EPFL - Physics’ section Mathematical methods in quantum physics

Solutions to exercice sheet 4

’ Brownian motions & probability ‘

1.|For t # 0, the heat kernel is given by

1

) = G (g

Verify that dyu(t, x) = %Au(t, x) with limy_o+ Qute) = 5(()3). Conclude, that if f : R® — C
is continuous and polynomially bounded, (u* f)(¢) is also a solution to the heat equation
with (ux f)(0,7) = f(z). Compute the solution with u(0, ) = 0V in the case (¢,z) € R%.
Substitute ¢ by it and D by (mh)~! in the heat kernel. Verify that now we have a solution
v(t, z) for the Schrodinger equation. Prove that if f € S(R?), (v f)(t) is a solution with
initial value f(x). What happens when f(z) is of compact support?

By direct computation, one gets

1
aﬂt(t, ilf) = @W eXp(—z—m(m . x))

3rD 1 T-x T-x 3

(27Dt xp(—5p; (@ o)+ opplhv) = (55 — 5p)ult @),

Au(t,z) =V - (Vu(t,z)) = mv. (_Dit eXp(—ﬁ(x ‘ x)))
S 1 3 1 xr-x 1
- (27 Dt)3/2 (_Ht eXP(—Q—Dt(x -x)) + W eXp(_Q_Dt(x ) x)))

2 x-x 3

which yields the heat equation. For a test function f € S(R?), one has

lim g, .0 (F(2)) = lim [ u(t,2) f(x)p(de)

t—0+ t—0t JR3

= lim s [ espl(— g o) @ (de)
= lim W /R3 eXp(—%(y - 9))f(VDty)(Dt)** pu (dy).

The integrand being dominated by (27)~*2exp(—1(y - y))|[ fll,> which is Lebesgue-
summable, one may use the dominated convergence theorem and get

I () = s [l (ex0(=50 DIVD)) et

3 t—0t
1

~ G L P D Onslan) = 1O = 8,
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therefore, limy o+ @y (1) = 5(()3) in the weak*-topology.

If f:R — C is continuous and polynomially bounded, then
ux f)(t.x) = [ ult.o =) f sy
R

=00 [ ult.0)f(e = ohpain) = [ @uatt,0) Fle = o)

where we used the Leibnitz integral rule, which is here legitimised by the fact that for
each fixed r € R®, the partiel derivative (Qyu(t,v)) f(x — v) is Lebesgue-summable,
thanks to the exponential decay in y of dyu(t,y). Applying the heat equation to the
heat kernel inside the integral one gets

s N)(t0) =5 [ (Ault.0) S = opulav)

D
T2

- QAI /RS u(t,x —y)f(y)pe(dy),

(AU)(t, r—y) f(y)pL(dy)

where the interchange of the partiel derivatives with respect to x is again justified
by the Leibnitz integral rule. Furthermore,

lim (u* f)(t,z) = lim ;/ exp(— ! —(u-u))f(r —u)pr(du)

-0+ =0+ (27 Dt)3/2 2Dt
‘t|3/2 1
S o b [, g v ) (= Viv)u (o).
"=

For a fixed value of z and ¢ €]0, 1], the integrand is bounded by exp(—55(v-v)) M (v),
with M (v) = max{|f(s)| : |s — z| < |v|}, which is certainly polynomlally bounded
since f is. Therefore, we may interchange limit and integration by dominated con-
vergence and obtain

3/2
Jim (o £)(00) = 1 s [ i exp(o g5 (0 o) (o~ Vi (a)

1

- W /Rs exp(—55 (v 0)) f(2)pe(dv) = f(2).

In the special case where f(z) =0V x, we obtain

(ux f)(t, ) )(OV(ﬂf—\fv))ﬂL(dv)

\/ 27D

\/ﬂ/ exp( ——v 2 (z — V' Dtv) g, (dv)
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t2
where N (z) := \/% [ e Vdt.

