EPFL - Physics’ section Mathematical methods in quantum physics

Solutions to exercice sheet 3

’ Fourier transforms ‘

1.|Prove that if an associative multiplication x on S&’'(R) satisfies

e VpeS'(R), woxp=wand ¢ X @1 =p=p Xy,

e for any polynomially bounded and py-measurable functions f, g,
r X g =g and  @rig = o5+ @g,

e for any polynomially bounded and py-measurable functions f, g,
fz) = / g()pr(dt) = Doy =g,
0

e Vpo,n e S'(R), D(pxmn)=(Dyp)xn+¢x(Dn),

D?(x(In(|z]) — 1).

then @,00 = @o = dy X @, and @, x P.v.(2) = ¢y, where §g = Dye and P.v.(1)

Denote the Heavyside function 1g, (z) by ©(x). One has

o = Yo — Yo = D(Yovz) — po = D(pz X ve) — Yo
= D(p.) X po + ¢ x D(pe) — e
= 1 X Yo + Yz X 0g — Yo = Yz X g,

Yo = Yo — Yo :D(()OOVw)_SOGZD(SO@ X %)—906
= D(po) X ¢z + o X D(p,) — o
= 0p X Pz + Pe X 1 — Yo = 0y X Qq,

1
Vg X p.v.(;) = Pz X DQ(SOx(ln(III)—l))

= D(¢p, X D@x(ln(|x|)fl)) — D(pz) X Doyn(ep-1)
= DQ(% X <Px(1n(|x|)—1)) - D((D%) X %(m(|x|)—1)) — @1 X D%(ln(|x|)_1)
= D*(@a2(mn(ja)-1)) — D(#1 X @aqn(leh-1)) — £1 X DPain(jz)-1)
= D((p2m(ln(|z|)—1)+x) — 1 X D(%(ln(|m|)_1)) — ¥1 X D@n(jz))-1)
= D(2¢z(n(z))-1)) + Pz) = 2D(Pz(n(z)-1)) = Dz = ¢1.
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2.| Prove the Leibnitz integral rule:

Let U C R be open, and let (X,3, u) be a measure space. Suppose f : U x X — K
satisfies:

e Foreacht € U, f € L}(X, p),
e there is a p-null set N € X, so that 0, f(t, x) exists Vt € U and Vz € X \ N,
eVt € U, Ir > 0,3g;, € LYX,p), st. [0.f(s,2)] < gir Vs €]t — 7, t + 7| and

Ve e X\ N.
Then £ [ f(t,x)dp = fX\N O f(t, x)dpu.
Use the Leibnitz integral rule to show, that 8"‘%)(]9) = (—W(a:)(p) and that

o —

(ip)*f (x)(p) = D° f ().

By the first property, I(t) := [, fdu exists for all t € U.

Let t € U be fixed and consider h € R with |h| < r, with r given by the third
property. Then by Rolle’s theorem and for a p-null set N € ¥ given by the second
property, one has

F U+ 1) = 10) = [ 2 (7(e+ hoa) = flt,) do

1
— /X\Nﬁ(f(t%—h,x) _f(t’x))d”:/X\N(atf)(T’x)dp"

for some |7| < h. By the third criterion, the integrand is bounded by the £!-function
grt on all of X \ IV, so that one may apply dominated convergence to get

d 1
G0 =tm [ (b = feondn= [ aftaan
dt h—0 X\N X\N

If feSRY)andif § € NY,, then for k- € R and fixed values of k - (1 — §), one
has that exp(—ik - x) f(z) satisfies all the criterions for Leibnitz’s integral rule (note
that N may be even chosen to be the empty set and r as large as desired). Hence,

- d

O'F0) = 7 . expl=ik )@y (o)

= [ Ohexpl—ik ) fahnadn) = [ (=ia)’ exp(=ik ) f(a)paldo).

N

By iteration on &, one has the announced result for any oo € NV.
Applying integration by parts yields the second equality.

