ∈ RN and by integrating all N dimensions in successive
order, one gets G(x) =

∏N
k=1 (Gk(xk)−Gk(0)).

Now, G(x)∂1f(x) is continuous and square summable, so that one may replace the
Lebesgue integral by Riemann integration to get∫

RN

G(x)∂1f(x)µL(dx)

=

∫
R
dxN . . .

∫
R
dx2

∫
R
dx1

N∏
k=1

(Gk(xk)−Gk(0))
∂

∂x1

(
∂N−1

∂x2 . . . ∂xN

f(x1, x2 . . . , xN)

)

=

∫
R
dxN . . .

∫
R
dx2

N∏
k=2

(Gk(xk)−Gk(0))

×
∫
R
dx1(G1(x1)−G1(0))

∂

∂x1

(
∂N−1

∂x2 . . . ∂xN

f(x1, x2 . . . , xN)

)

=

∫
R
dxN . . .

∫
R
dx2

N∏
k=2

(Gk(xk)−Gk(0))

×
[ ∫

R
dx1(−1)g1(x1)

(
∂N−1

∂x2 . . . ∂xN

f(x1, x2 . . . , xN)

)
+(G(x1)−G(0))

∂N−1

∂x2 . . . ∂xN

f(x1, x2 . . . , xN)
∣∣∣∞
−∞

]
= −

∫
R
dxN . . .

∫
R
dx2

N∏
k=2

(Gk(xk)−Gk(0))

∫
R
dx1g1(x1)

(
∂N−1

∂x2 . . . ∂xN

f(x1, x2 . . . , xN)

)
.

By iteration, one finally gets∫
RN

G(x)∂1f(x)µL(dx) = (−1)N
∫
RN

g(x)f(x)µL(dx).

Linearity of the integral implies that this last relation remains valid for g(x) being
a linear combination of the type g(x) =

∑M
l=1

∏N
k=1 gl,k(xk) with all gl,k(t) being

continuous and of compact support.
We know use the density of these latter functions in L2(RN , µ(dx)). Let g ∈
L2(RN , µ(dx)) and consider a sequence (gk)k∈N ⊂ L2(RN , µ(dx)), so that limk gk = g
in L2(RN , µ(dx)). Suppose that for any k ∈ N, the relation

∫
RN Gk(x)∂

1f(x)µL(dx) =
(−1)N

∫
RN gk(x)f(x)µL(dx) holds. We then have

G(x) = sgn(x)

∫
Ex

g(y)µL(dy) = sgn(x)⟨IEx , g⟩L2

= sgn(x)⟨IEx , lim
k

gk⟩L2 = lim
k

sgn(x)⟨IEx , gk⟩L2 = lim
k

Gk(x),

and since |G(x)−Gk(x)| = |⟨IEx , g − gk⟩L2| ≤ ∥IEx∥L2∥g − gk∥L2 = Vol(Ex)
1/2∥g −

gk∥L2 , which is polynomially bounded in x, we have that Gk(x)∂
1f(x) converges
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uniformly to G(x)∂1f(x). Hence,∫
RN

G(x)∂1f(x)µL(dx) = lim
k

∫
RN

Gk(x)∂
1f(x)µL(dx)

= (−1)N lim
k

∫
RN

gk(x)f(x)µL(dx) = (−1)N
∫
RN

g(x)f(x)µL(dx),

where the last limit is in L2(RN , µL).

8. Find an n ∈ N and continuous and polynomially bounded functions (gα(x))α∈NN
≤n

on R,
so that

φ(f) =
∑

α∈NN
≤n

∫
R
gα(x)∂

αf(x)µL(dx)

for

(a) φ = δ(x),

(b) φ = p.v.( 1
x
).

Can you find more than one such representations?

(a) A simple integration, that for φ = δ(x), one has

∀f ∈ S(R), φ(f) = −
∫
R+

f ′(x)dx.

Hence, integration by parts yields

φ(f) =

∫
R
(0 ∨ x)f ′′(x)dx.

Therefore, one may chose n = 2, g0(x) = g1(x) and g2(x) = (0 ∨ x). This last
function is certainly continuous and bounded by x2.
One may also chose g2(x) = (0 ∨ x) + cx+ d for any constant c, d.

(b) Two integration by parts show, that for φ = p.v.( 1
x
), one has

∀f ∈ S(R), φ(f) =

∫
R+

x(ln(x)− 1)(f ′′(x)− f ′′(−x))dx.

Hence,

φ(f) =

∫ ∞

0

x(ln(x)− 1)f ′′(x)dx+

∫ ∞

0

(−x)(ln(x)− 1)f ′′(−x)dx

=

∫ ∞

0

x(ln(x)− 1)f ′′(x)dx+

∫ ∞

0

(−x)(ln(x)− 1)f ′′(−x)dx

=

∫ ∞

−∞
x(ln(|x|)− 1)f ′′(x)dx.

Therefore, one may chose n = 2, g0(x) = g1(x) and g2(x) = x(ln(|x|)−1). This
last function is certainly continuous (since limx→0 x ln(|x|) = 0) and bounded
by x2.
One may also chose g2(x) = x(ln(|x|)− 1) + cx+ d for any constant c, d.



