
EPFL - Physics’ section Mathematical methods in quantum physics

Solutions to exercice sheet 3

Fourier transforms

1. Prove that if an associative multiplication × on S ′(R) satisfies

• ∀φ ∈ S ′(R), φ0 × φ = φ0 and φ× φ1 = φ = φ1 × φ,
• for any polynomially bounded and µL-measurable functions f, g,

φf × φg = φfg and φf+g = φf + φg,

• for any polynomially bounded and µL-measurable functions f, g,

f(x) =

∫ x

0

g(t)µL(dt) ⇒ Dφf = φg,

• ∀φ, η ∈ S ′(R), D(φ× η) = (Dφ)× η + φ× (Dη),

then φxδ0 = φ0 = δ0 × φx and φx × P.v.( 1
x
) = φ1, where δ0 = DφΘ and P.v.( 1

x
) =

D2(x(ln(|x|)− 1).

Denote the Heavyside function 1R+(x) by Θ(x). One has

φ0 = φΘ − φΘ = D(φ0∨x)− φΘ = D(φx × φΘ)− φΘ

= D(φx)× φΘ + φx ×D(φΘ)− φΘ

= φ1 × φΘ + φx × δ0 − φΘ = φx × δ0,

φ0 = φΘ − φΘ = D(φ0∨x)− φΘ = D(φΘ × φx)− φΘ

= D(φΘ)× φx + φΘ ×D(φx)− φΘ

= δ0 × φx + φΘ × φ1 − φΘ = δ0 × φx,

φx × p.v.(
1

x
) = φx ×D2(φx(ln(|x|)−1))

= D(φx ×Dφx(ln(|x|)−1))−D(φx)×Dφx(ln(|x|)−1)

= D2(φx × φx(ln(|x|)−1))−D((Dφx)× φx(ln(|x|)−1))− φ1 ×Dφx(ln(|x|)−1)

= D2(φx2(ln(|x|)−1))−D(φ1 × φx(ln(|x|)−1))− φ1 ×Dφx(ln(|x|)−1)

= D(φ2x(ln(|x|)−1)+x)− φ1 ×D(φx(ln(|x|)−1))− φ1 ×Dφx(ln(|x|)−1)

= D(2φx(ln(|x|)−1)) + φx)− 2D(φx(ln(|x|)−1)) = Dφx = φ1.
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2. Prove the Leibnitz integral rule:

Let U ⊂ R be open, and let (X,Σ, µ) be a measure space. Suppose f : U × X → K
satisfies:

• For each t ∈ U , f ∈ L1(X,µ),

• there is a µ-null set N ∈ Σ, so that ∂tf(t, x) exists ∀t ∈ U and ∀x ∈ X \N ,

• ∀t ∈ U , ∃r > 0, ∃gt,r ∈ L1(X,µ), s.t. |∂sf(s, x)| ≤ gt,r ∀s ∈]t − r, t + r[ and
∀x ∈ X \N .

Then d
dt

∫
X
f(t, x)dµ =

∫
X\N ∂tf(t, x)dµ.

Use the Leibnitz integral rule to show, that ∂αf̂(x)(p) = ̂(−ix)αf(x)(p) and that

(ip)αf̂(x)(p) = ∂̂αf(x).

By the first property, I(t) :=
∫
X
fdµ exists for all t ∈ U .

Let t ∈ U be fixed and consider h ∈ R with |h| < r, with r given by the third
property. Then by Rolle’s theorem and for a µ-null set N ∈ Σ given by the second
property, one has

1

h
(I(t+ h)− I(t)) =

∫
X

1

h
(f(t+ h, x)− f(t, x)) dµ

=

∫
X\N

1

h
(f(t+ h, x)− f(t, x)) dµ =

∫
X\N

(∂tf)(τ, x)dµ.

for some |τ | < h. By the third criterion, the integrand is bounded by the L1-function
gr,t on all of X \N , so that one may apply dominated convergence to get

d

dt
I(t) = lim

h→0

∫
X\N

1

h
(f(t+ h, x)− f(t, x)) dµ =

∫
X\N

∂tf(t, x)dµ.

If f ∈ S(RN) and if δ ∈ NN
=1, then for k · δ ∈ R and fixed values of k · (1 − δ), one

has that exp(−ik ·x)f(x) satisfies all the criterions for Leibnitz’s integral rule (note
that N may be even chosen to be the empty set and r as large as desired). Hence,

∂δf̂(p) =
d

d(δ · k)

∫
RN

exp(−ik · x)f(x)µL(dx)

=

∫
RN

∂δk exp(−ik · x)f(x)µL(dx) =

∫
RN

(−ix)δ exp(−ik · x)f(x)µL(dx).

By iteration on δ, one has the announced result for any α ∈ NN .
Applying integration by parts yields the second equality.

3. Prove that the Fourier transform is a continuous endomorphism on S(RN).
(Hint: use continuity of the maps ∂α and (−ix)α previously proven.)