3.| Prove that the Fourier transform is a continuous endomorphism on S(RY).
(Hint: use continuity of the maps 0% and (—iz)® previously proven.)

For f € S(RY), one has

f)| < [ lesp=ip-a) @)l (da)

< [ a0 e ) S @lslde) < ( /

N

(te. x>—NuL<dx>) 17l
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Therefore, || f]le < (Jan(X+ 2 - 2) N pr(dz)) || flll v By continuity of the maps 9°
and 27 (see previous exercice sheet), one has for n € N and a € N<n7

11 +p-p) 0 flloo = |(1 = V- V)" (=) f (@)}

< ([ e a o) ) 0= 97 (i @)l

= ([ e ) |

n

(1) A (i) o)

< (e timian) 2 (I sl
= ([Lavan @) S (| 2 5o | @)
k=0 BENY, N
< ([ 0reaiman) () 50 sl

BeNgn

< ([a+en @) T e (@,

< ( /R L+ x)N,uL(d:c)) (N + 1)"n<NZ ") A @) v +2n41a

This shows, that for a given n € N and a fixed a € NV, (1 +p- p)"0f remains
bounded in p € N. Therefore, f(p) € S(RV).
Taking the supremum over all p € N and o € NV yields

140l < ([ 0+ a1 intan) o2 (Y ot @l

which shows continuity of F for 7s.

f

4.|Use a contour integral to prove that

T-T P

Flexp(=—52))(p) = exp(=210).

Consider then for € > 0 the integrals

1 k-k

I(z) == MY Jeon f(y) exp(ik - (x —y)) eXp(_€2T)NL(dk x dy).

Use Fubini and dominated convergence, to prove that

FOF*:ls(RN) :f*of

The function exp(—%) is certainly analytical over the whole complex plane (hence

it is an entire function). Any integration f f(2)dz over a closed contour v C C is
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therefore going to be 0. In particular, this is true if v = 51 U 7,1 U Yp2 U Y2 with
Y = [—R, R], Y2 :=ia + [-R, R], 7,1 := [R, R +ia] and 7,5 := [-R + ia, —R)].
It is however easy to see, that ‘f% exp(—z2/2)dz‘ < exp(—R?/2)|a| exp(a®/2) for
j = 1,2, so that for a fixed value of a limg_, f%j exp(—2%/2)dz = 0 for j = 1,2
and consequently,

R x? R (z +ia)?

lim exp(—?)dx = lim eXp(—

R R 2 Jde.

Now, consider the one-dimensional Fourier transform

2

1 2 R
=/ exp(—z'kas)exp(—%)m(dx) Jm == exp(—z‘kx)exp(—%m

/{32
I%g{)lo\/—Q_ﬂ/ exp(—= (2% + 2ikax))dr = 1%1_{210 \/ﬂ/ exp(—= x+@k3) )d
|
= lim exp(——) exp(——xQ)d:E

R—o0 \/ 27r 2

To conclude, it remains to show, that I := —&= [, exp(—32°)ur(dz) = 1. In order
to do this, we compute

[
21

1 1 1 2 1
% eXp(—é(xQ 4+ y* ) (de x dy) = 7 /RJF/O exp(—§r2)r,uL(d7" X df)

Rexp(—gx%mdx) / exp(— 0w (dy)

= /R exp(—%r2)7“u1:(d7”) = —eXP(_7‘2/2>‘:O =1

From this we derive the multi-dimensional case
T-T 1 ) T-x
Flesp(="5)0) = Gy [ esp(ip- ) exp(= 5 s o)

N 2
! : T p-p
- E (2m)1/2 /RN exp(—ip;z;) exp(— ) (dr;) = exp(——5-).

For € > 0, consider now the auxiliary integrals

L) := (271)N .

(0 explih - (e — ) exp(— (e  dy).

The integrand is certainly in LY(R*V, up) for all € > 0. We may apply Fubini’s
theorem to chose to integrate over y first and obtain

I(z) = m /RN f(k)exp(ik - x) exp(—62¥)/@(dk3).

