EPFL - Physics’ section Mathematical methods in quantum physics

Solutions to exercice sheet 1

’ Schwartz space ‘

1.| Prove the Riesz & Fréchet theorem, namely, that given a Hilbert space H, the anti-linear
map
J:H>zw (z, )= J(x)e H

is an isometric isomorphism.
(Hint: if V C H is a closed subspace, then H =V & V1))

Let x € H and we shall show, that J(x) € H'. Indeed, for any y € H, |J(z)(y)| =
{(z, )| < ||||g|lyl|z. This shows that J(x) € H'.

For x # 0, one may take y = H:vﬁ’ and one has J(z)(y) = ||z||. This shows, that
|J(z)||m» = ||z||z and J is hence isometric and injective.

Let £ € H' and let us find an x € H, so that £ = J(z). If £ = O, then one may
chose © = Oy. Let’s therefore assume that £ # Og/. The continuity of £ implies,
that ker(¢) = £71{0} = V is a closed subspace of H. One therefore has H = Vo V+
and since & # O, one obviously has V+ # {0y}

Moreover, if V4 3 z,y # Og, then & (£(y)z — &(x)y) = 0, so that £(y)x — E(x)y €
V NV+t ={0y}. Consequently, V! is a one-dimensional closed subspace of H.

Chose now 0y # y € V+ and set z := Wf(y) For v = Ay, one has therefore
J()(v) = (z, Ay) = X(y) = §(Ay) = &(v).

Thus, J(z)] =¢ ,J(:c)‘

v4

=¢ ‘ , and since H =V @ V+, one may conclude.
1% v

2.|Let H be a Hilbert space and consider a Banach space B. Prove that any continuous
and linear map § : D — B, defined on a dense set D C H has a unique and isometric
extension ¢ : H — B.

Let x € H. Since D C H is dense, there is a Cauchy sequence (di)reny C D whose
limit in H is x.

Consider then the sequence (£(dg))keny C B. The continuity of the map £ : H — B
is equivalent to  being bounded, so that (£(dy))ken is Cauchy in B. This latter
space being complete, there is a limit B 3 y = limy, &(dy,).

If (d})ken C D is another Cauchy sequence whose limit in H is x, then (d}, —
dr)ren C D is a sequence converging to Oy. The continuity of ¢ then implies, that
limy £(d), — di) = Op. Therefore, limy &(d),) = limy £(dgx) = y and thus y depends
only on z and not on the particular sequence (di)rey C D chosen. We set &(z) := .
It remains to show that this extension of the map ¢ is isometric. For a given ¢ > 0,
there is by construction some d € D, so that ||£(z) — &(d)||s < e. Consequently,
1€@) s < 1€(d)|5 + € < ||€]le(p,py + €. This being true for any e > 0, one must
have [{(z)]|p <

|€llzp,5)- This being true for any # € H, one concludes, that
1€lleo.8) < [1€lle(p.5)-
The inverse inequality follows from the fact that £| = ¢&.

D
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.|Let V' be a K—vector space and let || |12:V — Ry be two norms:
(a) Show that it vz € V, [zl < [lal]s, then {z € V : [lzll, < 1} € {z € V : [lz]s < 1}.

(b) Show that the topology 75 defined by || || is finer than the topology 7 defined by
| |l1,1.e. 1 C 7. Prove as a consequence, that any sequence (z,)n,eny C V' converges
for 7 if it does so for 7.

(c) Show that if W is a K—vector space with a topology 7y and if f : V — W is a
continuous map with respect to 7, then f is also continuous with respect to 7.

(d) Show that if in addition, there is a positive constant C' so that Vo € V, ||z||s < C||z]1,
then 7 = 7.

(a) For a given x € V, if ||z|2 < 1, then ||z||; < ||z]2 < 1. Consequently, {x € V :
|zl <1} C{z eV :||z[y <1}

(b) Let U € 7 be an open set for the topology induced by the norm || |;. By

definition, this means, that Vx € U, there is an € > 0, so that U contains the
ball {y € V : |jz —y|l1 < €}. By the previous point, this implies, that U
contains the open ball {y € V' : ||z — y||2 < €} as well, so that by definition,
U e T2.
A sequence (x,)nen C V' converges for 7, iff there is a € V| so that for any
open set x € U € 7y, there is an N € N, so that n > N implies z,, € U. By
the previous point, 7 C 79, so that if the statement holds for any x € U € 7,
it must hold for any z € U € 73. As a consequence, the sequence (z,)pen C V
converges for 7 if it does so for 7.