For f ∈ S(RN), one has∣∣∣f̂(p)∣∣∣ ≤ ∫
RN

| exp(−ip · x)f(x)|µL(dx)

≤
∫

RN

(1 + x · x)−N |(1 + x · x)Nf(x)|µL(dx) ≤
(∫

RN

(1 + x · x)−NµL(dx)

)
|||f |||N .
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Therefore, ∥f̂∥∞ ≤
(∫

RN (1 + x · x)−NµL(dx)
)
|||f |||N . By continuity of the maps ∂α

and xβ (see previous exercice sheet), one has for n ∈ N and α ∈ NN
≤n,

∥(1 + p · p)n∂αf̂∥∞ = ∥ ̂(1−∇ · ∇)n ((−ix)αf(x))∥∞

≤
(∫

RN

(1 + x · x)−NµL(dx)

)
|||(1−∇ · ∇)n ((−ix)αf(x))|||N

=

(∫
RN

(1 + x · x)−NµL(dx)

) ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣(

n∑
k=0

(−1)n−k

(
n

k

)
∆k) ((−ix)αf(x))

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
N

≤
(∫

RN

(1 + x · x)−NµL(dx)

) n∑
k=0

(
n

k

)∣∣∣∣∣∣∆k ((−ix)αf(x))
∣∣∣∣∣∣

N

=

(∫
RN

(1 + x · x)−NµL(dx)

) n∑
k=0

(
n

k

)∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
 ∑

β∈NN
=k

k!

β!
∂2β

 ((−ix)αf(x))

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
N

≤
(∫

RN

(1 + x · x)−NµL(dx)

) ∑
β∈NN

≤n

(
n

|β|

)
|β|!
β!

∣∣∣∣∣∣∂2β ((−ix)αf(x))∣∣∣∣∣∣
N

≤
(∫

RN

(1 + x · x)−NµL(dx)

) ∑
γ∈NN+1

=n

n!

γ!
|||(−ix)αf(x)|||N+2n

≤
(∫

RN

(1 + x · x)−NµL(dx)

)
(N + 1)n

(
N + n

n

)
α!|||f(x)|||N+2n+|α|.

This shows, that for a given n ∈ N and a fixed α ∈ NN , (1 + p · p)n∂αf̂ remains
bounded in p ∈ N. Therefore, f̂(p) ∈ S(RN).
Taking the supremum over all p ∈ N and α ∈ NN yields∣∣∣∣∣∣∣∣∣f̂ ∣∣∣∣∣∣∣∣∣

n
≤
(∫

RN

(1 + x · x)−NµL(dx)

)
(N + 1)n

(
N + n

n

)
n!|||f(x)|||N+3n,

which shows continuity of F for τS .

4. Use a contour integral to prove that

F(exp(−x · x
2

))(p) = exp(−p · p
2

).

Consider then for ϵ > 0 the integrals

Iϵ(x) :=
1

(2π)N

∫
R2N

f(y) exp(ik · (x− y)) exp(−ϵ2k · k
2

)µL(dk × dy).

Use Fubini and dominated convergence, to prove that

F ◦ F∗ = 1S(RN ) = F∗ ◦ F .

The function exp(− z2

2
) is certainly analytical over the whole complex plane (hence

it is an entire function). Any integration
∮
γ
f(z)dz over a closed contour γ ⊂ C is
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therefore going to be 0. In particular, this is true if γ = γh1 ∪ γv1 ∪ γh2 ∪ γv2 with
γh1 := [−R,R], γh2 := ia + [−R,R], γv1 := [R,R + ia] and γv2 := [−R + ia,−R].
It is however easy to see, that

∣∣∣ ∮γvj exp(−z2/2)dz∣∣∣ ≤ exp(−R2/2)|a| exp(a2/2) for

j = 1, 2, so that for a fixed value of a limR→∞
∮
γvj

exp(−z2/2)dz = 0 for j = 1, 2

and consequently,

lim
R→∞

∫ R

−R

exp(−x
2

2
)dx = lim

R→∞

∫ R

−R

exp(−(x+ ia)2

2
)dx.

Now, consider the one-dimensional Fourier transform

1√
2π

∫
R
exp(−ikx) exp(−x

2

2
)µL(dx) = lim

R→∞

1√
2π

∫ R

−R

exp(−ikx) exp(−x
2

2
)dx

= lim
R→∞

1√
2π

∫ R

−R

exp(−1

2
(x2 + 2ikx))dx = lim

R→∞

1√
2π

∫ R

−R

exp(−1

2
(x+ ik)2 − k2

2
)dx

= lim
R→∞

exp(−k
2

2
)

1√
2π

∫ R

−R

exp(−1

2
x2)dx.

To conclude, it remains to show, that I := 1√
2π

∫
R exp(−

1
2
x2)µL(dx) = 1. In order

to do this, we compute

I2 =
1

2π

∫
R
exp(−1

2
x2)µL(dx)

∫
R
exp(−1

2
y2)µL(dy)

=
1

2π

∫
R2

exp(−1

2
(x2 + y2))µL(dx× dy) =

1

2π

∫
R+

∫ 2π

0

exp(−1

2
r2)rµL(dr × dθ)

=

∫
R+

exp(−1

2
r2)rµL(dr) = − exp(−r2/2)

∣∣∣∞
0

= 1.

From this we derive the multi-dimensional case

F(exp(−x · x
2

))(p) =
1

(2π)N/2

∫
RN

exp(−ip · x) exp(−x · x
2

)µL(dx)

=
N∏
j=1

1

(2π)1/2

∫
RN

exp(−ipjxj) exp(−
x2j
2
)µL(dxj) = exp(−p · p

2
).

For ϵ > 0, consider now the auxiliary integrals

Iϵ(x) :=
1

(2π)N

∫
R2N

f(y) exp(ik · (x− y)) exp(−ϵ2k · k
2

)µL(dk × dy).

The integrand is certainly in L1(R2N , µL) for all ϵ > 0. We may apply Fubini’s
theorem to chose to integrate over y first and obtain

Iϵ(x) =
1

(2π)N/2

∫
RN

f̂(k) exp(ik · x) exp(−ϵ2k · k
2

)µL(dk).