Since f € S(RY), we have that the integrand is in L'(RY, ur) for all € > 0 again
and is bounded bounded by |f(k)|. Applying the dominated convergence theorem,
one gets

lim I.(z) = F*(f)(x) = (F* o F)(f)(x).

e—0t
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If, on the other hand, one first integrates the defining integral of I.(x) over k, one
gets

1) = s | S0 ey
- W / Fl— euexp(~" " ().

These integrands are bounded by || f|le exp(—|u|?/2) and applying dominated con-
vergence again, one obtains

lim Io(z) = f(x) = (F" o F)(f)(x).

e—0t

The equality F o F* = lgrny is obtained by the same argument after substitution
of k by —k.

5.|For a given € > 0 define the following functions

“ET(27)2 (po Fie + E,)(po F ie — E,)’
= 1
£ (21)2 (po F i€ + B,)(po + ie — E,)’
where E, = /m2+p2+p2+ps. Show that A := lim_+ pac, and AE

lim, 0+ pac, exist in S'(RY).

Show then that (0 +m?)A¢ = —6Y = (O — m?)AL.

By definition, for a given ¢ > 0, one has for f € S(R?),

pac, (f) = / AL, (p) f(p)pr(dp)

1 ) ]
= (27‘(‘)2 /R4 (po F e+ Ep)(p() T e — Ep)f<p)/~LL(dp)

1 1 B 1 < r(dp)
)2 /R4(<pme+Ep> (pme_Ep))f )5k,

_ B | of(p) , dp
= oy . Mot e = By) st i+ ) 5 Pl 7
_ - . Pf(p) , dp
CTE /R4 (po F ie + E,) (log(po Fie + E,) — 1) On0)? dpo 35,
1 : : *f(p) , dp
- (27)2 /?4(])0 F i€ — Ep) (log(po F ie — E,) — 1) (@02 dpo TR
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where log(z) = In(|z|) 4+ p.arg.(z). In this form, the limit ¢ — 0" may be taken and
I *fp) , d’p
AC(f) = — ¢ d
:I:(f) (271')2 \/R4 9+ (p) (apo)Q Po 2Ep

with g (p) = (o + E,) (In(lpo + Byl) — 1 £ % (sen(po + E,) — 1))

(o = B,) (1n(lpo — B,) = 1 £ 7 (sen(po — £,) — 1)) .

This function is piece-wise continuous, polynomially bounded and with jumps on
the hyperbolic naps py = +E,. Ai are therefore tempered distributions, which by
construction are weak* limits of the tempered distributions ¢ AC, -

Since multiplication of tempered distributions by continuous and polynomlally bounded

functions are operations which are also weak*-continuous, one has for any f €
S(RY),

(0 — ENAL(S) = AL — ;) ) = lim pac (05 — E;)S)

e—0F

, 1 1 .
=l (2m)? /R4 (po F i€ + Ep)(po F ie — Ej) (20 = B,) (Pl (dp)

- # /Rm(l{peR‘*:pS—Eg:O} - 1)f(p)uL(dp).

Since the set {p € R* : p2 — Eg = 0} is Lebesgue negligible, one has, after a Fourier
transform, that
OAS = 63"

1 0*f(p) , dp
= Gy /R4 gt (p) G P38

with g () = (po + By) (In(lpo + Epl) — 1 £ (snlpo + E;) — 1)

Similarly,

AF
+

~
S~~¢
SN—

(o = B,) (In(lpo — B,) = 1 F i (sen(po — £,) — 1))

6.| Consider the Schrodinger equation i9y1(t) = —5=AW(t) together with an L*(R®, )
solution ¥(¢) to it, i.e.:

o (1+pi+p3+p5)¥(0)(p) € L*(R, i),

e VtER (D)) = exp(~iEEEE)T(0) ().

Suppose supp(¥(0)) C B(0,7). What may one conclude on supp(¥(t))?
(Hint: use Schwarz’s Paley & Wiener theorem).

