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Solutions to exercice sheet 4

Brownian motions & probability

1. For t ̸= 0, the heat kernel is given by

u(t, x) =
1

(2πDt)3/2
exp(− 1

2Dt
(x · x)).

Verify that ∂tu(t, x) =
D
2
∆u(t, x) with limt→0+ φu(t,x) = δ

(3)
0 . Conclude, that if f : R3 → C

is continuous and polynomially bounded, (u ∗ f)(t) is also a solution to the heat equation
with (u∗f)(0, x) = f(x). Compute the solution with u(0, x) = 0∨x in the case (t, x) ∈ R2.
Substitute t by it and D by (mℏ)−1 in the heat kernel. Verify that now we have a solution
v(t, x) for the Schrödinger equation. Prove that if f ∈ S(R3), (v ∗ f)(t) is a solution with
initial value f(x). What happens when f(x) is of compact support?

By direct computation, one gets

∂tu(t, x) = ∂t
1

(2πDt)3/2
exp(− 1

2Dt
(x · x))

= − 3πD

(2πDt)5/2
exp(− 1

2Dt
(x · x)) + x · x

2Dt2
u(t, x) = (

x · x
2Dt2

− 3

2t
)u(t, x),

∆u(t, x) = ∇ · (∇u(t, x)) =
1

(2πDt)3/2
∇ ·
(
− x

Dt
exp(− 1

2Dt
(x · x))

)
=

1

(2πDt)3/2

(
− 3

Dt
exp(− 1

2Dt
(x · x)) + x · x

(Dt)2
exp(− 1

2Dt
(x · x))

)
=

2

D
(
x · x
2Dt2

− 3

2t
)u(t, x),

which yields the heat equation. For a test function f ∈ S(R3), one has

lim
t→0+

φu(t,x)(f(x)) = lim
t→0+

∫
R3

u(t, x)f(x)µL(dx)

= lim
t→0+

1

(2πDt)3/2

∫
R3

exp(− 1

2Dt
(x · x))f(x)µL(dx)

= lim
t→0+

1

(2πDt)3/2

∫
R3

exp(−1

2
(y · y))f(

√
Dty)(Dt)3/2µL(dy).

The integrand being dominated by (2π)−3/2 exp(−1
2
(y · y))|||f |||0, which is Lebesgue-

summable, one may use the dominated convergence theorem and get

lim
t→0+

φu(t,x)(f(x)) =
1

(2π)3/2

∫
R3

lim
t→0+

(
exp(−1

2
(y · y))f(

√
Dty)

)
µL(dy)

=
1

(2π)3/2

∫
R3

exp(−1

2
(y · y))f(0)µL(dy) = f(0) = δ

(3)
0 (f).
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therefore, limt→0+ φu(t,x) = δ
(3)
0 in the weak∗-topology.

If f : R → C is continuous and polynomially bounded, then

∂t(u ∗ f)(t, x) = ∂t

∫
R3

u(t, x− y)f(y)µL(dy)

= ∂t

∫
R3

u(t, v)f(x− v)µL(dv) =

∫
R3

(∂tu(t, v)) f(x− v)µL(dv),

where we used the Leibnitz integral rule, which is here legitimised by the fact that for
each fixed x ∈ R3, the partiel derivative (∂tu(t, v)) f(x− v) is Lebesgue-summable,
thanks to the exponential decay in y of ∂tu(t, y). Applying the heat equation to the
heat kernel inside the integral one gets

∂t(u ∗ f)(t, x) = D

2

∫
R3

(∆vu(t, v)) f(x− v)µL(dv)

=
D

2

∫
R3

(∆u)(t, x− y)f(y)µL(dy)

=
D

2
∆x

∫
R3

u(t, x− y)f(y)µL(dy),

where the interchange of the partiel derivatives with respect to x is again justified
by the Leibnitz integral rule. Furthermore,

lim
t→0+

(u ∗ f)(t, x) = lim
t→0+

1

(2πDt)3/2

∫
R3

exp(− 1

2Dt
(u · u))f(x− u)µL(du)

=
v= u√

t

lim
t→0+

|t|3/2

(2πDt)3/2

∫
R3

exp(− 1

2D
(v · v))f(x−

√
tv)µL(dv).

For a fixed value of x and t ∈]0, 1[, the integrand is bounded by exp(− 1
2D

(v ·v))M(v),
with M(v) = max{|f(s)| : |s− x| ≤ |v|}, which is certainly polynomially bounded
since f is. Therefore, we may interchange limit and integration by dominated con-
vergence and obtain

lim
t→0+

(u ∗ f)(t, x) = |t|3/2

(2πDt)3/2

∫
R3

lim
t→0+

exp(− 1

2D
(v · v))f(x−

√
tv)µL(dv)

=
1

(2πD)3/2

∫
R3

exp(− 1

2D
(v · v))f(x)µL(dv) = f(x).