Since f̂ ∈ S(RN), we have that the integrand is in L1(RN , µL) for all ϵ > 0 again
and is bounded bounded by |f̂(k)|. Applying the dominated convergence theorem,
one gets

lim
ϵ→0+

Iϵ(x) = F∗(f̂)(x) = (F∗ ◦ F)(f)(x).
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If, on the other hand, one first integrates the defining integral of Iϵ(x) over k, one
gets

Iϵ(x) :=
1

(2πϵ2)N/2

∫
RN

f(y) exp(−(x− y) · (x− y)
2ϵ2

)µL(dy)

=
1

(2π)N/2

∫
RN

f(x− ϵu) exp(−u · u
2

)µL(du).

These integrands are bounded by ∥f∥∞ exp(−|u|2/2) and applying dominated con-
vergence again, one obtains

lim
ϵ→0+

Iϵ(x) = f(x) = (F∗ ◦ F)(f)(x).

The equality F ◦ F∗ = 1S(RN ) is obtained by the same argument after substitution
of k by −k.

5. For a given ϵ > 0 define the following functions

∆̂C
ϵ,± :=

−1
(2π)2

1

(p0 ∓ iϵ+ Ep)(p0 ∓ iϵ− Ep)
,

∆̂F
ϵ,± :=

−1
(2π)2

1

(p0 ∓ iϵ+ Ep)(p0 ± iϵ− Ep)
,

where Ep =
√
m2 + p21 + p22 + p23. Show that ∆̂C

± := limϵ→0+ φ∆̂C
ϵ,±

and ∆̂F
± :=

limϵ→0+ φ∆̂C
ϵ,±

exist in S ′(R4).

Show then that (□+m2)∆C
± = −δ(4)0 = (□−m2)∆F

±.

By definition, for a given ϵ > 0, one has for f ∈ S(R4),

φ∆̂C
ϵ,±

(f̌) =

∫
R4

∆̂C
ϵ,±(p)f̌(p)µL(dp)

=
1

(2π)2

∫
R4

−1
(p0 ∓ iϵ+ Ep)(p0 ∓ iϵ− Ep)

f̌(p)µL(dp)

=
1

(2π)2

∫
R4

(
1

(p0 ∓ iϵ+ Ep)
− 1

(p0 ∓ iϵ− Ep)

)
f̌(p)

µL(dp)

2Ep

=
1

(2π)2

∫
R4

(log(p0 ∓ iϵ− Ep)− log(p0 ∓ iϵ+ Ep))
∂f̌(p)

∂p0
dp0

d3p

2Ep

=
1

(2π)2

∫
R4

(p0 ∓ iϵ+ Ep) (log(p0 ∓ iϵ+ Ep)− 1)
∂2f̌(p)

(∂p0)2
dp0

d3p

2Ep

− 1

(2π)2

∫
R4

(p0 ∓ iϵ− Ep) (log(p0 ∓ iϵ− Ep)− 1)
∂2f̌(p)

(∂p0)2
dp0

d3p

2Ep

,
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where log(z) = ln(|z|) + p.arg.(z). In this form, the limit ϵ→ 0+ may be taken and

∆̂C
±(f̂) =

1

(2π)2

∫
R4

gC±(p)
∂2f̌(p)

(∂p0)2
dp0

d3p

2Ep

with gC±(p) = (p0 + Ep)
(
ln(|p0 + Ep|)− 1± iπ

2
(sgn(p0 + Ep)− 1)

)
−(p0 − Ep)

(
ln(|p0 − Ep|)− 1± iπ

2
(sgn(p0 − Ep)− 1)

)
.

This function is piece-wise continuous, polynomially bounded and with jumps on
the hyperbolic naps p0 = ±Ep. ∆̂C

± are therefore tempered distributions, which by
construction are weak∗ limits of the tempered distributions φ∆̂C

ϵ,±
.

Since multiplication of tempered distributions by continuous and polynomially bounded
functions are operations which are also weak∗-continuous, one has for any f ∈
S(RN),

(p20 − E2
p)∆̂

C
±(f̌) = ∆̂C

±((p
2
0 − E2

p)f̌) = lim
ϵ→0+

φ∆̂C
ϵ,±

((p20 − E2
p)f̌)

= lim
ϵ→0+

1

(2π)2

∫
R4

−1
(p0 ∓ iϵ+ Ep)(p0 ∓ iϵ− Ep)

(p20 − E2
p)f̌(p)µL(dp)

=
1

(2π)2

∫
R4

(1{p∈R4 : p20−E2
p=0} − 1)f̌(p)µL(dp).

Since the set {p ∈ R4 : p20−E2
p = 0} is Lebesgue negligible, one has, after a Fourier

transform, that
□∆C

± = δ
(4)
0 .

Similarly,

∆̂F
±(f̌) =

1

(2π)2

∫
R4

gF±(p)
∂2f̌(p)

(∂p0)2
dp0

d3p

2Ep

with gF±(p) = (p0 + Ep)
(
ln(|p0 + Ep|)− 1± iπ

2
(sgn(p0 + Ep)− 1)

)
−(p0 − Ep)

(
ln(|p0 − Ep|)− 1∓ iπ

2
(sgn(p0 − Ep)− 1)

)
.

6. Consider the Schrödinger equation i∂tψ(t) = − 1
2m

∆Ψ(t) together with an L2(R3, µL)
solution Ψ(t) to it, i.e.:

• (1 + p21 + p22 + p23)Ψ̂(0)(p) ∈ L2(R3, µL),

• ∀t ∈ R, Ψ̂(t)(p) = exp(−i t(p
2
1+p22+p23)

2m
)Ψ̂(0)(p).