Substituting now ¢ for i¢ amd D for % in the heat kernel yields

(mh)3/? ihm
X
(2mit)32 TP g

v(t,z) = (z-x)),

2

where one takes i%/2? = exp(i%). By direct computation one gets

(mh)3/? ihm

ih@tv(t, ZE) = zh@tm eXp<7(J} . ZE))

3m(mh)3/%h ihm T-x T-x 3
- (éwz‘t))"’/? (o, (0 2)) + Wom=pprult, @) = (= — ol )
(mh)3/? ihmx ihm
Av(t,z) =V - (Vu(t,z)) = Wv : ; exp( 57 (x-x))
_ (mh)*? (3ihm ihm T - zh*m? ihm
= —2h2m2(x.x il )’U(t,l’),

22 2mht

from which the Schrodinger equation follows.
If f € S(R), then

i, f)(t,z) = ihd, / olt, = — ) f(y) s (dy)

RS

—iho, / o(t,w) (@ — w)pg(dw) = ik / (Ot w)) F(x — w)pg (do),
R3 R3
where we used the Leibnitz integral rule, which this time is legitimised by the fact
that for each fixed x € R3, the partiel derivative (Jyv(t,w)) f(z — w) is Lebesgue-
summable, thanks to the rapid decay in w of f(x — w). Applying the Schrédinger
equation to v(t,w) inside the integral one gets

oo x () = ——— [ (Auo(t,w)) f(z — ) (dw)

2m R3

_ _% | (B0) (e =y ()ady)
- —%AI /RB otz —y) f(y)pr(dy),

where the interchange of the partiel derivatives with respect to = is again justified
by the Leibnitz integral rule.

For a fixed # € RY and t > 0, one has

(0% f)(t2) = / o(t,w) (@ — w)ap(dw) = Guew(9),

R3
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where g(w) := f(z—w) is a Schwartz function. By definition, ©y(.w)(9) = F(@ut,w))(4)-
The Fourier transform is weak*-continuous and for this topology, dominated con-

vergence implies that lim. g+ ¢ (e hpww = Putw)- Note that for any e > 0,
v(t,w)e
__ehm

2w e §(R3) and a direct computation yields

v(t,w)e

‘F((p )efegilnww)(p) = Sof(v(t,w)eiegiqtnw'w)’

v(t,w

chm mh)3/2 m
Flo(tw)ewwy = L (mh) jﬁgexp<—4u-zu§;—<e——i>>exp<—¢UJ-p>uL<duo

Vor (2mit)3/? o
(mh)3/? hm(e — 1) i2t
T (2n)3(it)P2 /R3 eXP(_T(UJ ‘Wt w 'pm))u/;(dw)

(mh)3/2 SR LTS, U PN 'S I S 18
- 7 @@ m(e—1) hm(e—1) hm(e—1)
RGN A €D ().

This complex gaussian integral is now performed using a triple contour integral. For

N 1/2
each of the three variables x, x9, x3, chose a path v along the line z = s (M) +

. ¢ \/? : hm(e—i) \ /2
p (M) , s € R. Note that along this path, dz = <T> ds and hence,

__ehm 1

tp-p 22
Flolt ™oy _ T Shm(e—7) 2 dz.
(v(t,w)e™ 2 ) (i€ + 1)3/2(271')36 /ﬁ ¢

Each of the contours v may now be closed along the real line. The boundary terms
of this closed path tend to 0 thanks to the exponential decline of the exponent and
we finally get

__€hm 1 tp-p

f(v(t’w)e 2t w~w> — (Z€ n 1)3/2<27T)3/2 e 2hm(e—i)

Taking now the weak*-limit for € — 07 first, followed by the weak*-limit for ¢ — 07,
we get

lim F(puw)) = @1 = lim @y = 09 (w).

t—0+ (2m)3/2 t—0+

Therefore,

lim (v f)(t,x) = f(x).

t—0t

If f(x) has compact support, then so does f(z — w) for a fixed x € R* and

@*ﬂ@w%{/vwx—wﬁwmmww

mh)3/2 ihm
- % /Bm ) eXP(Z—t(w —w) - (z —w)) f(w)pr(dw)

for some fixed r > 0. Substituting « + iy for x the integrand is still bounded on
compact sets for w with bounded and summable derivative w.r.t. z or y. One may
therefore use the Leibnitz integral rule to conclude, that (v * f)(¢,x + dy) is holo-
morphic for any z + iy € C3 and hence entire for any ¢ > 0. Such functions cannot
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have compact supports.