(c) If f:V — W is a continuous map with respect to 71, then by definition, this
means that for any U € 7y, f~'{U} € ;. But since 7; C 7, this then means,
that U € myy, f~1{U} € 7. Hence, f is continuous with respect to 7 as well.

(d) Suppose that in addition, there is a positive constant C' so that Yz € V| ||z|| <
Cllz||y. Let U € 1. For any x € U, there is hence an € > 0, so that {y € V :
|z —yll2 < €} C U. But then, the set {y € V' : |[x —y|1 < €/C} C U as well
and 7 = 7.

(a) For f,g € C*(RY) and o € NV with |a| < n, show that

0*(fg)(x) = C)08 f ()07 g(x).
=)

(b) Show that the cardinality of the set N¥, := {a € NV : |a| < n}is ("*V).
(Hint: define NY, := {o € NV : |a| = k} and observe, that NY = Up_(M_;.)

(a) For fixed N;n € N* and |a| = 1, this is juste the well-known Leibnitz rule.
Suppose then that the result is true for || = k < n. Set &/ = o+ ¢ with
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|0] = 1. One then has

F(fg) =@ () =0 | T (g)aﬂfﬁg

B,yeNN
B+y=a
o o
— E (/B) aﬂ+6favg + E (5) 35f87+5g
B,yENN, B,yENN,
Bty=a Bty=a
O{/ 6 / Oé/ — (5 ’ ’
-z (6’ )aﬂfmﬁ 2 ( g >aﬁfmg
B eNN, B’y eNN,
B'+y'=a!, '8 B'+y'=a’,y'26

Note that in the first sum, if 3’ ++' = o’ and 4/ > § is false, then 5’6 = o/6.
Similarly, if 8/ ++' = o/ and ' > 0 is false, then 7'd = o’/d. We thus split the
sums accordingly and obtain

, a — 9§ , o =9 ,
o (fg)= > (5, )8’3f8”g+ > (5, )aﬁfm

ﬁl ’YIGNN ﬁ/,’YIGNN,

B'+y'=a!, B'>d B+v'=a, v >4

Oé/ (S ’ O/ 5 /
- ¥ (ﬁ, ’fg+ Y g )OI
617 IENN, B/1 /GNN,

5/+7/:’Ll7 ﬁ/ézalé ﬁ/+7,:’\fa/y ’Y(S:Ol/(s

o =6 o — 6 ,

B’ ’%\IN BI -0 B/

B'+y'=a!, B' ' >
In the first sum, note that if 8/ ++' = o’ and 5’6 = &/9, then (g::g) = (g:) A
similar argument for the second sum shows, that (a 5) = ( ,015__‘5/8,) = (:::g) =
() =)
In the last sum, observe that (g 6) + (a[;a) = (g,) Adding therefore these
three sums gives the desired result.

(b) NY, may be viewed as the number of sampling with replacement of k indistin-
guishable elements among N distinguishable ones. Hence, the cardinality of
NV, is (N+lf 1)

This may be shown as follows: For a given N > 1, k = 0 and k£ = 1, one
obviously has NY; =1 and NY, = N. Obviously, one also has NL, = 1.

One then proceeds by induction on N and k: the possible choices for N¥, 41 are
then to chose the first element as the N + 1" and the other k elements among
all N 4 1 choices, or to chose all k£ 4 1 elements among the first N elements.