Since (1+ p? + p2 + p2)T(0)(p) € L2(R®, 1), then both T(0)(p) € L2(R?, 1uz) and

(pt + 3 +p3)¥(0)(p) € L*(R?, pur).
Therefore, U(0) € L*(R*, p) by inverse Fourier transform and ¢y g is a tempered
distribution whose support lies in B(0, ) if supp(¥(0)) C B(0,r).
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Schwartz’s Paley & Wiener theorem hence applies and £(V(0),¢)(p) is an en-
tire fonction F(p + iy) for which there is some n € N so that |F(p + iy)| <

Crw(1+ |p+iy|)e™. Obviously, F(p +i0) = \17(0\)(19)
Set then Fy(p + iy) = exp(52(p + iy) - (p + iy))F(p + dy), which is clearly the

—

only analytical extension of Fy(p +i0) = U(t)(p). Clearly, Fi(p + iq) is entire and
|Fy(p+iq)| < Cpw(1+4 |p+iy|)"e+wPDlvl Note that the exponential term is not of
the type e”'¥: since W(0) is compact, ¥(t)(p) is entire and does not vanish outside
any ball B(0,r’) for any ' > 0.

.| Consider the relativistic Fourier transform f(p) := ﬁ Jea exp(—ip'nz) f(x)pr (dx). For
a fixed f € S(RY), let Cy :={y € R* : Vz € supp(f), y'nz < 0}.

Show that C/ is convex and that on p+iy € R+iC t, L(f,y)(p) is well-defined, holomorphic
and obeys the same estimates as in Paley & Wiener’s theorem, but for the exponential
term.

Let y,y € Cy. Then, for t € [0,1] and x € supp(f), (ty + (1 — t)y')'nx = ty'nx +
(1 —t)y'nz <0, so that ty + (1 — )y’ € C; again.
Now by definition, for p 4 iy € R+ iCY, one has

L)) = Gays | esp(ilo+ iv) o)/ @)
- o L, (i ) esply o))

and y - = being negative for all z € supp(f), this yields an integrand which is
again a Schwartz function. The Leibnitz integral criterion is therefore valid for
both variables p and y and C} being convex, differentiation with respect to y is
well-defined. A direct computation gives for some § € NY,

OL(f.y)(p) = 0) (27$N/2 /R N exp(—ip - ) exp(y - x) f(z)pr(dz)

_ W | Ohexp(=ip- @) exply - @) f ()pus (do)
_ W / (—id @) exp(—ip- ) exply - 2) f(2)us (da)
- _W / B exp(—ip-x) exply - @) f(x)puz (da)
_ _@W /R _exp(—ip- @) exp(y - @)f (e)ur (de) = ~i0)L(f.y)(p),

which is just the Cauchy-Riemann equation for L(f,y)(p) and proves it being holo-
morphic.
Let 2® be some monomial expression for « € NV and z = p + iy € RN +iC;. We
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then have by partiel integration:

L)) = | Gy |2 ool ) exply- )@ ds)

27T1N/z /R | ((0)707 exp(—ip - z) exp(y - x))f(m)uL(dx)‘

T

W/? (i) exply - ) ()0 f () ()|
1

= (2m)N/2 /RN (1+z- : )N Hel ur(d) [l vy o
Let us abbreviate this last number by Cy |, and observe, that for a given n € N,
N .
(1+1z])" < (1+;|zk|)” -y el

aeNﬁn

and Z (n—' (1+N)".

S (n—=laf)la!
<n

Hence,
1

LW < Ol 4 N e

8.| Use the previous exercice to show, that for f € S(R?) with sup(f) C Ry x R®, L(f,y)(p)
is holomorphic in py + iy if y € R% x {(0,0,0)}.

Show that if f € S(R*) with sup(f) C R=xR3, L*(f,y)(p) := L(f, —y)(—p) is holomorphic
in po + iy if y € RL x {(0,0,0)}.

Use this to show, that AY have causal supports.