2.|Let X : Q — R be a random variable on a probability space (2,3, u) together with its
cumulative probability distribution Fiy(z) := u(X '] — oo, z]).
Prove that Fx(z) is cadlag, i.e.

e Vz,y € R, x <y implies 0 < Fx(x) < Fx(y) <1,
o Vz € R, lim, .+ Fx(y) = Fx(x),
o Vz € R, lim, ,,- Fx(y) < Fx(x).

We begin first by the observation, that if {E,},en C X is a set of nested measurable
sets of the measure space (2, %, 1), then lim, pu(E,) = p(UpenFy). Indeed, define
iteratively Fy := FEy and F,, := E, \ E,_1. Observe, that all F/s are disjoint
measurable sets and that £, = U}_,Fj. Hence, by o-additivity of u

:U’(UnGNEn> - N(UneNFn) - Z Fn = 117511 ,U,(En)

n>0
e Let 7,y € R with < y. One has X '] — 0o, 2] C X™!'] — 00, y] and thus
Fx(x) = (X ™'] — 00, 2]) < (X~ = 00,y]) = Fx(y).

Moreover, Vo € R, since ju is a probability measure, 0 < u(X ! — oo, z]) =

e For any decreasing sequence (Y, )nen With {y,tnen Clz, 00[ and lim, y, = =z,
one has w <z <= VYn >0, w < y,. Therefore, N,>0] — 00, y,] =] — o0, 7],

which is equivalent to U,>0|yy, oo[=]x, 0. By o-additivity of u one finds
lim Fx () = lim (X '] = 00, y]) = lim (5(2\ Xy, o0]))
= (@) — lim (pu(X ™y, 00[)) = () = (1(Unz0X "y, 00[))

= u(Q) = p(X "z, 00]) = p(X '] = 00, 2]) = Fx().

e For any increasing sequence (¥, )nen With {y, }nen C] — 00, 2| and lim, y,, = z,
one has w > x <= Vn >0, w > y,. Therefore, N,,>0|yn, 0o[= [z, 0o[, which
is equivalent to U,>¢] — 00, y,,| =] — 00, z[. By o-additivity of x one finds

lim Fy (yn) = lim po(X '] = 00, yn]) = p(Upz0X '] = 00, )
= u(X7) = 00,2) < (X1 — 00, 2]) = Fx ().
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Zn where

3.|Prove that any real number x €]0, 1] may be uniquely expressed as x =} -, 2=

x, € {0,1,2} and [{n > 1 : z,, # 0} = [N*|.

The Cantor set C is then defined as the set of x €]0, 1] so that z,, € {0,2}. Prove that
wr(C) = 0 and that there is a bijection from C to |0, 1].

For = €]0,1] \ C, denote by N, as the smallest n > 1, so that z, = 1. The Cantor
function is defined as

c(z) :—{;Z">1 o ifz€C,

Na—1 o
sNe T 5 2 oneq se  Otherwise

Prove that c¢(x) is a continuous and increasing function on ]0,1]. Prove c¢(z) is locally
constant pz-a.e. and Conclude from these properties, that there is no Lebesgue summable

function d(z), so that c(x f[o o A(s)pr(ds).
Let  €]0,1]. There are then three mutually exclusive possibilities: = €]0, 3] in
which case we set z; := 0, x 6]3, 3] in which case we set z; := 1 or x E]% 1] in

which case we set x; := 2. In all cases we will have 0 < x — 9531 < :1,)

Suppose we are given a finite set {zy}r=1,. » C {0,1,2}", sothat 0 <z -3, _, @ <
3%. We have again three mutually exclusive possibilities:

T €] ZZ:1 "g—,’g, ZZ=1 ”g—’,g + #] in which case we set x,,1 := 0,
€D r 1 5F 4 5, 2ory 3 + o) in which case we set 2,41 1= 1 or
€D p1 5+ 37]%, > o1 3k + 31,1] in which case we set z,,1 := 2.