Suppose supp(Ψ(0)) ⊂ B(0, r). What may one conclude on supp(Ψ(t))?
(Hint: use Schwarz’s Paley & Wiener theorem).

Since (1 + p21 + p22 + p23)Ψ̂(0)(p) ∈ L2(R3, µL), then both Ψ̂(0)(p) ∈ L2(R3, µL) and

(p21 + p22 + p23)Ψ̂(0)(p) ∈ L2(R3, µL).
Therefore, Ψ(0) ∈ L2(R3, µL) by inverse Fourier transform and φΨ(0) is a tempered
distribution whose support lies in B(0, r) if supp(Ψ(0)) ⊂ B(0, r).
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Schwartz’s Paley & Wiener theorem hence applies and L(Ψ(0), q)(p) is an en-
tire fonction F (p + iy) for which there is some n ∈ N so that |F (p + iy)| ≤
Cn,Ψ(1 + |p+ iy|)ner|y|. Obviously, F (p+ i0) = Ψ̂(0)(p).
Set then Ft(p + iy) := exp(−it

2m
(p + iy) · (p + iy))F (p + iy), which is clearly the

only analytical extension of Ft(p + i0) = Ψ̂(t)(p). Clearly, Ft(p + iq) is entire and
|Ft(p+ iq)| ≤ Cn,Ψ(1+ |p+ iy|)ne(r+

t
m
|p|)|y|. Note that the exponential term is not of

the type er
′|y|: since Ψ(0) is compact, Ψ̂(t)(p) is entire and does not vanish outside

any ball B(0, r′) for any r′ > 0.

7. Consider the relativistic Fourier transform f̂(p) := 1
(2π)2

∫
R4 exp(−iptηx)f(x)µL(dx). For

a fixed f ∈ S(R4), let Cf := {y ∈ R4 : ∀x ∈ supp(f), ytηx ≤ 0}.
Show that Cf is convex and that on p+iy ∈ R+iC̊f , L(f, y)(p) is well-defined, holomorphic
and obeys the same estimates as in Paley & Wiener’s theorem, but for the exponential
term.

Let y, y′ ∈ Cf . Then, for t ∈ [0, 1] and x ∈ supp(f), (ty + (1 − t)y′)tηx = tytηx +
(1− t)y′tηx ≤ 0, so that ty + (1− t)y′ ∈ Cf again.
Now by definition, for p+ iy ∈ R + iCf , one has

L(f, y)(p) = 1

(2π)N/2

∫
RN

exp(−i(p+ iy) · x)f(x)µL(dx)

=
1

(2π)N/2

∫
RN

exp(−ip · x) exp(y · x)f(x)µL(dx)

and y · x being negative for all x ∈ supp(f), this yields an integrand which is
again a Schwartz function. The Leibnitz integral criterion is therefore valid for
both variables p and y and Cf being convex, differentiation with respect to y is
well-defined. A direct computation gives for some δ ∈ NN

=1

∂δpL(f, y)(p) = ∂δp
1

(2π)N/2

∫
RN

exp(−ip · x) exp(y · x)f(x)µL(dx)

=
1

(2π)N/2

∫
RN

∂δp exp(−ip · x) exp(y · x)f(x)µL(dx)

=
1

(2π)N/2

∫
RN

(−iδ · x) exp(−ip · x) exp(y · x)f(x)µL(dx)

= −i 1

(2π)N/2

∫
RN

∂δy exp(−ip · x) exp(y · x)f(x)µL(dx)

= −i∂δy
1

(2π)N/2

∫
RN

exp(−ip · x) exp(y · x)f(x)µL(dx) = −i∂δyL(f, y)(p),

which is just the Cauchy-Riemann equation for L(f, y)(p) and proves it being holo-
morphic.
Let zα be some monomial expression for α ∈ NN and z = p + iy ∈ RN + iCf . We
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then have by partiel integration:

|zαL(f, y)(p)| =
∣∣∣ 1

(2π)N/2

∫
RN

zα exp(−ip · x) exp(y · x)f(x)µL(dx)
∣∣∣

=
∣∣∣ 1

(2π)N/2

∫
RN

((i)α∂αx exp(−ip · x) exp(y · x)) f(x)µL(dx)
∣∣∣

=
∣∣∣ 1

(2π)N/2

∫
RN

exp(−ip · x) exp(y · x)(−i)α∂αx f(x)µL(dx)
∣∣∣

≤ 1

(2π)N/2

∫
RN

1

(1 + x · x)N+|α|µL(dx)|||f |||N+|α|.

Let us abbreviate this last number by Cf,|α| and observe, that for a given n ∈ N,

(1 + |z|)n ≤ (1 +
N∑
k=1

|zk|)n =
∑

α∈NN
≤n

n!

(n− |α|)!α!
|zα|,

and
∑

α∈NN
≤n

n!

(n− |α|)!α!
= (1 +N)n.

Hence,

|L(f, y)(p)| ≤ Cf,n(1 +N)n
1

(1 + |p+ iy|)n
.

8. Use the previous exercice to show, that for f ∈ S(R4) with sup(f) ⊂ R± × R3, L(f, y)(p)
is holomorphic in p0 + iy if y ∈ R∗

∓ × {(0, 0, 0)}.
Show that if f ∈ S(R4) with sup(f) ⊂ R∓×R3, L∗(f, y)(p) := L(f,−y)(−p) is holomorphic
in p0 + iy if y ∈ R∗

∓ × {(0, 0, 0)}.
Use this to show, that ∆C

± have causal supports.