Part [:

If sup(f) C Ry xR* and if y € R+ x {(0,0,0)}, then z-y < 0 for all z € supp(f) and
f(z)exp(—i(p+iy) - x) is a Schwartz function. By the previous exercice, L(f,y)(p)
is well-defined and holomorphic for yo € R%.

If sup(f) C R+ xR*and if y € R+ x {(0,0,0)}, then z-y > 0 for all z € supp(f) and
f(z)exp(i(p + 1y) - x) is a Schwartz function. By the previous exercice, L*(f,y)(p)
is well-defined and holomorphic for yo € R%.

The same holds for the relativistic Fourier transform once one replaces = - (p + iy)
by z'n(p + iy). Applying A{ to such a fonction yields

AS(F) = pac(Fp) = lim —- = Fo)e(dp)

e—0+ (27)2 /R4 (po Fie + E,)(po F ic — E,)

i L S W W90
B el—>o+ (27)? /R4 <(p0 Fie+ E,) (po Fie— Ep)> /() 2E,

It has already been proven that this limit exists and defines a tempered distribution.
For a given € > 0 this integral certainly is well-defined by the fast decrease of f.
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Therefore,

¢ = prolf = lim L ! — 1 f @
sl =eacf) = iy (27)? /R3 /R ((po Fie+ Ep)  (po Fic - Ep)) ﬂp)de?Ep'

Note that f(p) = £*(f,0)(p). The integral in py can now be computed by a contour
integral with yo € Ry: we chose a path v, = [—r,7] Ue,, where 7¢, is the anti-
trigonometric oriented path along the lower semi-circle centered in 0 of radius r in
the case of xg < 0 (in the case z¢ > 0, take for 7o, the trigonometric oriented path
along the upper semi-circle centered in 0 of radius r). Along this path we have

7{ ((z :Fiel—i— E,) (=¥ 2-61_ Ep)) L(f,—y)(—p)dz

Yr

N /_: ((po :FZtJrEp) ~ qut — Ep)) f(p)dpo

B ﬂ : - ! *(f,—rsin T COS ire”"
/0 ((re”wHEp) (Teig:Fie—Ep))E(f’ (6))(r cos(B) )ire™dp.

Since |L£*(f, —rsin(8))(rcos(f))| < Coy (1 + )72, the second integral goes to 0 if
r tends to infinity. But note, that the contour integral is 0 since all the poles lie
outside the path v,. Hence, AY(f) = 0 if supp(f) C Rz x R%.

Part I1:

Suppose now that the support of f is such that x € supp(f) <= n'nz < 0 for
some n € R* with n'nn = 1, ng € Ry. There is then a Lorentz transformation
A € O(1,3) so that n’ := An = (£1,0,0,0) and the function g(z') := f(A~'2’) is
such that supp(g) C R% X R3. Note also, that

v/_l X‘/t/ / /:1 X-/t/ -1,/ /
1) = g5z | explia" m)ale!us(de') = s | exliaap!) F(A' g ()
= G L el @ (dz) = o) = FO).

Therefore,
¢ =prclf = lim L —! f
AL = esgF0) = Jim oo | e T
. 1 -1 .
- 61;%1 (2m)? /R4 pinp F 2iepg — €2 — mzf(me(dp)
. 1 -1 .
- elg(g (2m)? /R4 ptnp — 2ie(An)tnp — €2 — m2f(p)ﬂL(dp)
—im L = FAT)IA s ()
- )2 Jos (A1) = 2ie(An)u(A1p)) — & — m?

1 —1
= ]_ pet
0+ (2m)? /R4 ptnp’ — 2ie(A%n)inp’ — €2 — m2?