In all cases we will have 0 <z — > 2k + 324 < iy

We may inductively define in this way a sequence (T,)nen+ € {0,1 2}N*, so that
Vn>1,0<x—3 3 < 5. Obviously one has x = lim,, > ;_ 3k = >, 3¢
More precisely,

Vn e N, z, = 3"z, d(z):=(,)nen~

Suppose now that this map d :)0, 1] — {0, 1,2}N" has an image (x,),>1 with 2, =0
for n > N. Set a = iVZl 3¢ By definition of the map d, this means, that the
pre-image x to this sequence (2,,),>1 is a number in ]a, a + 35 for ecach n > N. But
then © € Nysyla,a+ 57 = 0. Such an z does not exist and every sequence (z,)n>1

thus obtained verifies [{n € N* : z, # 0} = |N|.

Consider now two such sequences (z,)n>1 # (Yn)n>1. There is hence some index
n > 1, so that y,,, = x,, if m < n and y,, # z,,. Without loss of generality, one may
suppose z, < y,. By posing a = > _, 2F, one notices that by construction of the
sequences, r < a < y. Hence, x # y and the map d :]0,1] — {0,1,2}N" in question
is injective and manifestly surjective when the co-domain is restricted to sequences
{(@n)nz1 € {0, 1,2} - {n =1 @, # 0} = [N*[}.

The cantor set is then

Ci= d {(zp)ns1 € {0,21N . [{n>1: z, # 0} = [N*|}.



EPFL - Physics’ section Mathematical methods in quantum physics

x ¢ C is equivalent to In > 1 so that =, = 1 for (z,),>1 = d(x). We may identify
those sequences iteratively:

e vy =1. Then z € F; :z]%,%].
e 7y #1and o = 1. ThenerQ-:]% %] 1z,

o 11,250 # 1 and x3 =1, Then x € F; :]i?

e ry,...,7, 1 # 1and z, = 1. Then

n—1 n—1

1 Tl 2 T
T € Bn = Uaeoaptlg, + > g3 T > 3
k=1 k=1

By definition, £, N E,, = () if n # m and each E, is the disjoint union of 271
intervals of length 5. Therefore, puz(E,) = 2" ' and

" 1 1
(10,1]\ C) = =1.
\ Z/”LL 3n 31_§

n>1 n>0

Consequently, . (C) = 0.
On the other hand, the map C 5 = — y €]0, 1] defined by

x:Z%Hy:b(x)::Zx;—f

n>1 n>1

defines a bijection form C to ]0, 1], since any y in the image of this map is the binary
expression of some number in 0, 1].

The function
() = ;Zn>1 o if z €C,
v + 3 ZNI ! %2 otherwise
may be rewritten in the following way: if 2 €]0, 1], set T := sup|0,z] N C.
If x € C, then obviously z = 7.

If x ¢ C, then T = iVTl_l Za + Zn>Nz+l 3n -
In all cases ¢(x) = ¢(T) and has the following properties:

e c is a surjection from |0, 1] to ]0,1]. Indeed, by the previous surjection b(x),
—10,1].
J =

e c is increasing. Indeed, if z,y €]0,1] and = < y, then z < g, so that Vn € N
Zp < Yn. Thus,

ofr) = c(x) =) ”;— < % = c(y) = cly).

n>1 n>1

Now, an increasing and surjective function f :]0,1] —]0, 1] is also continuous. In-
deed, for = €]0, 1], define

fa)=sup{f(y) : y<a} and f(z"):=inf{f(y) : y >z}
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By monotonicity of f one obviously has f(x ) < f(z) < f(a*) and f(z—) < f(z™)
would imply that the non-empty set f~1(]f(z7), f(z")[\{f(z)}) = 0, contradicting
the surjectivity of f. Thus, f(x—) = f(z) = f(z"), proving the continuity of f and
hence of ¢(z).