In the special case where f(x) = 0 ∨ x, we obtain

(u ∗ f)(t, x) = 1√
2πD

∫
R
exp(− 1

2D
v2)(0 ∨ (x−

√
tv))µL(dv)

=
1√
2π

∫ ∞

x√
Dt

exp(−1

2
v2)(x−

√
Dtv)µL(dv)

= xN (
x√
Dt

)−
√
Dt√
2π

exp(− x2

2Dt
),
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where N (x) := 1√
2π

∫ x

−∞ e−
t2

(
2)dt.

Substituting now t for it amd D for 1
ℏm in the heat kernel yields

v(t, x) =
(mℏ)3/2

(2πit)3/2
exp(

iℏm
2t

(x · x)),

where one takes i3/2 = exp(i3π
4
). By direct computation one gets

iℏ∂tv(t, x) = iℏ∂t
(mℏ)3/2

(2πit)3/2
exp(

iℏm
2t

(x · x))

=
3π(mℏ)3/2ℏ
(2πit)5/2

exp(
iℏm
2t

(x · x)) + ℏ2m
x · x
2t2

u(t, x) = ℏ2m(
x · x
2t2

− 3i

2mℏt
)u(t, x),

∆v(t, x) = ∇ · (∇v(t, x)) =
(mℏ)3/2

(2πit)3/2
∇ ·
(
iℏmx

t
exp(

iℏm
2t

(x · x))
)

=
(mℏ)3/2

(2πit)3/2

(
3iℏm
t

exp(
iℏm
2t

(x · x))− x · xℏ2m2

t2
exp(

iℏm
2t

(x · x))
)

= −2ℏ2m2(
x · x
2t2

− 3i

2mℏt
)v(t, x),

from which the Schrödinger equation follows.

If f ∈ S(R), then

iℏ∂t(v ∗ f)(t, x) = iℏ∂t
∫

R3

v(t, x− y)f(y)µL(dy)

= iℏ∂t
∫

R3

v(t, w)f(x− w)µL(dw) = iℏ
∫

R3

(∂tu(t, w)) f(x− w)µL(dv),

where we used the Leibnitz integral rule, which this time is legitimised by the fact
that for each fixed x ∈ R3, the partiel derivative (∂tv(t, w)) f(x − w) is Lebesgue-
summable, thanks to the rapid decay in w of f(x − w). Applying the Schrödinger
equation to v(t, w) inside the integral one gets

iℏ∂t(v ∗ f)(t, x) = − 1

2m

∫
R3

(∆wv(t, w)) f(x− w)µL(dw)

= − 1

2m

∫
R3

(∆v)(t, x− y)f(y)µL(dy)

= − 1

2m
∆x

∫
R3

v(t, x− y)f(y)µL(dy),

where the interchange of the partiel derivatives with respect to x is again justified
by the Leibnitz integral rule.

For a fixed x ∈ RN and t > 0, one has

(v ∗ f)(t, x) =
∫

R3

v(t, w)f(x− w)µL(dw) = φv(t,w)(g),
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where g(w) := f(x−w) is a Schwartz function. By definition, φv(t,w)(g) = F(φv(t,w))(ǧ).
The Fourier transform is weak∗-continuous and for this topology, dominated con-
vergence implies that limϵ→0+ φ

v(t,w)e−
ϵℏm
2t w·w = φv(t,w). Note that for any ϵ > 0,

v(t, w)e−
ϵℏm
2t

w·w ∈ S(R3) and a direct computation yields

F(φ
v(t,w)e−

ϵℏm
2t w·w)(p) = φ

F(v(t,w)e−
ϵℏm
2t w·w)

,

F(v(t, w)e−
ϵℏm
2t

w·w) =
1

√
2π

3

(mℏ)3/2

(2πit)3/2

∫
R3

exp(−w · wℏm
2t

(ϵ− i)) exp(−iw · p)µL(dw)

=
(mℏ)3/2

(2π)3(it)3/2

∫
R3

exp(−ℏm(ϵ− i)

2t
(w · w + w · p i2t

ℏm(ϵ− i)
))µL(dw)

=
(mℏ)3/2

(2π)3(it)3/2

∫
R3

e−
ℏm(ϵ−i)

2t
(w+p it

ℏm(ϵ−i)
)·(w+p it

ℏm(ϵ−i)
)e−

tp·p
2ℏm(ϵ−i)µL(dw).