Part I:
If sup(f) ⊂ R±×R3 and if y ∈ R∓×{(0, 0, 0)}, then x ·y ≤ 0 for all x ∈ supp(f) and
f(x) exp(−i(p+ iy) · x) is a Schwartz function. By the previous exercice, L(f, y)(p)
is well-defined and holomorphic for y0 ∈ R∗

∓.
If sup(f) ⊂ R∓×R3 and if y ∈ R∓×{(0, 0, 0)}, then x ·y ≥ 0 for all x ∈ supp(f) and
f(x) exp(i(p+ iy) · x) is a Schwartz function. By the previous exercice, L∗(f, y)(p)
is well-defined and holomorphic for y0 ∈ R∗

∓.

The same holds for the relativistic Fourier transform once one replaces x · (p + iy)
by xtη(p+ iy). Applying ∆C

± to such a fonction yields

∆C
±(f) = φ∆̂C

±
(f̌(p)) = lim

ϵ→0+

1

(2π)2

∫
R4

−1
(p0 ∓ iϵ+ Ep)(p0 ∓ iϵ− Ep)

f̌(p)µL(dp)

= lim
ϵ→0+

1

(2π)2

∫
R4

(
1

(p0 ∓ iϵ+ Ep)
− 1

(p0 ∓ iϵ− Ep)

)
f̌(p)

µL(dp)

2Ep

.

It has already been proven that this limit exists and defines a tempered distribution.
For a given ϵ > 0 this integral certainly is well-defined by the fast decrease of f̌ .
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Therefore,

∆C
±(f) = φ∆̂C

±
(f̌(p)) = lim

ϵ→0+

1

(2π)2

∫
R3

∫
R

(
1

(p0 ∓ iϵ+ Ep)
− 1

(p0 ∓ iϵ− Ep)

)
f̌(p)dp0

d3p

2Ep

.

Note that f̌(p) = L∗(f, 0)(p). The integral in p0 can now be computed by a contour
integral with y0 ∈ R∓: we chose a path γr = [−r, r] ∪ γCr , where γCr is the anti-
trigonometric oriented path along the lower semi-circle centered in 0 of radius r in
the case of x0 < 0 (in the case x0 > 0, take for γCr the trigonometric oriented path
along the upper semi-circle centered in 0 of radius r). Along this path we have∮

γr

(
1

(z ∓ iϵ+ Ep)
− 1

(z ∓ iϵ− Ep)

)
L(f,−y)(−p)dz

=

∫ r

−r

(
1

(p0 ∓ iϵ+ Ep)
− 1

(p0 ∓ iϵ− Ep)

)
f̌(p)dp0

−
∫ π

0

(
1

(re−iθ ∓ iϵ+ Ep)
− 1

(re−iθ ∓ iϵ− Ep)

)
L∗(f,−r sin(θ))(r cos(θ))ire−iθdθ.

Since |L∗(f,−r sin(θ))(r cos(θ))| ≤ C2,f (1 + r)−2, the second integral goes to 0 if
r tends to infinity. But note, that the contour integral is 0 since all the poles lie
outside the path γr. Hence, ∆

C
±(f) = 0 if supp(f) ⊂ R∓ × R3.

Part II:
Suppose now that the support of f is such that x ∈ supp(f) ⇐⇒ ntηx < 0 for
some n ∈ R4 with ntηn = 1, n0 ∈ R±. There is then a Lorentz transformation
Λ ∈ O(1, 3) so that n′ := Λn = (±1, 0, 0, 0) and the function g(x′) := f(Λ−1x′) is
such that supp(g) ⊂ R∗

∓ × R3. Note also, that

ǧ(p′) =
1

(2π)2

∫
R4

exp(ix′tηp′)g(x′)µL(dx
′) =

1

(2π)2

∫
R4

exp(ix′tηp′)f(Λ−1x′)µL(dx
′)

=
1

(2π)2

∫
R4

exp(ixtηp)f(x)µL(dx) = f̌(p) = f̌(Λ−1p′).

Therefore,

∆C
±(f) = φ∆̂C

±
(f̌(p)) = lim

ϵ→0+

1

(2π)2

∫
R4

−1
(p0 ∓ iϵ+ Ep)(p0 ∓ iϵ− Ep)

f̌(p)µL(dp)

= lim
ϵ→0+

1

(2π)2

∫
R4

−1
ptηp∓ 2iϵp0 − ϵ2 −m2

f̌(p)µL(dp)

= lim
ϵ→0+

1

(2π)2

∫
R4

−1
ptηp− 2iϵ(Λn)tηp− ϵ2 −m2

f̌(p)µL(dp)

= lim
ϵ→0+

1

(2π)2

∫
R4

−1
(Λ−1p′)tη(Λ−1p′)− 2iϵ(Λn)tη(Λ−1p′)− ϵ2 −m2

f̌(Λ−1p′)|Λ−1|µL(dp
′)

= lim
ϵ→0+

1

(2π)2

∫
R4

−1
p′tηp′ − 2iϵ(Λ2n)tηp′ − ϵ2 −m2

ǧ(p′)µL(dp
′).