Now, ¢(z) is also locally constant pr-a.e.: for any n € N ¢(x), by definition will take
only a discrete set of values on E,. By continuity, this implies that ¢(z) can only be
locally constant on any E,,. Since the union of theE! s yield back the whole interval
10, 1] but for the Cantor set, we find that c(x) is locally constant pz-a.e..

If f e £Y]0,1],ur) were a function so that Vz €]0, 1], = [y f(t)ur(dt), then
since c(x) is increasing, we should have f(z) > 0 ur-a.e.. Slnce c(x) is locally con-
stant pp-a.e., f(x)should be 0 pr-a.e.. Therefore, we would have ¢(x) = 0 p-a.e.,
which is obviously a contradiction.

.|Let Q := {£1}"" and consider the map

1
Frosp1, wey +uin

2n+1
n>1

Show that this map is surjective and that ¥ := {f~Y(E) : E € X1}, where X is the
Lebesgue o-algebra is also a g-algebra. Show that p(FE) := ur(f(F)) defines a probability
measure on X.

For a finite sequence t € {£1}", define A; = {w € {+1}N" : Vk=1,... . n, w(k) =t(k)}.
Prove that A; € ¥ with p(A4;) = 5-.

For the random walk {S,, }en-, verify the equalities E(S,,) = 0, V(S,,) = n and u(S,; {n—
2k})=2""(}) for k=0,...,n

f is surjective, because all € [0, 1] can be expanded as a binary sequence (Z,, ),en €
{0,1}N". But then, f(w) = z with w = (w,)nen, wp = 27, — 1. Let us check that
Y:={f"YE): E€X.}is ac-algebra:

o 0= f"10), Q= f"1(0,1]) € X.
o If {E,}nen C X, then 3{F,} C ¥z, so that Vn € N, E,, = f~}(F,). But then,
U, F, € ¥ for ¥ is a o-algebra and

Y3 fTHULE) = Unf H(F) = U E,.

e If £ € X then there is some F € X so that £ = f~!(F). Since X is a
o-algebra, [0,1] \ F' € ¥ and

N3 0 YNE) = 0\ fFTHF) =Q\ E.
All these observations are direct consequences of the definition of pre-images:

FHUA) ={weQ: flw)€UA} =UfweQ : flw) € A} = U f (A,
fFHNAY) ={weQ: flw)enA}y=nJweQ: flw) €A} =n.f"A,).
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Because f is surjective, f(f~!(E)) = E for any E C [0, 1] (actually, f~* : P([0,1]) —
P(R) is injective). Hence, if p: ¥ — [0,1] is defined by p(E) := un(f(E)), then p
is a probability measure:

o u(0) = p(f(0)) =0 and p(Q) = p(f(Q2) = p((0,1]) = 1.
o If {E£,},en C X is a family of mutually disjoint sets, then for n # m, f(E,) N
f(En) =0 and {f(E,)}nen C X are mutually disjoint as well. Thus

p(Un Ey) = Z pr(f Z n(E

n>0 n>0

For a finite sequence t € {£1}", if A, = {w € {1 : Vk =1,...,n, wk) =
t(k)}, then f(a;) is the set of numbers in [0, 1] whose binary sequences have their
first n decimals equal to that of f(t). Thus, f(A;) = [f(t), f(t) + =] € ¥, and

Ay € X with p(A) = juu(F(A)) = pil[F(0), F(E) + ) = & B

The random walk {S,},en+, given by S, (w) := > ;_, w(k) is a family of random
variables defined on €, since per definition, for a given n € N*, im(S,) = {l € Z :
dk=1,....,n st [ = —n+2k‘} and for a given [ € Z, one has

ST ={weQ ) wk) =1} = Uz se. Ar
=1 Y

L H(R)=l

This last set is a finite union of sets in ¥ and is thus again a set in . This shows
that all S,,’s are Y-measurable functions.