The poles of this integrand for the variable pj lie at

(p)pur(dp").

ie(A*n)'ney + \/—62((A2n)7760)2 + €2 + B2 + 2ie(A%n)npl,
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where ey := (1,0,0,0) and p), := p’ — pjep. The imaginary part of these new poles
are

2
\/ —e2((A2n)neg)2+e2+E2, ) +(2ie(A2n)tnpl ) 2 +e2((A%n)neg)? -2 — B2,
e(A’n)'neg & \/ ( 2) > =

For these numbers we have the estimations

2
2((A2 21242 2,0t ! V242 (A2 2_.2_p2
2 N\t \/ —e2((A2n)neg)2+e2+E2, ) +(2e(A2n)lnpl) " +e (A*n)neg)® —e? —E2,
|e(A"n) neo| > \/ ( p) 2 :

2
—52((A2n)neo)2+62+E127,> +(26(A2n)t7m’s)2+e2((A2n)neO)2—e2—Ei,

(A V1 ;

= (e(A’n)'ney)” + € + Ey >\/ (~e2(2mmeo)? +e+ B2, )+ e(h2n) mrt )
— (eQ(AQn)tneg)2 + e+ E§/)2 > (—62((A2n)7760)2 + e+ E§/)2 + (26(A2n)tnp’s)2
= ¢ ((AQn)tneo)2 (€ +E2) > (e(AZn)tnp’s)Q.
This last inequality certainly holds: indeed, since n'nn = 1 and since A? is again

a Lorentz transformation, one has that (A?n)'n(A*n) = 1. Therefore, if we denote
A2n — (A2n)oeo by (A2n),, ((A2n)'ney)” = 1+ |(A2n),]? and we get

2 2 2
((A*n)'neo)” (€ + Ep) > ((A*n)'neo)” By > [(A*n)s[*|pl]* = ((A*n)'np,)".
Hence the imaginary parts of the poles

ie(A’n)'ney & \/—€2<<A2n>77€0)2 + €2 + B2 + 2ie(A%n)tnp,

have the same sign as €(A?n)'ney. This sign is the same as sgn((A%n)y) = sgn(ng).
In conclusion, the poles of

_ 1 / -1

lim .
e—0t (2m)% Jra pltnp’ — 2ie(A%n)inp’ — €
lie in the upper (lower) complex plane and we are in the same situation as in part
I: after performing a contour integral in the lower (upper) complex plane in order
to compute de integral over py, we get AY(f) = 0.

0 ()

Part 111:

Having established that AY(f) = 0 for any test function f so that = € supp(f) <=
ntnxz < 0 for some n € R* with n'nn = 1, ny € R4, we can conclude that by definition
of the support for distributions, supp(A%) C LCL, where LC. are the future (past)
light cones.

9.| A solution to the Cauchy problem
O +m*)e=0, ¢0)=f and (9p)(0) = f;, [ fieS R

is a function ¢ : R — &'(R3), so that lim, M = ¢(t) and lim,_, M =
©u(t) exist in the weak*-topology and so that ¢ (t) — Ap(t) + m?p(t) = 0.

Use Schwartz’s Paley & Wiener theorem to show, that if both f and f; have compact
support, then ¢(t) has causal support.

What happens if one considers positive and negative energy frequencies separately?”
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Let us find a function R 3 ¢ — ¢(t) € S'(R?) which is a solution to (O + m?)p = 0
and satisfies the initial conditions ¢(0) = f and ¢(0) = f;, where both f(x) and
fi(x) are compactly supported tempered distributions.

We know then by Schwartz’s Paley & Wiener theorem, that f and ﬁ are (integration
against) entire functions satisfying

1f(p+ i)l |fi(p+iq)| < Cn(1 + |p+ig)™ exp(rlq]),

where Cy > 0 is some constant and r > 0 is the radius of some open ball B(0, )
containing the supports of both f and f;.
For each fixed ¢, the Fourier transform ¢(t) satisfies the equation

d? . d2 R ~
(Gz+p p+m)i(t) =0 < —54(t) = —(p-p+m)P(),
$(0) = ¢y, A(0) = @5,

For a fixed value for p, the general solution to this second order linear differential
equation becomes

p(t) = Peos(Ept)f (p)+ 2 sin(Ept) 1 (p)
where E, = /p - p + m?. This last function is not entire in p because the square root

is not holomorphic in z = 0. But, once the trigonometric functions are expanded in
their series, it yields

cos(E,t) f(p) + Ei sin(Ept)ﬁ(p)

