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Exercice sheet 4

Brownian Motions & probability

1. The heat kernel is given by

u(t, x) =
1

(2πDt)3/2
exp(− 1

2Dt
(x · x)).

Verify that ∂tu(t, x) = D
2
∆u(t, x) with limt→0+ u(t, x) = δ

(3)
0 . Conclude, that if

f : R3 → C is continuous and polynomially bounded, (u ∗ f)(t) is also a solution to
the heat equation with u(0, x) = f(x). Compute the solution with u(0, x) = 0 ∨ x
in the case (t, x) ∈ R2.
Substitute t by it and D by (mℏ)−1 in the heat kernel. Verify that now we have a
solution v(t, x) for the Schrödinger equation. Prove that if f ∈ S(R3), (v ∗ f)(t) is a
solution with initial value f(x). What happens when f(x) is of compact support?

2. Let X : Ω → R be a random variable on a probability space (Ω,Σ, µ) together with
its cumulative probability distribution FX(x) := µ(X−1]−∞, x]).
Prove that FX(x) is càdlàg, i.e.

• ∀x, y ∈ R, x ≤ y implies 0 ≤ FX(x) ≤ FX(y) ≤ 1,

• ∀x ∈ R, limy→x+ FX(y) = FX(x),

• ∀x ∈ R, limy→x− FX(y) ≤ FX(x).

3. Prove that any real number x ∈]0, 1] may be uniquely expressed as x =
∑

n≥1
xn

3n

where xn ∈ {0, 1, 2} and |{n ≥ 1 : xn ̸= 0}| = |N∗|.
The Cantor set C is then defined as the set of x ∈]0, 1] so that xn ∈ {0, 2}. Prove
that µL(C) = 0 and that there is a bijection from C to ]0, 1].
For x ∈]0, 1] \ C, denote by Nx as the smallest n ≥ 1, so that xn = 1. The Cantor
function is defined as

c(x) :=

{
1
2

∑
n≥1

xn

2n
if x ∈ C,

1
2Nx + 1

2

∑Nx−1
n=1

xn

2n
otherwise

.

Prove that c(x) is a continuous and increasing function on ]0, 1]. Prove c(x) is
constant µL-a.e. and conclude from these properties, that there is no Lebesgue
summable function d(x), so that c(x) =

∫
[0,x]

d(s)µL(ds).

4. Let Ω := {±1}N∗
and consider the map

f : Ω → [0, 1], w 7→
∑
n≥1

1 + w(n)

2n+1
.

Show that this map is surjective and that Σ := {f−1(E) : E ∈ ΣL}, where ΣL

is the Lebesgue σ-algebra is one as well. Show that µ(E) := µL(f(E)) defines a
probability measure on Σ.
For a finite sequence t ∈ {±1}n, define At = {w ∈ {±1}N∗

: ∀k = 1, . . . , n, w(k) =
t(k)}. Prove that At ∈ Σ with µ(At) =

1
2n
.

For the random walk {Sn}n∈N∗ , verify the equalities E(Sn) = 0, V(Sn) = n and
µ(S−1

n {n− 2k}) = 2−n
(
n
k

)
for k = 0, . . . , n.
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5. For the random walk {Sn}n∈N∗ defined on (Ω,Σ, µ) in the previous exercice, show
that R ∈ Σ, where

R := {w ∈ Ω : ∃n ≥ s.t. Sn(w) = 0}.

Show then that µ(R) = 1. Imitate the construction of the last exercice to build a
2-dimensional random walk.

6. Let X be some random variable defined on a probability space (Ω,Σ, µ). Prove
that the characteristic function ΦX(t) := E(exp(itX)) is bounded and continuous.
Conclude that φΦX(t) ∈ S ′(R) and that F(φΦX(t))(f) =

√
2πE(f(X)) for any f ∈

S(R).

7. Let (Ω,Σ, µ) be a probability space and let X be a random variable defined on it.
Let ΣB be the σ-algebra generated by the open intervals of (R). For an open interval
I ⊂ R, define µX(I) := µ(X−1I). Prove that µX may be uniquely extended to ΣB

and that for any f ∈ Cb(R,R), E(f(X)) =
∫

R f(x)µX(dx).

8. Define

r(x) :=

{(
eix − 1− ix+ x2

2

)
x−2 if x ̸= 0

0 if x = 0
.

Show that r(x) is continuous and bounded on R. Use this to show, that for some
random variable X on some probability space (Ω,Σ, µ) with X ∈ L1(Ω, µ)∩L2(Ω, µ)
and E(X) = 0, the characteristic function

E(eitX) = 1− t2

2
V(X) + t2h(t),

with limt→0 h(t) = 0 and h(t) is bounded.

9.

10.