For a given | = —n+2k with £ =0,1,...,n, if t € {£}" is such that >} _,t(k) =,
then ¢t must be a sequence of k plus steps and n — k minus steps. There are (Z) such

t’s, each of which have a measure equal to 277 and so,

- ()23

Therefore,

N 2
k=0
1 & n n (<~ (n 1 & n—1 n_,
_2_n< 2k<k)>_2_n<z(k)>_2nl Zn(k—l))_Q_"
k=0 k=1 k=1
1
= n2"t —n =0,
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n

V(Sa) = E((Sn — E(Sx))*) = E(S7) = ) _(—n + 2k)’E(Ls, ——ns2r)

k=0

h= () g = e = awn (1)

k=0

n

k=0

(5050 5 ()
S (En (o) E G o)

1 2 — n n—1 2en—1 20m
—2—n<4n +4n;k(<k)—( i ))—4n2 +n2

(]

n—1
1 —2
= o (4n2 +4n?2" 7t —4n® — dn(n — 1) (Z 1) —4n®2" 7t + n22”>
k=1

n—1
1 -2 1
=0 <—4n(n —1) 2 (Z B 1) + n22”> = o (—4n(n —1)2"% + n?2")

= — (—n(n—1)2" +n’2") = 2innz" =n.

5.|For the random walk {S,},en+ defined on (€2, 3, i) in the previous exercice, show that
R € X, where
R:={weQ:3In>2st S,(w)=0}

Show then that u(R) = 1. Imitate the construction of the last exercice to build a 2-
dimensional random walk.

If w € R then this means, that there is some n > 1 so that the finite sequence
(w1, wy, ..., w,) has as many pluses than minuses. Let us call such a finite sequence
a balanced sequence. Then,

R=U te{£}m, A,
t balanced and
ne2N*

This is a countable union of sets A;, all of which are measurable, so that R € X.

To find the measure of R, observe that all w € 2 starting with a + and so that
Sp(w) <0 at a fixed number of steps n are certainly all elements of R. Starting at
+, the possible negative values for S, are —n + 2k with & =1,2,...,[§]. Here, k
represent the number of pluses in a path w € 2, so that Si(w) = 1 and S, (w) =

—n + 2k < 0. There are (Zj) such w’s, each having a probability of 2% The
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probability p, - of Sj(w) =1 and S, (w) < 0 is hence

1)
1 (n—-1
Pn,- _;zn <k— 1>'

We need also to add here all the w’s, so that S;(w) =1, S,,(w) > 1, and S,,(w) =0
for some 1 < m < n. Observe that for such a w corresponds exactly one w € (2,
equal to w up to m and with opposite steps from there on to n. For such a w, one
has S(w) =1 and S,(w) = —n+2l, with { =1,..., %2 ]. One has again that the
probability p, 4 of all those samples @ is

25+

Adding these two probabilities gives

3

L3 125+

1 /n—1 1 /n—1
p”"+p”’+_22_n(k—1)+ 2_"(l—1>

k=1

1 (&= (n—1 n—1 1 11
—z—n(;(k_l)‘(n_l)>—z—n<2 R

The same reasoning may now be made for all w’s starting with a minus for n = 1
and we have that the probability of all w € © making the random walk {Si}1<x<n
touch or cross the value 0 is p, =1 — 271;—1 Taking the limit for n — oo yields that

the "return home” probability u(R) = 1.

To build a 2-dimensional random walk, chose as the sample space Q := {(&, )N}
and consider the map

f:Q—[0,1]?
Q35w flw):= (Y " .2(,11’0)72 o -2(710, 1)).

This is again a surjection and one may define ¥ := f~}(X;) and for E € %,
1(E) = pr(f(E)).