This complex gaussian integral is now performed using a triple contour integral. For

each of the three variables x1, x2, x3, chose a path γ along the line z = s
(

ℏm(ϵ−i)
t

)1/2
+

ip
(

t
ℏm(ϵ−i)

)1/2
, s ∈ R. Note that along this path, dz =

(
ℏm(ϵ−i)

t

)1/2
ds and hence,

F(v(t, w)e−
ϵℏm
2t

w·w) =
1

(iϵ+ 1)3/2(2π)3
e−

tp·p
2ℏm(ϵ−i)

∫
γ3

e−
z2

2 dz.

Each of the contours γ may now be closed along the real line. The boundary terms
of this closed path tend to 0 thanks to the exponential decline of the exponent and
we finally get

F(v(t, w)e−
ϵℏm
2t

w·w) =
1

(iϵ+ 1)3/2(2π)3/2
e−

tp·p
2ℏm(ϵ−i) .

Taking now the weak∗-limit for ϵ → 0+ first, followed by the weak∗-limit for t → 0+,
we get

lim
t→0+

F(φv(t,w)) = φ 1

(2π)3/2
⇒ lim

t→0+
φv(t,w) = δ(0)(w).

Therefore,
lim
t→0+

(v ∗ f)(t, x) = f(x).

If f(x) has compact support, then so does f(x− w) for a fixed x ∈ R3 and

(v ∗ f)(t, x) =
∫

R3

v(t, x− w)f(w)µL(dw)

=
(mℏ)3/2

(2πit)3/2

∫
B(0,r)

exp(
iℏm
2t

(x− w) · (x− w))f(w)µL(dw)

for some fixed r > 0. Substituting x + iy for x the integrand is still bounded on
compact sets for w with bounded and summable derivative w.r.t. x or y. One may
therefore use the Leibnitz integral rule to conclude, that (v ∗ f)(t, x + iy) is holo-
morphic for any x+ iy ∈ C3 and hence entire for any t > 0. Such functions cannot
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have compact supports.

2. Let X : Ω → R be a random variable on a probability space (Ω,Σ, µ) together with its
cumulative probability distribution FX(x) := µ(X−1]−∞, x]).
Prove that FX(x) is càdlàg, i.e.

• ∀x, y ∈ R, x ≤ y implies 0 ≤ FX(x) ≤ FX(y) ≤ 1,

• ∀x ∈ R, limy→x+ FX(y) = FX(x),

• ∀x ∈ R, limy→x− FX(y) ≤ FX(x).

We begin first by the observation, that if {En}n∈N ⊂ Σ is a set of nested measurable
sets of the measure space (Ω,Σ, µ), then limn µ(En) = µ(∪n∈NEn). Indeed, define
iteratively F0 := E0 and Fn := En \ En−1. Observe, that all F ′

ns are disjoint
measurable sets and that En = ∪n

k=0Fk. Hence, by σ-additivity of µ

µ(∪n∈NEn) = µ(∪n∈NFn) =
∑
n≥0

Fn = lim
n

µ(En).

• Let x, y ∈ R with x ≤ y. One has X−1]−∞, x] ⊂ X−1]−∞, y] and thus

FX(x) = µ(X−1]−∞, x]) ≤ µ(X−1]−∞, y]) = FX(y).

Moreover, ∀x ∈ R, since µ is a probability measure, 0 ≤ µ(X−1] − ∞, x]) =
FX(x) ≤ 1.

• For any decreasing sequence (yn)n∈N with {yn}n∈N ⊂]x,∞[ and limn yn = x,
one has w ≤ x ⇐⇒ ∀n ≥ 0, w ≤ yn. Therefore, ∩n≥0] −∞, yn] =] −∞, x],
which is equivalent to ∪n≥0]yn,∞[=]x,∞[. By σ-additivity of µ one finds

lim
n

FX(yn) = lim
n

µ(X−1]−∞, yn]) = lim
n

(
µ(Ω \X−1]yn,∞[)

)
= µ(Ω)− lim

n

(
µ(X−1]yn,∞[)

)
= µ(Ω)−

(
µ(∪n≥0X

−1]yn,∞[)
)

= µ(Ω)− µ(X−1]x,∞[) = µ(X−1]−∞, x]) = FX(x).