Therefore:

N+1+k—-1 N+k+1-1 N+Ek+1
o= () () O

k kE+1 E+1

Again by induction on k, one then has

N+1+k\ (N+k+1 N+k+2
N N N
Ny = NI, NJI:( k+1 )+( k >:( k+1 )
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5.|Let X be a K—vector space endowed with a family {|| ||;},er of norms. For e > 0, z € X
and {ji1,...,jn} C I, one defines

Useiign ={ye X :Ve=1,....n, ||y — x|;, <e€}
Show that the collection of all subsets U C X, so that
VeeU,3e>0, H{jr,....0nf CIst Upejyy CU

is a topology 7x on X, i.e.:

e VF C 7x, |F| € N implies NyerU € 7,

° V.FCTX, UUE}'UGT)(.

o Let F C 7x, |F| € N. Without loss of generality, we may suppose F =
{U,...,U,}. Let © = NyerU. By definition, there are positive numbers
€1,...,€, > 0 and finite sets of indices I, ..., I,, so that for each k =1, ...,

Us,e.jer, C Us.
Set now € := min{ey, ..., €, and [ = U}_,[. It is then clear, that
Uw,e,jel C ﬂUG}—Uv

which shows that NyerU € 7x.
e Let F C 7x and = € UyerU. There is hence some U € F so that x € U. By
definition, there is then an ¢ > 0 and finite indices ji, ..., j,, so that
UZZ‘,E,jl,...,jn C U‘
But it is the clear, that
U.’,U,E,jl,...,jn C UUG]:U
as well, showing that UycrU € 7x.
We end by the remark, that by convention, if 7x D F = (), then NyerU = X

and UperU = 0, so that as a consequence, ), X € 7x as a consequence of the two
previously checked rules.

6. Let (fi)ken C S(RY) be a sequence which is Cauchy for all the norms || |[,. Show, that
this sequence converges to some f € S(RY) for 7s.

(Hint: you might wanna use the Stone-Weierstrass theorem and the uniform continuity
of the Riemann integral.)

Since (fi)ren € S(RY) is Cauchy for all the norms ||| ||, then for any o € NV and
any n € N, we have that (0% fy)reny C S(RY) and ((1+ z - 2)"0° fr(z))ken C S(RY)
are Cauchy for the norm || ||oo.

By the Stone Weierstrass theorem, all sequences (9° fy)ren C S(RY) converge uni-
formly on RY to some continuous functions f,, which are all of rapid decrease.
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(Strictly speaking, one has to apply the Stone Weierstrass theorem to the one-point
compactification (R)*. This space is defined as the set RY U {x}, endowed with
the topology consisting of all open sets in RY and the sets (RY \ K) U {x}, where
K C RY are compact sets. A sequence (fi)ren of continuous functions on RY
which converge to 0 as z - © — oo can then be extended to a sequence (Fj)ren of

continuous functions on (RY)*, defined by Fi(x) = 0 and F’ L= fro IE (fr)ken
R
is Cauchy for || || on RY, then (Fy)rey is Cauchy for || || on (RM)T, so that

The Stone-Weierstrass theorem can be applied to this sequence, which converges

uniformly to a continuous fonction F on (RY)*. Obviously, F(x) = 0 and (fi)ren
converges uniformly on RY to the continuous fonction f = F' N.)
R

It remains to be shown, that f, = 9*f. In order to do so we proceed by induction
on a € NV, For a = 0 this is just stating f = f3=09°f = f.
Suppose then that f, = 9%f and let § € Ngl. We then have for a given o € RY

0
ful) = lim 9 fy(x) = im / 0% f(a(T — 6) + y8)d(5 - ).

Since (9°*° f),)ren converges uniformly on RY to f..s, one may exchange the limit
and the Riemann integration to get

) B
fulz) = / Fra((T — 8) + yo)d(6 - ).

faxs is a continuous function, so that by the fundamental theorem of calculus, this
last equality yields

O fal@) = fars(2).

Let g € L2 (RN, pug). For x € RY set E, .= {y e RY : y = dxs.t. § € [0,1]V}. Show
that the function

RY 5 2 o G(z) = sgn(z) / o) z(dy)

T

is well-defined, continuous and polynomially bounded. If f € S(RY), show that

[, 6@0 f@natin) = (<" [ g(arsie)usldo)

RN

(Hint: for the second part, show it first when g(z) = H]k;V:1 gr(7) and all g, (t) are contin-
uous and compactly supported on R. Use then a density argument.)

The set E, is obviously compact and consequently, 1p, € L*(RY up). Since
sz g(y)pr(dy) = fRN g, (v)g(y)pr(dy) = (1g,, g) 12, it is well-defined and if x — 2/,
then manifestly 1p, (y) — 1g,,(y) for all y € R and by the dominated convergence
theorem, lim,_,,» G(z) = G(x).