The poles of this integrand for the variable p′0 lie at

iϵ(Λ2n)tηe0 ±
√
−ϵ2((Λ2n)ηe0)2 + ϵ2 + E2

p′ + 2iϵ(Λ2n)tηp′s,
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where e0 := (1, 0, 0, 0) and p′s := p′ − p′0e0. The imaginary part of these new poles
are

ϵ(Λ2n)tηe0 ±

√√(
−ϵ2((Λ2n)ηe0)

2+ϵ2+E2
p′

)2
+(2iϵ(Λ2n)tηp′s)

2
+ϵ2((Λ2n)ηe0)

2−ϵ2−E2
p′

2
.

For these numbers we have the estimations

|ϵ(Λ2n)tηe0| >

√√(
−ϵ2((Λ2n)ηe0)

2+ϵ2+E2
p′

)2
+(2ϵ(Λ2n)tηp′s)

2
+ϵ2((Λ2n)ηe0)

2−ϵ2−E2
p′

2

⇐⇒ (ϵ(Λ2n)tηe0)
2 >

√(
−ϵ2((Λ2n)ηe0)

2+ϵ2+E2
p′

)2
+(2ϵ(Λ2n)tηp′s)

2
+ϵ2((Λ2n)ηe0)

2−ϵ2−E2
p′

2

⇐⇒ (ϵ(Λ2n)tηe0)
2 + ϵ2 + E2

p′ >
√(

−ϵ2((Λ2n)ηe0)2+ϵ2+E2
p′

)2
+(2ϵ(Λ2n)tηp′s)

2

⇐⇒
(
ϵ2(Λ2n)tηe0)

2 + ϵ2 + E2
p′

)2
>
(
−ϵ2((Λ2n)ηe0)

2 + ϵ2 + E2
p′

)2
+
(
2ϵ(Λ2n)tηp′s

)2
⇐⇒ ϵ2

(
(Λ2n)tηe0

)2
(ϵ2 + E2

p′) >
(
ϵ(Λ2n)tηp′s

)2
.

This last inequality certainly holds: indeed, since ntηn = 1 and since Λ2 is again
a Lorentz transformation, one has that (Λ2n)tη(Λ2n) = 1. Therefore, if we denote
Λ2n− (Λ2n)0e0 by (Λ2n)s, ((Λ

2n)tηe0)
2
= 1 + |(Λ2n)s|2 and we get(

(Λ2n)tηe0
)2

(ϵ2 + E2
p′) >

(
(Λ2n)tηe0

)2
E2

p′ ≥ |(Λ2n)s|2|p′s|2 ≥
(
(Λ2n)tηp′s

)2
.

Hence the imaginary parts of the poles

iϵ(Λ2n)tηe0 ±
√
−ϵ2((Λ2n)ηe0)2 + ϵ2 + E2

p′ + 2iϵ(Λ2n)tηp′s

have the same sign as ϵ(Λ2n)tηe0. This sign is the same as sgn((Λ2n)0) = sgn(n0).
In conclusion, the poles of

lim
ϵ→0+

1

(2π)2

∫
R4

−1
p′tηp′ − 2iϵ(Λ2n)tηp′ − ϵ2 −m2

ǧ(p′)µL(dp
′)

lie in the upper (lower) complex plane and we are in the same situation as in part
I: after performing a contour integral in the lower (upper) complex plane in order
to compute de integral over p0, we get ∆C

±(f) = 0.

Part III:
Having established that ∆C

±(f) = 0 for any test function f so that x ∈ supp(f) ⇐⇒
ntηx < 0 for some n ∈ R4 with ntηn = 1, n0 ∈ R±, we can conclude that by definition
of the support for distributions, supp(∆C

±) ⊂ LC±, where LC± are the future (past)
light cones.

9. A solution to the Cauchy problem

(□+m2)φ = 0, φ(0) = f and (∂tφ)(0) = ft, f, ft ∈ S ′(R3)

is a function φ : R → S ′(R3), so that limτ→0
φ(t+τ)−φ(t)

τ
= φt(t) and limτ→0

φt(t+τ)−φt(t)
τ

=
φtt(t) exist in the weak∗-topology and so that φtt(t)−∆φ(t) +m2φ(t) = 0.
Use Schwartz’s Paley & Wiener theorem to show, that if both f and ft have compact
support, then φ(t) has causal support.
What happens if one considers positive and negative energy frequencies separately?

(Hint:
√
a+ ib = ±

(√√
a2+b2+a

2
+ i b

|b|

√√
a2+b2−a

2

)
)
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Let us find a function R ∋ t 7→ φ(t) ∈ S ′(R3) which is a solution to (□+m2)φ = 0
and satisfies the initial conditions φ(0) = f and φt(0) = ft, where both f(x) and
ft(x) are compactly supported tempered distributions.

We know then by Schwartz’s Paley & Wiener theorem, that f̂ and f̂t are (integration
against) entire functions satisfying

|f̂(p+ iq)|, |f̂t(p+ iq)| ≤ CN(1 + |p+ iq|)N exp(r|q|),

where CN > 0 is some constant and r > 0 is the radius of some open ball B(0, r)
containing the supports of both f and ft.
For each fixed t, the Fourier transform φ̂(t) satisfies the equation

(
d2

dt2
+ p · p+m2)φ̂(t) = 0 ⇐⇒ d2

dt2
φ̂(t) = −(p · p+m2)φ̂(t),

φ̂(0) = φf̂(p), ∂tφ̂(0) = φf̂t(p)
.

For a fixed value for p, the general solution to this second order linear differential
equation becomes

φ̂(t) = φcos(Ept)f̂(p)+
1

Ep
sin(Ept)f̂t(p)

,

where Ep =
√
p · p+m2. This last function is not entire in p because the square root

is not holomorphic in z = 0. But, once the trigonometric functions are expanded in
their series, it yields

cos(Ept)f̂(p) +
1

Ep

sin(Ept)f̂t(p)

=

(∑
n≥0

(−1)n (Ept)
2n

(2n)!