• For any increasing sequence (yn)n∈N with {yn}n∈N ⊂]−∞, x[ and limn yn = x,
one has w ≥ x ⇐⇒ ∀n ≥ 0, w > yn. Therefore, ∩n≥0]yn,∞[= [x,∞[, which
is equivalent to ∪n≥0]−∞, yn] =]−∞, x[. By σ-additivity of µ one finds

lim
n

FX(yn) = lim
n

µ(X−1]−∞, yn]) = µ(∪n≥0X
−1]−∞, yn])

= µ(X−1]−∞, x[) ≤ µ(X−1]−∞, x]) = FX(x).
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3. Prove that any real number x ∈]0, 1] may be uniquely expressed as x =
∑

n≥1
xn

3n
where

xn ∈ {0, 1, 2} and |{n ≥ 1 : xn ̸= 0}| = |N∗|.
The Cantor set C is then defined as the set of x ∈]0, 1] so that xn ∈ {0, 2}. Prove that
µL(C) = 0 and that there is a bijection from C to ]0, 1].
For x ∈]0, 1] \ C, denote by Nx as the smallest n ≥ 1, so that xn = 1. The Cantor
function is defined as

c(x) :=

{
1
2

∑
n≥1

xn

2n
if x ∈ C,

1
2Nx + 1

2

∑Nx−1
n=1

xn

2n
otherwise

.

Prove that c(x) is a continuous and increasing function on ]0, 1]. Prove c(x) is locally
constant µL-a.e. and conclude from these properties, that there is no Lebesgue summable
function d(x), so that c(x) =

∫
[0,x]

d(s)µL(ds).

Let x ∈]0, 1]. There are then three mutually exclusive possibilities: x ∈]0, 1
3
] in

which case we set x1 := 0, x ∈]1
3
, 2
3
] in which case we set x1 := 1 or x ∈]2

3
, 1] in

which case we set x1 := 2. In all cases we will have 0 < x− x1

3
≤ 1

3
.

Suppose we are given a finite set {xk}k=1,...,n ⊂ {0, 1, 2}n, so that 0 < x−
∑n

k=1
xk

3k
≤

1
3n
. We have again three mutually exclusive possibilities:

x ∈]
∑n

k=1
xk

3k
,
∑n

k=1
xk

3k
+ 1

3n+1 ] in which case we set xn+1 := 0,
x ∈]

∑n
k=1

xk

3k
+ 1

3n+1 ,
∑n

k=1
xk

3k
+ 2

3n+1 ] in which case we set xn+1 := 1 or
x ∈]

∑n
k=1

xk

3k
+ 2

3n+1 ,
∑n

k=1
xk

3k
+ 1

3n
] in which case we set xn+1 := 2.

In all cases we will have 0 < x−
∑n

k=1
xk

3k
+ xn+1

3n+1 ≤ 1
3n+1 .

We may inductively define in this way a sequence (xn)n∈N∗ ∈ {0, 1, 2}N∗
, so that

∀n ≥ 1, 0 < x −
∑n

k=1
xk

3k
≤ 1

3n
. Obviously one has x = limn

∑n
k=1

xk

3k
=
∑

k≥1
xk

3k
.

More precisely,
∀n ∈ N∗, xn = ⌊3nx⌋, d(x) := (xn)n∈N∗ .

Suppose now that this map d :]0, 1] → {0, 1, 2}N∗
has an image (xn)n≥1 with xn = 0

for n > N . Set a =
∑N

k=1
xk

3k
. By definition of the map d, this means, that the

pre-image x to this sequence (xn)n≥1 is a number in ]a, a+ 1
3n
] for each n > N . But

then x ∈ ∩n>N ]a, a+
1
3n
] = ∅. Such an x does not exist and every sequence (xn)n≥1

thus obtained verifies |{n ∈ N∗ : xn ̸= 0}| = |N|.

Consider now two such sequences (xn)n≥1 ̸= (yn)n≥1. There is hence some index
n ≥ 1, so that ym = xm if m < n and yn ̸= xn. Without loss of generality, one may
suppose xn < yn. By posing a =

∑n
k=1

yk
3k
, one notices that by construction of the

sequences, x ≤ a < y. Hence, x ̸= y and the map d :]0, 1] → {0, 1, 2}N∗
in question

is injective and manifestly surjective when the co-domain is restricted to sequences
{(xn)n≥1 ∈ {0, 1, 2}N∗

: |{n ≥ 1 : xn ̸= 0}| = |N∗|}.

The cantor set is then

C := d−1{(xn)n≥1 ∈ {0, 2}N∗
: |{n ≥ 1 : xn ̸= 0}| = |N∗|}.
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x /∈ C is equivalent to ∃n ≥ 1 so that xn = 1 for (xn)n≥1 = d(x). We may identify
those sequences iteratively:

• x1 = 1. Then x ∈ E1 :=]1
3
, 2
3
].

• x1 ̸= 1 and x2 = 1. Then x ∈ E2 :=]1
9
, 2
9
]∪]7

9
, 8
9
].