EPFL - Physics’ section Mathematical methods in quantum physics

9. Prove that the sequence (hk)k∈N∗ ⊂ S ′(R) converges in the weak∗ topology to φ ∈ S ′(RN)
for

(a) φ = δ(x) and hk(x) = 1[−1,1]
n
2
e−n|x|,

(b) φ = p.v.( 1
x
) and h(k) = x

x2+k−2 .

(a) For a given k ∈ N and a fixed f ∈ S(R), one has

⟨hk, f⟩L2 =

∫
R
1[−1,1]

k

2
e−k|x|f(x)µL(dx)

=

∫
R
1[−k,k]

1

2
e−|y|f(yk−1)µL(dy).

The integrand is bounded by 1
2
e−|y|∥f |∞, which is certainly in L1(R, µL). By

the dominated convergence theorem, we therefore may conclude, that

lim
k→∞

⟨hk, f⟩L2 =

∫
R

1

2
e−|y|f(0)µL(dy) = δ(x)(f).

(b) For a given k ∈ N and a fixed f ∈ S(R), one has

⟨hk, f⟩L2 =

∫
R

xf(x)

x2 + k−2
µL(dx)

=
1

2

∫
R
f(x)

(
1

x+ ik−1
+

1

x− ik−1

)
µL(dx)

= −1

2

∫
R
f ′(x)

(
ln(x+ ik−1) + ln(x− ik−1)

)
µL(dx)

=
1

2

∫
R
f ′′(x)

(
(x+ ik−1) ln(x+ ik−1)− x+ (x− ik−1) ln(x− ik−1)− x

)
µL(dx)

=

∫
R
f ′′(x)

(
x

2
ln(x2 + k−2)− x+

i

2k
ln(

x+ ik−1

x− ik−1
)

)
µL(dx).

Because f ′′(x) is rapidly decreasing, the integrand is bounded by |f ′′(x) (x2 + |x|+ |x+ 1|2),
which is in L1(R, µL). By the dominated convergence theorem, we therefore
may conclude, that

lim
k→∞

⟨hk, f⟩L2 =

∫
R
x(ln(|x|)− 1)f ′′(x)µL(dx) = p.v.(

1

x
)(f).

10. Prove that the weak∗ topology on S ′(RN) is a topology (see exercice 5).
Prove that S ′(RN) is complete when endowed with this topology.

Let F ⊂ τ(S ′(RN),S(RN)) and |F| ∈ N. Let φ ∈ ∩U∈FU . Then ∀U ∈ F , x ∈ U ,
and there are for every U ∈ F a finite number of Schwartz functions fU

1 , . . . , f
U
nU
,

so that
{η ∈ S ′(RN) : ∀k = 1, . . . , nU , |η(fU

k )− φ(fU
k )| < 1} ⊂ U.

But then, ∪U∈F{fU
1 , . . . , f

U
nU
} is also a finite set of Schwartz functions and

{η ∈ S ′(RN) : ∀U ∈ F , ∀k = 1, . . . , nU , |η(fU
k )− φ(fU

k )| < 1} ⊂ ∩U∈FU
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and ∩U∈FU ∈ τ(S ′(RN),S(RN)).
Let F ⊂ τ(S ′(RN),S(RN)) and suppose φ ∈ ∪U∈FU . Then there is an open set
U ∈ F , so that φ ∈ U and there is a finite number of Schwartz functions fU

1 , . . . , f
U
nU
,

so that
{η ∈ S ′(RN) : ∀k = 1, . . . , nU , |η(fU

k )− φ(fU
k )| < 1} ⊂ U.

But then obviously

{η ∈ S ′(RN) : ∀k = 1, . . . , nU , |η(fU
k )− φ(fU

k )| < 1} ⊂ ∪U∈FU

and ∪U∈FU ∈ τ(S ′(RN),S(RN)).
Let {φk}k∈N be a Cauchy sequence for τ(S ′(RN),S(RN)). Then this means, that
for any U ∈ τ(S ′(RN),S(RN)) with φ0 ∈ U , there is an nU ∈ N, so that k, l ≥ nU

implies φk − φl ∈ U .
In particular, this means, that for any fixed f ∈ S(RN) and any ϵ > 0, there is an
Nf,ϵ, so that for k, l ≥ Nf,ϵ, φk − φl ∈ {η ∈ S ′(RN) : |η(f

ϵ
)| < 1}.

Thus, for any fixed f ∈ S(RN) and any ϵ > 0, there is an Nf,ϵ, so that k, l ≥ Nf,ϵ

implies |φk(f) − φl(f)| < ϵ. Consequently, for any fixed f ∈ S(RN), (φk(f))k∈N is
a Cauchy sequence in C and the limit limk φk(f) exists in C.
By linearity of the limits and all tempered distributions φk, this implies, that the
map

S(RN) ∋ f 7→ lim
k

φk(f) =: φ(f)

is a linear functional on S(RN). It remains to be shown, that φ is continuous.
The family of tempered distributions {φk}k∈N is simply bounded for any f ∈ S(RN),
since (φk(f))k∈N is Cauchy in C. By the uniform boundedness principle, this family
is therefore equicontinuous, meaning there is an open set 0 ∈ U ⊂ S(RN), so that
∀f ∈ U , |φk(f)| < 1

2
for any k ∈ N. By simple convergence, ∀f ∈ U , |φ(f)| ≤ 1

2
< 1,

and φ ∈ S ′(RN).