)
f̂(p) +

1

Ep

(∑
n≥0

(−1)n (Ept)
2n+1

(2n+ 1)!

)
f̂t(p)

=

(∑
n≥0

(−1)n (m
2 + p · p)nt2n

(2n)!

)
f̂(p) +

(∑
n≥0

(−1)n (p · p+m2)nt2n+1

(2n+ 1)!

)
f̂t(p),

displaying explicitly the entirety of the solution in the variable p.
It remains to be shown that the module of this solution is exponentially bounded.
In order to do so, we write φ̂(t) = φF with

F (p+ iq) =
eiEp+iqt

2Ep+iq

(
Ep+iqf̂(p+ iq)− if̂t(p+ iq)

)
+
e−iEp+iqt

2Ep+iq

(
Ep+iqf̂(p+ iq) + if̂t(p+ iq)

)
where Ep+iq =

√
m2 + p · p− q · q + 2ip · q. Observe now, that |eiEp+iqt| ≤ et|Im(Ep+iq)|
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and that

|Im(Ep+iq)| ≤ |q| ⇐⇒ |Im(
√
m2 + p · p− q · q + 2ip · q)| ≤ |q|

⇐⇒
∣∣∣
√√

(m2 + |p|2 − |q|2)2 + 4(p · q)2 − (m2 + |p|2 − |q|2)
2

∣∣∣ ≤ |q|
⇐⇒

√
(m2 + |p|2 − |q|2)2 + 4(p · q)2 − (m2 + |p|2 − |q|2)

2
≤ |q|2

⇐⇒
√

(m2 + |p|2 − |q|2)2 + 4(p · q)2 ≤ m2 + |p|2 + |q|2

⇐⇒ (m2 + |p|2 − |q|2)2 + 4(p · q)2 ≤ (m2 + |p|2 + |q|2)2

⇐⇒ −2(m2 + |p|2)|q|2 + |q|4 + 4(p · q)2 ≤ 2(m2 + |p|2)|q|2 + |q|4

⇐⇒ (p · q)2 ≤ m2|q|2 + |q|2|p|2,

which is always the case. Hence,

|F (z)| ≤ 1

2
(|eiEp+iqt|+ |e−iEp+iqt|)

(
|f̂(p+ iq)|+ |Ep+iqf̂t(p+ iq)|

)
≤ e|q|tCN(1 + |p+ iq|)N(1 + |Ep+iq|)er|q|

≤ e|q|tCN(1 + |p+ iq|)N(1 +m+ |p+ iq|)er|q|

≤ CN(1 +m)(1 + |p+ iq|)N+1e|q|(r+t),

which shows that at time t, the support of φ(t) is a subset of B(0, r + t). The
solution is hence causal.
Note that the solution can be split into negative and positive energy parts:

negative part:
eiEp+iqt

2Ep+iq

(
Ep+iqf̂(p+ iq)− if̂t(p+ iq)

)
,

positive part:
e−iEp+iqt

2Ep+iq

(
Ep+iqf̂(p+ iq) + if̂t(p+ iq)

)
.

None of these are holomorphic, even for t = 0 (unless ft = 0). Consequently, none
of them can have compact support. Even in the case where ft = 0, and f has
compact support, the positive part with frequency will have non-compact support
at any given time t > 0. It is therefore relativistically inconsistent to view φ(t) as a
wave function. This is one of the reasons one needs to consider them as fields and
step away from wave-functions when aspiring to a relativistic theory of quantum
physics.

10. Let f, ft ∈ S(R3) and show, that the solution obtained in this case by the previous exercice
reads

lim
k→∞

(
(Dt∆

C
+) ∗ (dk(t)f) + ∆C

+ ∗ (dk(t)ft)
)
,

where (dk)k∈N∗ ⊂ S(R) is a Dirac sequence.
What happens when one substitutes ∆C

+ by ∆C
− or ∆F

±?
(Hints: compute the Fourier transform of the convolution of a tempered distribution with
a test function. Apply Paley & Wiener’s theorem to the Dirac sequence and use a contour
integral on p0.)
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For a tempered distribution φ ∈ S ′(RN) and test functions f, g ∈ S(RN), one has

F(φ ∗ f)(g) = (φ ∗ f)(ĝ) = φ(P t(f) ∗ ĝ) = φ(F ◦ F∗(P t(f) ∗ ĝ))

= (2π)N/2φ(F(f̂ g)) = (2π)N/2F(φ)(f̂ g),

⇒ φ̂ ∗ f = (2π)N/2f̂ φ̂.

Therefore,

F
(
(Dt∆

C
+) ∗ (dk(t)f)

)
= (2π)2d̂kf(p0, p)F(Dt∆

C
+) = (2π)2d̂kf(p0, p)ip0∆̂

C
+,

F
(
∆C

+ ∗ (dk(t)ft)
)
= (2π)2d̂kft(p0, p)∆̂

C
+.

Note that the functions dkf and dkft have separated variables, so that

d̂kf(p0, p) = d̂k(p0)f̂(p) and d̂kft(p0, p) = d̂k(p0)f̂t(p).