• x1, x2 ̸= 1 and x3 = 1, Then x ∈ E3 :=] 1
27
, 2
27
]∪] 7

27
, 8
27
]∪]19

27
, 20
27
]∪]25

27
, 26
27
].

• x1, . . . , xn−1 ̸= 1 and xn = 1. Then

x ∈ En := ∪(xk)∈{0,2}n−1 ]
1

3n
+

n−1∑
k=1

xk

3k
,
2

3n
+

n−1∑
k=1

xk

3k
].

By definition, En ∩ Em = ∅ if n ̸= m and each En is the disjoint union of 2n−1

intervals of length 1
3n
. Therefore, µL(En) = 2n−1 1

3n
and

µL(]0, 1] \ C) =
∑
n≥1

µL(En) =
1

3

∑
n≥0

2n

3n
=

1

3

1

1− 2
3

= 1.

Consequently, µL(C) = 0.
On the other hand, the map C ∋ x 7→ y ∈]0, 1] defined by

x =
∑
n≥1

xn

3n
7→ y = b(x) :=

∑
n≥1

xn/2

2n

defines a bijection form C to ]0, 1], since any y in the image of this map is the binary
expression of some number in ]0, 1].

The function

c(x) :=

{
1
2

∑
n≥1

xn

2n
if x ∈ C,

1
2Nx + 1

2

∑Nx−1
n=1

xn

2n
otherwise

may be rewritten in the following way: if x ∈]0, 1], set x̄ := sup]0, x] ∩ C.
If x ∈ C, then obviously x = x̄.
If x /∈ C, then x̄ =

∑Nx−1
k=1

xk

3n
+
∑

n≥Nx+1
2
3n
.

In all cases c(x) = c(x̄) and has the following properties:

• c is a surjection from ]0, 1] to ]0, 1]. Indeed, by the previous surjection b(x),

c
∣∣∣
C
=]0, 1].

• c is increasing. Indeed, if x, y ∈]0, 1] and x ≤ y, then x̄ ≤ ȳ, so that ∀n ∈ N
x̄n ≤ ȳn. Thus,

c(x) = c(x̄) =
∑
n≥1

x̄n

2n
≤
∑
n≥1

ȳn
2n

= c(ȳ) = c(y).

Now, an increasing and surjective function f :]0, 1] →]0, 1] is also continuous. In-
deed, for x ∈]0, 1[, define

f(x−) := sup{f(y) : y < x} and f(x+) := inf{f(y) : y > x}.
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By monotonicity of f one obviously has f(x−) ≤ f(x) ≤ f(x+) and f(x−) < f(x+)
would imply that the non-empty set f−1(]f(x−), f(x+)[\{f(x)}) = ∅, contradicting
the surjectivity of f . Thus, f(x−) = f(x) = f(x+), proving the continuity of f and
hence of c(x).

Now, c(x) is also locally constant µL-a.e.: for any n ∈ N c(x), by definition will take
only a discrete set of values on E̊n. By continuity, this implies that c(x) can only be
locally constant on any En. Since the union of theE ′

ns yield back the whole interval
]0, 1] but for the Cantor set, we find that c(x) is locally constant µL-a.e..

If f ∈ L1(]0, 1], µL) were a function so that ∀x ∈]0, 1], c(x) =
∫ x

0
f(t)µL(dt), then

since c(x) is increasing, we should have f(x) ≥ 0 µL-a.e.. Since c(x) is locally con-
stant µL-a.e., f(x)should be 0 µL-a.e.. Therefore, we would have c(x) = 0 µ-a.e.,
which is obviously a contradiction.

4. Let Ω := {±1}N∗
and consider the map

f : Ω → [0, 1], w 7→
∑
n≥1

1 + w(n)

2n+1
.

Show that this map is surjective and that Σ := {f−1(E) : E ∈ ΣL}, where ΣL is the
Lebesgue σ-algebra is also a σ-algebra. Show that µ(E) := µL(f(E)) defines a probability
measure on Σ.
For a finite sequence t ∈ {±1}n, define At = {w ∈ {±1}N∗

: ∀k = 1, . . . , n, w(k) = t(k)}.
Prove that At ∈ Σ with µ(At) =

1
2n
.

For the random walk {Sn}n∈N∗ , verify the equalities E(Sn) = 0, V(Sn) = n and µ(S−1
n {n−

2k}) = 2−n
(
n
k

)
for k = 0, . . . , n.

f is surjective, because all x ∈ [0, 1] can be expanded as a binary sequence (xn)n∈N∗ ∈
{0, 1}N∗

. But then, f(w) = x with w = (wn)n∈N∗ , wn = 2xn − 1. Let us check that
Σ := {f−1(E) : E ∈ ΣL} is a σ-algebra:

• ∅ = f−1(∅), Ω = f−1([0, 1]) ∈ Σ.