Using the Cauchy-Schwarz inequality, one gets that |G(x)| < ||g||r2 Vol(E,), which
is obviously bounded by (z - z)/2.

Consider first the case where g = [[r_, gx(21), where all functions gx(t) are contin-
uous and compactly supported. Clearly, g(z) € L*(RY, uz(dx)) and all functions
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g (t) have continuous primitive functions G(t), which are constant outside a com-
pact support. For a given € RY and by integrating all N dimensions in successive
order, one gets G(z) = HkN:1 (Gr(z) — Gr(0)).

Now, G(x)d' f(z) is continuous and square summable, so that one may replace the
Lebesgue integral by Riemann integration to get

/R G(@)0" f(@)ue(da)
— Ade...AdeAdxllﬁ(Gk(xk) — G(0)) ail (axf.].v._;mf(wl,wz.--,xzv))
/Rde /Eede,f[Q Gr(xr) — G(0))
/Rdxl(Gl(:cl) (91:1 (foN : flz1, 0. SUN))
/Rde /Rd:cgkl_IQ (Gr(zr) — Gr(0))
x[/Rd:cl(—l)gl(a:l) <%f(xl,x2...,xzv)>
(Gl — G(O))J%;mf(xl, ... ,xN)EJ

2...

_/Rde”,/Rdwkli(Gk(a:k)—Gk(O))/Rda:lgl(:cl) <%]p(l‘l,x2...,x]\/)>.

By iteration, one finally gets

[, @0 f@natin) = (<" [ g(arsie)usldo)

Linearity of the integral implies that this last relation remains valid for g(z) being

a linear combination of the type g(z) = S0, [Io, gix(xx) with all g, (t) being

continuous and of compact support.

We know use the density of these latter functions in L2(R™,u(dz)). Let g €

L*(RY, p(dz)) and consider a sequence (gx)ren C L*(RY, p(dzx)), so that limy, gy = ¢

in L>(RY, pu(dz)). Suppose that for any k € N, the relation [,y Gi(2)0" f(2)pr(dx) =
—1)N [on 91(@) f(2)pr(dx) holds. We then have

G(z) = sgn(z) / o)z (dy) = sgn(z)(Is,, g) 12

T

= sg(z)(Ip,, lim gg) 2 = limsgn(z)(1e, , gr) 12 = lim Gy (2),

and since |G(2) — Gi(2)| = [(Ir,. 9 — gr) 22| < e, ll12]lg — grllz. = VOl(E:)"?|lg —
gk||L,, which is polynomially bounded in z, we have that Gy(x)0'f(z) converges
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uniformly to G(z)d' f(x). Hence,

[, 6@ f@natin) = tim [ Gu(@" (@ ()

RN

= (=1)"lim gk(ﬂi)f(x)uL(dw)Z(—l)N/ 9(x) f () pr(d),

RN RN

where the last limit is in L*(RY, uz).

8.|Find an n € N and continuous and polynomially bounded functions (ga(z))seny on R,

so that
o) = 3 [ aal0) ()
chNgn R
for
(a) ¢ =0d(z),

(b) ¢ =pv.(3).

Can you find more than one such representations?

(a) A simple integration, that for ¢ = d(x), one has

VfeSR), of)=- . f'(x)dz.

Hence, integration by parts yields

e(f) = /R(O\/x)f”(a:)da:.

Therefore, one may chose n = 2, go(z) = ¢1(x) and go(z) = (0 V x). This last
function is certainly continuous and bounded by 2.
One may also chose g2(z) = (0 V z) + cx + d for any constant c, d.

(b) Two integration by parts show, that for ¢ = p.v.(1), one has

xT

VfeSR), of)= /]R+ z(In(z) = )(f"(x) = f"(==))dx.

o(f) = / " a(in(z) - 1)f"(@)dz + / (o) (n(e) — 1) f(—x)da
= /000 z(ln(z) — 1) f"(z)dx + /Ooo(—as)(ln(x) — 1) f"(—x)dx
-/ " a(in(lz]) — 1) («)da.