- (;mw%) i+ (;ew%) )
- @(—n“(m L ) fo) + (Zg(—l)"(”(;ﬁ — ) o).

displaying explicitly the entirety of the solution in the variable p.
It remains to be shown that the module of this solution is exponentially bounded.
In order to do so, we write @(t) = pr with

. eiEp+iqt N . o~ .
F(p+iq) = o (Ep+z-qf (p+iq) —ifi(p+ ZQ))
p+iq
e*iEqut ~ ~
+— <Ep+iqf (p+iq) +ifi(p+ iQ)>
2Ep+iq

< 6t|1m(Ep+iq)‘

where E, i, = \/m? +p-p—q-q+ 2ip- . Observe now, that [¢*r+ia!
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and that

(Epig)| <lgl <= [m(v/m?+p-p—q-q+2ip-q)| <lq
‘\/\/(m2 + 1Pl — lal?)? +4lp - 9)* — (m? + |p* — [a?)] _
: <
VO o PP A4 — (0 + ol Jaf)
2

= VM2 p2—g?)? +4(p-9? <m?+ |p* + g

= (m*+pl* = 1g*)? +4p-9)? < (m* + |p* + |g*)’
= =2(m® + [pI)|g* + lgl* +4(p - 9)* < 2(m* + |p*)g|* + g

<~ (p-q)® <m?|q]*+ la’Ip?,

—

lq|

— < gl

which is always the case. Hence,

1 . .
|[F(2)] < (|| 4 e Freat

) (170 -+ i0)| + | Epriafulp + ia)]
< N1+ [p +ig))N (1 + | Epyigl )
< eMCn (14 Ip+ig)N (14 m + [p+ig|)e"
< Cn(1+m)(1+ |p+ig)) N+l

which shows that at time ¢, the support of ¢(t) is a subset of B(0,r + t). The
solution is hence causal.
Note that the solution can be split into negative and positive energy parts:

. etEp+iat . . -~ .
negative part: Z (Ep+iqf(p +iq) —ifi(p+ zq)) ,
p+iq
N e~ Ep+igt 5 . -~ .
positive part: SE <Ep+iqf(p +iq) + ifi(p+ zq)) .
pt+iq

None of these are holomorphic, even for t = 0 (unless f; = 0). Consequently, none
of them can have compact support. Even in the case where f; = 0, and f has
compact support, the positive part with frequency will have non-compact support
at any given time t > 0. It is therefore relativistically inconsistent to view p(t) as a
wave function. This is one of the reasons one needs to consider them as fields and
step away from wave-functions when aspiring to a relativistic theory of quantum
physics.

Let f, f; € S(R®) and show, that the solution obtained in this case by the previous exercice
reads

Lim ((DAT) # (di(t)f) + AT * (di(t) 1))

where (di)ren+ C S(R) is a Dirac sequence.

What happens when one substitutes Ag by AY or AF?

(Hints: compute the Fourier transform of the convolution of a tempered distribution with
a test function. Apply Paley & Wiener’s theorem to the Dirac sequence and use a contour
integral on py.)
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For a tempered distribution ¢ € S'(RY) and test functions f,g € S(RY), one has
Flox )g) = (9 x )G) = o(P'(f) ¥ §) = o(F o F*(P(f) ¥ 9))
= 2m)"?o(F(fg)) = 2m)"*F(9)(f9).
= o] =0)"]p.
Therefore,
F ((DAS) # (di(t)f)) = (27)2def (po, p) F(DAS) = (27)%di f (po, p)ipoAS

F(AS % (d(t)£)) = (27)?di fu(po, P)AS.