• If {En}n∈N ⊂ Σ, then ∃{Fn} ⊂ ΣL, so that ∀n ∈ N, En = f−1(Fn). But then,
∪nFn ∈ ΣL for ΣL is a σ-algebra and

Σ ∋ f−1(∪nFn) = ∪nf
−1(Fn) = ∪nEn.

• If E ∈ Σ then there is some F ∈ ΣL so that E = f−1(F ). Since ΣL is a
σ-algebra, [0, 1] \ F ∈ ΣL and

Σ ∋ f−1([0, 1] \ F ) = f−1([0, 1]) \ f−1(F ) = Ω \ E.

All these observations are direct consequences of the definition of pre-images:

f−1(∪nAn) := {w ∈ Ω : f(w) ∈ ∪nAn} = ∪n{w ∈ Ω : f(w) ∈ An} = ∪nf
−1(An),

f−1(∩nAn) := {w ∈ Ω : f(w) ∈ ∩nAn} = ∩n{w ∈ Ω : f(w) ∈ An} = ∩nf
−1(An).
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Because f is surjective, f(f−1(E)) = E for any E ⊂ [0, 1] (actually, f−1 : P([0, 1]) →
P(Ω) is injective). Hence, if µ : Σ → [0, 1] is defined by µ(E) := µL(f(E)), then µ
is a probability measure:

• µ(∅) = µL(f(∅)) = 0 and µ(Ω) = µL(f(Ω)) = µL([0, 1]) = 1.

• If {En}n∈N ⊂ Σ is a family of mutually disjoint sets, then for n ̸= m, f(En) ∩
f(Em) = ∅ and {f(En)}n∈N ⊂ ΣL are mutually disjoint as well. Thus

µ(∪nEn) = µL(∪nf(En)) =
∑
n≥0

µL(f(En)) =
∑
n≥0

µ(En).

For a finite sequence t ∈ {±1}n, if At = {w ∈ {±1}N∗
: ∀k = 1, . . . , n, w(k) =

t(k)}, then f(at) is the set of numbers in [0, 1] whose binary sequences have their
first n decimals equal to that of f(t). Thus, f(At) = [f(t), f(t) + 1

2n
] ∈ ΣL and

At ∈ Σ with µ(At) = µL(f(At)) = µL([f(t), f(t) +
1
2n
]) = 1

2n
.

The random walk {Sn}n∈N∗ , given by Sn(w) :=
∑n

k=1w(k) is a family of random
variables defined on Ω, since per definition, for a given n ∈ N∗, im(Sn) = {l ∈ Z :
∃k = 1, . . . , n s.t l = −n+ 2k} and for a given l ∈ Z, one has

S−1
n {l} = {w ∈ Ω :

n∑
k=1

w(k) = l} = ∪t∈{±}n s.t.∑n
k=1 t(k)=l

At.

This last set is a finite union of sets in Σ and is thus again a set in Σ. This shows
that all Sn’s are Σ-measurable functions.
For a given l = −n+2k with k = 0, 1, . . . , n, if t ∈ {±}n is such that

∑n
k=0 t(k) = l,

then t must be a sequence of k plus steps and n−k minus steps. There are
(
n
k

)
such

t’s, each of which have a measure equal to 1
2n
, and so,

E(1Sn=l) =

(
n

k

)
1

2n
=

(
n
n+l
2

)
1

2n
.

Therefore,

E(Sn) =
n∑

k=0

(−n+ 2k)E(1Sn=−n+2k) =
n∑

k=0

(2k − n)

(
n

k

)
1

2n

=
1

2n

(
n∑

k=0

2k

(
n

k

))
− n

2n

(
n∑

k=1

(
n

k

))
=

1

2n−1

(
n∑

k=1

n

(
n− 1

k − 1

))
− n

2n
2n

=
1

2n−1
n2n−1 − n = 0,
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V(Sn) = E((Sn − E(Sn))
2) = E(S2

n) =
n∑

k=0

(−n+ 2k)2E(1Sn=−n+2k)

=
n∑

k=0

(2k − n)2
(
n

k

)
1

2n
=

n∑
k=0

(4k2 − 4kn+ n2)

(
n

k

)
1

2n

=
1

2n

(
4

n∑
k=0

k2

(
n

k

)
− 4n

n∑
k=0

k

(
n

k

)
+ n2

n∑
k=0

(
n

k

))

=
1

2n

(
4

n∑
k=1

nk

(
n− 1

k − 1

)
− 4n2

n∑
k=1

(
n− 1

k − 1

)
+ n22n

)