6.|Let X be some random variable defined on a probability space (€2, %, ). Prove that the
characteristic function ®x(t) := E(exp(itX)) is bounded and continuous. Conclude that

o) € S'(R) and that F(ps,@)(f) = \/ﬁE(f(X)) for any f € S(R).

By definition,

By (t) = E(exp(itX)) = /Q exp(itX (w))dpu(w)

= ‘@X(t)‘ §/9|exp(z'tX(w))|du(w):/Qduzl.
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Since for all values of ¢ and all w € €, |exp(itX)| < 1, the family {exp(itX)}ser is
a family of £'-bounded measurable functions on (2,3, u). For a fixed w € Q, one
clearly has lim, ,; exp(isX(w)) = exp(itX (w)), so that we may invoke dominated
convergence to get

lim @y (t) = lim [ exp(isX)du

s—t s—t Q

/hmexp(st)du /exp(itX)du = O (1).
Q Q

s—t

Clearly, ¢s, (1) is then a tempered distribution and if f € S(R)

Flpaxw)(f) = / () f(t)dt

://exp(itX t)dpdt = //exp (it X) f(t)dtdp,
rRJQ

where the interchange of integration is justified by Fubini’s theorem, since exp(itX) f(t) €
El(Q X R::u X :uL)
Now, for a given w € €,

/R exp(itX () f()dt = V3nF* ()(X (w)) = V2 f(X (w)).

It remains to integrate this function on {2 with respect to the probability measure
w1 which yields the desired result.

7. Let (2,3, 1) be a probability space and let X be a random variable defined on it. Let
Y. be the o-algebra generated by the open intervals of (R). For an open interval I C R,
define pux (1) := ,u(X_ I) Prove that px may be uniquely extended to ¥z and that for

any f € Cp(R,R), E = 5 f(x)px(dz).

Define

Yx:={ECQ:3Fec¥yst.E=X1(F)}
Since X '(FUG) =X (F)UXYG), X *(0) =0 and X H(F\G) =X"F)\
X~H@), we have that Yx is a o-algebra.
Since op is the smallest o-algebra on R containing all open sets of R and since all
sets of the form X~!(Ja,0[) € ¥ by measurability of X, we conclude that ¥x C &
and thus, p is well-defined on X .

The function
S5 5 B e px(B) = p(X~\(E)

is then a well-defined probability measure on X 5. For some f € Cy(R,R.), we have

by definition
— [ s
)

= sup{ Z yu(s™Hy}) 1 s: Q> R, 0<s< f(X), s is a S-simple function}

y€lm(s)
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8.| Define

o) (" —1—ia+5)a? ifarto
0 ife=0

Show that r(x) is continuous and bounded on R. Use this to show, that for some random
variable X on some probability space (Q, %, 1) with X € £1(Q, ) NL?*(Q, ) and E(X) =
0, the characteristic function

t2

E(e"™) =1— §V(X) + t2h(t),

with limy o A(t) = 0 and h(t) is bounded.

Continuity of r(z) may only be problematic for z = 0. By Bernoulli’s rule, one has

. 2 . .
] ) 6”—1—Z$+% ) Z'elz‘_,i_’_x . _67,$_‘r_1
=i Ty iy 0=

Hence, r(x) is continuous on R.
By continuity of r(x), the number M := max{|r(z)| : |z| < 1} certainly exists since
[—1,1] is compact. For |z| > 1, one has

er —1 7 1
2 T 222

so that Vo € R, |r(x)| < (4V M).

We use this to compute

2v2
E(e"®)=E (1 +itX — ! + t2X2r(tX))
t2
=1+ itE(X) — =V(X) + P E(X*r(tX)),
2 R —

h(t)

and it remains to show, that h(t) is well-defined, bounded and that lim; o h(t) = 0.
By the previous part of this exercice, r(z) is bounded, by B, say, so that | X?r(tX)| <
X?B which is in £!(, ). This shows that h(t) is well-defined, bounded by BV(X),
and by dominated convergence,

lim E(X?r(tX)) = E(lim X*r(tX)) = E(X?r(0)) = 0.

t—0 t—0