Therefore, one may chose n = 2, go(x) = ¢g1(z) and go(z) = x(In(|z|) —1). This
last function is certainly continuous (since lim,_,ox In(|z|) = 0) and bounded
by 2.

One may also chose go(z) = z(In(|z|) — 1) + cz + d for any constant ¢, d.
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9.|Prove that the sequence (h)ren+ C S’(R) converges in the weak* topology to ¢ € S'(RY)
for

(a) ¢ =6d(x) and hy(x) = 1_1 1 2e ",
(b) ¢ =pv.(2) and h(k) = 2.

(a) For a given k € N and a fixed f € S(R), one has
(e e = [ Wege ™ fapaldo)

/1[ kk; Wk e (dy).
R

The integrand is bounded by %e"y‘|]f|oo, which is certainly in L'(R, ur). By
the dominated convergence theorem, we therefore may conclude, that

lim (7, f) 12 = / e (O)(dy) = () ().

k—o00

(b) For a given k € N and a fixed f € S(R), one has
D) = [ 32

2+ k2

=3 [ 10 (o5 + o) me)

— __/f (In(z +ik™") + In(z — ik™")) pr(dz)

= %/ (@) ((z+ ik ) In(z + ik™") — 2 + (z — ik™") In(z — k™) — ) pr(do)

x+ ikt

/f” ( In(z® + k~ )—x+iln(w)>m<dm)-

Because f”(x) is rapidly decreasing, the integrand is bounded by | f”(z) (2 + |z| + |z + 1]?),
which is in LY(R, ). By the dominated convergence theorem, we therefore
may conclude, that

Jim (R, f) 2 = /Rf’f(ln(lﬂfl) — D @) (de) = pv(2) ().

X

10.| Prove that the weak* topology on S'(R”) is a topology (see exercice 5).
Prove that §’(RY) is complete when endowed with this topology.

Let F C 7(S'(RY),S(RY)) and |F| € N. Let ¢ € NyerU. Then VU € F, x € U,
and there are for every U € F a finite number of Schwartz functions f{,..., fI |
so that

{neS®RY) : Vk=1,....ng, In(f{) —(f)| <1} CU.

But then, Uyer{f{,..., f } is also a finite set of Schwartz functions and

neSRY): VYU FVEk=1,...,ny, n(f) —o(f7)] <1} C NperU
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and NyerU € 7(S'(RY), S(RY)).

Let F C 7(S'(RY),S(RY)) and suppose ¢ € UperU. Then there is an open set
U € F,sothat ¢ € U and there is a finite number of Schwartz functions fY, ..., nUU,
so that

{neS'®RY) :Vk=1,....n0, n(fi) = o(fi)] <1} CU.
But then obviously

{neSRY) :VE=1,....ny, In(f) — o(fi)] <1} C UyerU

and UperU € T(S/(RN),S<RN>)

Let {¢x}ren be a Cauchy sequence for 7(S'(RY),S(RY)). Then this means, that
for any U € 7(S'(RY), S(RY)) with ¢y € U, there is an ny € N, so that k,1 > ny
implies ¢ — ¢y € U.

In particular, this means, that for any fixed f € S(RY) and any € > 0, there is an
Ny, so that for k,0 > Ny, o — ¢ € {n € S'(RY) : ]n({)| < 1}.

Thus, for any fixed f € S(RY) and any € > 0, there is an Ny, so that k,[ > N;.
implies |¢x(f) — wi(f)] < e. Consequently, for any fixed f € S(RY), (or(f))ren is
a Cauchy sequence in C and the limit limy, ¢k (f) exists in C.

By linearity of the limits and all tempered distributions ¢y, this implies, that the
map

SRY) > f limepg(f) = ¢(f)

is a linear functional on S(RY). It remains to be shown, that ¢ is continuous.

The family of tempered distributions {¢y }ren is simply bounded for any f € S(RY),
since (¢ (f))ken is Cauchy in C. By the uniform boundedness principle, this family
is therefore equicontinuous, meaning there is an open set 0 € U C S(RY), so that
Vf e U, |pi(f)| < 3 for any k € N. By simple convergence, Vf € U, |o(f)| < 5 <1,
and ¢ € S'(RV).