=
1

2n

(
4n2 + 4n

n−1∑
k=1

k

((
n

k

)
−
(
n− 1

k

))
− 4n22n−1 + n22n

)

=
1

2n

(
4n2 + 4n

n−1∑
k=1

(
n

(
n− 1

k − 1

)
− (n− 1)

(
n− 2

k − 1

))
− 4n22n−1 + n22n

)

=
1

2n

(
4n2 + 4n22n−1 − 4n2 − 4n(n− 1)

n−1∑
k=1

(
n− 2

k − 1

)
− 4n22n−1 + n22n

)

=
1

2n

(
−4n(n− 1)

n−1∑
k=1

(
n− 2

k − 1

)
+ n22n

)
=

1

2n
(
−4n(n− 1)2n−2 + n22n

)
=

1

2n
(
−n(n− 1)2n + n22n

)
=

1

2n
n2n = n.

5. For the random walk {Sn}n∈N∗ defined on (Ω,Σ, µ) in the previous exercice, show that
R ∈ Σ, where

R := {w ∈ Ω : ∃n ≥ 2 s.t. Sn(w) = 0}.

Show then that µ(R) = 1. Imitate the construction of the last exercice to build a 2-
dimensional random walk.

If w ∈ R then this means, that there is some n ≥ 1 so that the finite sequence
(w1, w2, . . . , wn) has as many pluses than minuses. Let us call such a finite sequence
a balanced sequence. Then,

R = ∪ t∈{±}n,
tbalanced and

n∈2N∗

At.

This is a countable union of sets At, all of which are measurable, so that R ∈ Σ.

To find the measure of R, observe that all w ∈ Ω starting with a + and so that
Sn(w) ≤ 0 at a fixed number of steps n are certainly all elements of R. Starting at
+, the possible negative values for Sn are −n + 2k with k = 1, 2, . . . , ⌊n

2
⌋. Here, k

represent the number of pluses in a path w ∈ Ω, so that S1(w) = 1 and Sn(w) =
−n + 2k ≤ 0. There are

(
n−1
k−1

)
such w’s, each having a probability of 1

2n
. The
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probability pn,− of S1(w) = 1 and Sn(w) ≤ 0 is hence

pn,− =

⌊n
2
⌋∑

k=1

1

2n

(
n− 1

k − 1

)
.

We need also to add here all the w’s, so that S1(w) = 1, Sn(w) ≥ 1, and Sm(w) = 0
for some 1 < m < n. Observe that for such a w corresponds exactly one w̄ ∈ Ω,
equal to w up to m and with opposite steps from there on to n. For such a w̄, one
has S1(w̄) = 1 and Sn(w̄) = −n+ 2l, with l = 1, . . . , ⌊n−1

2
⌋. One has again that the

probability pn,+ of all those samples w̄ is

pn,+ =

⌊n−1
2

⌋∑
l=1

1

2n

(
n− 1

l − 1

)
.

Adding these two probabilities gives

pn,− + pn,+ =

⌊n
2
⌋∑

k=1

1

2n

(
n− 1

k − 1

)
+

⌊n−1
2

⌋∑
l=1

1

2n

(
n− 1

l − 1

)

=
1

2n

(
n−1∑
k=1

(
n− 1

k − 1

)
−
(
n− 1

n− 1

))
=

1

2n
(2n−1 − 1) =

1

2
− 1

2n
.

The same reasoning may now be made for all w’s starting with a minus for n = 1
and we have that the probability of all w ∈ Ω making the random walk {Sk}1≤k≤n

touch or cross the value 0 is pn = 1− 1
2n−1 . Taking the limit for n → ∞ yields that

the ”return home” probability µ(R) = 1.

To build a 2-dimensional random walk, chose as the sample space Ω := {(±,±)N∗}
and consider the map

f : Ω → [0, 1]2,

Ω ∋ w 7→ f(w) := (
∑
n≥1

wn · (1, 0)
2n

,
∑
n≥1

wn · (0, 1)
2n

).

This is again a surjection and one may define Σ := f−1(ΣL) and for E ∈ Σ,
µ(E) := µL(f(E)).

6. Let X be some random variable defined on a probability space (Ω,Σ, µ). Prove that the
characteristic function ΦX(t) := E(exp(itX)) is bounded and continuous. Conclude that
φΦX(t) ∈ S ′(R) and that F(φΦX(t))(f) =

√
2πE(f(X)) for any f ∈ S(R).