Note that the functions dy f and dj f; have separated variables, so that

dif(posp) = di(po) f(p) and  difi(po,p) = di(po) fu(p)-

By Paley & Wiener’s theorem, one has for fixed £ € N*, that c/l;c is an entire function
satisfying

¥n €N, IChn sit. |di(po +iqo)| < Cron(L + |po + igol) "er!l,
since supp(dy) C B(0, 1). Using the definition of Ag one gets for a fixed k € N*
F ((DAS) * (di(8)f) + A * (di(t) fr) = lim oF.pop) ~ With

di(po) dx (o) ) i

Fe 5 - - .
(po p) <(p0 —€+ Ep) (po — i€ — Ep) 2E,

(rof () = iFi0))

This is a bona fide Schwartz function if € > 0. Continuity of the Fourier transform
for the weak*-topology implies

(DyAS) * (di(t)f) + A * (di(t) fr) = 1_1>1(1)1+ Ch(ta) With

§ o dAk(pO) dAk(po) pitpo—izp X . )
)= oy /R4 ((po —ie+E,)  (po—ic— Ep)> 2, (pOf(p) - th(p)) dpod’p-

By Fubini’s theorem, one may proceed with the integration over pq first. In this
variable the integrand is holomorphic and we shall use a countour integral.
For a fixed (¢,7) € R* and ¢ > 0 chose a k € N* large enough so that % < t. For such

ak, exlwol=tao wi]] decay exponentially fast to 0, if g > 0, i.e. if we chose a contour
along po and closing it anti-clockwise along the upper semi-circle in the complex
plane. This contour integral will hence pick the poles py + iqy = £E, + ie.

For a fixed (t,2) € R* and ¢ < 0 chose a k € N* large enough so that < —t. For

such a k, exlwol=ta0 i]) decay exponentially fast to 0, if ¢o < 0, i.e. if we chose a
contour along py and closing it clockwise along the lower semi-circle in the complex
plane. This contour integral will hence pick no poles. Consequently,

e—ix-deP

/ (@(_Ep)eiitEp (Epf(P)+iﬁ (P))‘FE;(Ep)eitEp (Epf(P)—iﬁ (P))) 35,
R3

lim £.(t2) — O(t)—

e—0+ 27
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Taking the limit when k goes to oo and using the fact that for a Dirac sequence
(d)pens, limy, dk(pg) W’ we get

liin ((DyAD) * (de() f) + A = (di(t) f2))
- (z(?r()?/z /R (e (Bpf ) = iJuw)) + "5 (B, f(0) + ifu(p)) ) #7

p

which for ¢ > 0 is just the spatial Fourier transform of the solution found in the
previous exercice.

If one uses AY instead, one gets the poles in the lower complex half-plane, meaning
that the contour integrals must be reversed and one has

lim ((DiAS) * (di(6)f) + A # (di(1) f2))

= % /R 3 (5 (Bpf0) = i) + 5 (B, f ) +ifi0) ) %

p

Finally, using AL, one has to close the contour anti-clockwise in the upper (clockwise
in the lower) semi-circle for t > 0 and clockwise in the lower (anti-clockwise in the
upper) semi-circle for ¢ < 0. In doing so, one selects the positive energy part and
propagates it in the future, whereas the negative energy part is propagated in the
past:

lim (DAL % (di(t) f) + Afm x (de(t) )

- 85;32 /Rd —ztEp< E,f(p )+z‘ﬁ(p)) %

p

- (- )

p

As already noticed in the previous exercice, separating the positive and negative
energy parts results in two non-causal solutions. This is consistent with the non-
causal support of AL,

Remark: In physics, the computation in this exercice is usually denoted by
[ A= nb iy
= [ (A= 00,1 = F0)0u Az = ) &y
— [ (8= 000 ) + F0)0n A — ) .

where A stands for A{ or AL, Setting aside the exact meaning of the variables in
A(x —1y), there is still the problem of integrating over R3: this should be an integral
over R%, since A is a tempered distribution in R*. This problem may be dealt with
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by inserting a Dirac sequence (dx(yo))ren+:
/3 A(r =)Dy f(0)dy
R

=lim | di(yo) (A(x = 9)3y f(y) + f()0u Az — y)) d'y

k R3

= lim (A * (i, f + (D) * (dif)))

which is the mathematical rigourous expression.