By Paley & Wiener’s theorem, one has for fixed k ∈ N∗, that d̂k is an entire function
satisfying

∀n ∈ N, ∃Ck,n s.t. |d̂k(p0 + iq0)| ≤ Ck,n(1 + |p0 + iq0|)−ne
1
k
|q0|,

since supp(dk) ⊂ B(0, 1
k
). Using the definition of ∆̂C

+ one gets for a fixed k ∈ N∗

F
(
(Dt∆

C
+) ∗ (dk(t)f) + ∆C

+ ∗ (dk(t)ft)
)
= lim

ϵ→0+
φFϵ(p0,p) with

Fϵ(p0, p) =

(
d̂k(p0)

(p0 − ϵ+ Ep)
− d̂k(p0)

(p0 − iϵ− Ep)

)
i

2Ep

(
p0f̂(p)− if̂t(p)

)
.

This is a bona fide Schwartz function if ϵ > 0. Continuity of the Fourier transform
for the weak∗-topology implies

(Dt∆
C
+) ∗ (dk(t)f) + ∆C

+ ∗ (dk(t)ft) = lim
ϵ→0+

φF̌ϵ(t,x) with

F̌ϵ(t, x) =
i

(2π)2

∫
R4

(
d̂k(p0)

(p0 − iϵ+ Ep)
− d̂k(p0)

(p0 − iϵ− Ep)

)
eitp0−ix·p

2Ep

(
p0f̂(p)− if̂t(p)

)
dp0d

3p.

By Fubini’s theorem, one may proceed with the integration over p0 first. In this
variable the integrand is holomorphic and we shall use a countour integral.
For a fixed (t, x) ∈ R4 and t > 0 chose a k ∈ N∗ large enough so that 1

k
< t. For such

a k, e
1
k
|q0|−tq0 will decay exponentially fast to 0, if q0 > 0, i.e. if we chose a contour

along p0 and closing it anti-clockwise along the upper semi-circle in the complex
plane. This contour integral will hence pick the poles p0 + iq0 = ±Ep + iϵ.
For a fixed (t, x) ∈ R4 and t < 0 chose a k ∈ N∗ large enough so that 1

k
< −t. For

such a k, e
1
k
|q0|−tq0 will decay exponentially fast to 0, if q0 < 0, i.e. if we chose a

contour along p0 and closing it clockwise along the lower semi-circle in the complex
plane. This contour integral will hence pick no poles. Consequently,

lim
ϵ→0+

F̌ϵ(t, x) = Θ(t)
1

2π

∫
R3

(d̂k(−Ep)e
−itEp(Epf̂(p)+if̂t(p))+d̂k(Ep)e

itEp(Epf̂(p)−if̂t(p))) e−ix·pd3p
2Ep

.
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Taking the limit when k goes to ∞ and using the fact that for a Dirac sequence
(dk)k∈N∗ , limk d̂k(p0) =

1√
2π
, we get

lim
k

(
(Dt∆

C
+) ∗ (dk(t)f) + ∆C

+ ∗ (dk(t)ft)
)

=
Θ(t)

(2π)3/2

∫
R3

(
eitEp

(
Epf̂(p)− if̂t(p)

)
+ e−itEp

(
Epf̂(p) + if̂t(p)

)) e−ix·pd3p

2Ep

,

which for t > 0 is just the spatial Fourier transform of the solution found in the
previous exercice.
If one uses ∆C

− instead, one gets the poles in the lower complex half-plane, meaning
that the contour integrals must be reversed and one has

lim
k

(
(Dt∆

C
−) ∗ (dk(t)f) + ∆C

− ∗ (dk(t)ft)
)

=
−Θ(−t)
(2π)3/2

∫
R3

(
eitEp

(
Epf̂(p)− if̂t(p)

)
+ e−itEp

(
Epf̂(p) + if̂t(p)

)) e−ix·pd3p

2Ep

.

Finally, using ∆F
±, one has to close the contour anti-clockwise in the upper (clockwise

in the lower) semi-circle for t > 0 and clockwise in the lower (anti-clockwise in the
upper) semi-circle for t < 0. In doing so, one selects the positive energy part and
propagates it in the future, whereas the negative energy part is propagated in the
past:

lim
k

(
(Dt∆

F
±) ∗ (dk(t)f) + ∆F

pm ∗ (dk(t)ft)
)

=
Θ(±t)
(2π)3/2

∫
R3

e−itEp

(
Epf̂(p) + if̂t(p)

) e−ix·pd3p

2Ep

− Θ(∓t)
(2π)3/2

∫
R3

eitEp

(
Epf̂(p)− if̂t(p)

) e−ix·pd3p

2Ep

.

As already noticed in the previous exercice, separating the positive and negative
energy parts results in two non-causal solutions. This is consistent with the non-
causal support of ∆F

±.

Remark: In physics, the computation in this exercice is usually denoted by∫
R3

∆(x− y)
←→
∂y0f(y)d

3y

:=

∫
R3

(∆(x− y)∂y0f(y)− f(y)∂y0∆(x− y)) d3y

=

∫
R3

(∆(x− y)∂y0f(y) + f(y)∂x0∆(x− y)) d3y,

where ∆ stands for ∆C
± or ∆F

±. Setting aside the exact meaning of the variables in
∆(x−y), there is still the problem of integrating over R3: this should be an integral
over R4, since ∆ is a tempered distribution in R4. This problem may be dealt with
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by inserting a Dirac sequence (dk(y0))k∈N∗ :∫
R3

∆(x− y)
←→
∂y0f(y)d

3y

= lim
k

∫
R3

dk(y0) (∆(x− y)∂y0f(y) + f(y)∂x0∆(x− y)) d4y

= lim
k

(∆ ∗ (dk∂tf + (Dt∆) ∗ (dkf))) ,

which is the mathematical rigourous expression.