By definition,

ΦX(t) = E(exp(itX)) =

∫
Ω

exp(itX(w))dµ(w)

⇒
∣∣∣ΦX(t)

∣∣∣ ≤ ∫
Ω

| exp(itX(w))|dµ(w) =
∫
Ω

dµ = 1.
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Since for all values of t and all w ∈ Ω, | exp(itX)| ≤ 1, the family {exp(itX)}t∈R is
a family of L1-bounded measurable functions on (Ω,Σ, µ). For a fixed w ∈ Ω, one
clearly has lims→t exp(isX(w)) = exp(itX(w)), so that we may invoke dominated
convergence to get

lim
s→t

ΦX(t) = lim
s→t

∫
Ω

exp(isX)dµ

=

∫
Ω

lim
s→t

exp(isX)dµ =

∫
Ω

exp(itX)dµ = ΦX(t).

Clearly, φΦX(t) is then a tempered distribution and if f ∈ S(R)

F(φΦX(t))(f) =

∫
R
ΦX(t)f̂(t)dt

=

∫
R

∫
Ω

exp(itX)f̂(t)dµdt =

∫
Ω

∫
R
exp(itX)f̂(t)dtdµ,

where the interchange of integration is justified by Fubini’s theorem, since exp(itX)f̂(t) ∈
L1(Ω× R, µ× µL).
Now, for a given w ∈ Ω,∫

R
exp(itX(w))f̂(t)dt =

√
2πF∗(f̂)(X(w)) =

√
2πf(X(w)).

It remains to integrate this function on Ω with respect to the probability measure
µ which yields the desired result.

7. Let (Ω,Σ, µ) be a probability space and let X be a random variable defined on it. Let
ΣB be the σ-algebra generated by the open intervals of (R). For an open interval I ⊂ R,
define µX(I) := µ(X−1I). Prove that µX may be uniquely extended to ΣB and that for
any f ∈ Cb(R,R), E(f(X)) =

∫
R f(x)µX(dx).

Define
ΣX := {E ⊂ Ω : ∃F ∈ ΣB s.t.E = X−1(F )}.

Since X−1(F ∪ G) = X−1(F ) ∪X−1(G), X−1(∅) = ∅ and X−1(F \ G) = X−1(F ) \
X−1(G), we have that ΣX is a σ-algebra.
Since σB is the smallest σ-algebra on R containing all open sets of R and since all
sets of the form X−1(]a,∞[) ∈ Σ by measurability of X, we conclude that ΣX ⊂ Σ
and thus, µ is well-defined on ΣX .

The function
ΣB ∋ E 7→ µX(E) := µ(X−1(E))

is then a well-defined probability measure on ΣB. For some f ∈ Cb(R,R+), we have
by definition

E(f(X)) =

∫
Ω

f(X)dµ

= sup{
∑

y∈Im(s)

yµ(s−1{y}) : s : Ω → R, 0 ≤ s ≤ f(X), s is a Σ-simple function}
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8. Define

r(x) :=

{(
eix − 1− ix+ x2

2

)
x−2 if x ̸= 0

0 if x = 0
.

Show that r(x) is continuous and bounded on R. Use this to show, that for some random
variable X on some probability space (Ω,Σ, µ) with X ∈ L1(Ω, µ)∩L2(Ω, µ) and E(X) =
0, the characteristic function

E(eitX) = 1− t2

2
V(X) + t2h(t),

with limt→0 h(t) = 0 and h(t) is bounded.

Continuity of r(x) may only be problematic for x = 0. By Bernoulli’s rule, one has

lim
x→0

r(x) = lim
x→0

eix − 1− ix+ x2

2

x2
= lim

x→0

ieix − i+ x

2x
= lim

x→0

−eix + 1

2
= 0 = r(0).

Hence, r(x) is continuous on R.
By continuity of r(x), the number M := max{|r(x)| : |x| ≤ 1} certainly exists since
[−1, 1] is compact. For |x| > 1, one has

|r(x)| = |e
ix − 1

x2
− i

x
+

1

2x2
| < 4,

so that ∀x ∈ R, |r(x)| ≤ (4 ∨M).

We use this to compute

E(eitX) = E

(
1 + itX − t2X2

2
+ t2X2r(tX)

)
= 1 + itE(X)− t2

2
V(X) + t2 E(X2r(tX))︸ ︷︷ ︸

h(t)

,

and it remains to show, that h(t) is well-defined, bounded and that limt→0 h(t) = 0.
By the previous part of this exercice, r(x) is bounded, by B, say, so that |X2r(tX)| ≤
X2B which is in L1(Ω, µ). This shows that h(t) is well-defined, bounded by BV(X),
and by dominated convergence,

lim
t→0

E(X2r(tX)) = E(lim
t→0

X2r(tX)) = E(X2r(0)) = 0.


