Exercise 7

I. DM halo mass function:

Download the .list files containing data of a halo catalogue at z=0 (out_94), I (out_27), and 2 (out_44) from a DM-only simulation (size: (72Mpc/h)^{3,} Planck cosmology, etc see header) in the following format:

ID, DescID, Mvir, Vmax, Vrms, Rvir, Rs, Np... more columns Note: Mvir is in M_☉/h

- Choose your preferred language (python, matlab etc) for data analysis and visualisation (of ascii files)
 - 1. Select halos with masses > $3*10^{10}$ M_{\odot}/h at z=0,1,2 (why is this important?)
 - 2. Plot their halo mass function: number density, i.e. amount of halos per unit volume, Mpc³, versus halo mass at z=0,1,2
 - 3. How do you think the halo mass fct would qualitatively change when adopting a warm dark matter cosmology? Explain your thought.

Exercise 7

2. The build-up of galactic dark matter halos in a CDM universe:

Using merger tress for different halo masses in Selected_trees_*.dat, examine the DM halo mass assembly and answer these questions.

I. How do the mass assembly histories differ for 3 different z=0 halo masses (IeI0, IeI2, 5eI3 M_{\odot}) in a CDM universe?

BONUS EXERCISE: 2. How many major (1:1-1:4) and minor mergers (1:4-1:10) do occur at what cosmic time?

BONUS EXERCISE: 3. How different are assembly and formation times (see lecture) and how do they vary with halo mass? Can you give an explanation for your results?

Coding instructions:

- For each halo tree, follow the main branch tree until the highest redshift (look at the progenitors of a halo one time step earlier via "desc_id=id_halo" and choose the most massive one)
- Plot halo main progenitor mass versus redshift and/or scale factor for the different halo masses, indicate as vertical lines when major merger happens
- Plot formation/assembly times versus present-day halo mass

Note: if you are wondering how such plots look like, Maulbetsch+07 may help...

Information to Exercise

Details for the dark matter-only simulation

- WMAP7 cosmology adopted
- Boxsize: ~72 Mpc/h
- DM particle mass: 3.5e8 M_☉
- Merger trees constructed by post-processing the simulation with the open-source code "Rockstar"

Information to Exercise

An example output file for Rockstar trees

Each row is one halo, columns are:

Scale factor of halo(0) halo ID(1) scale factor of descendent(2) halo ID of descendent (3) number of progenitors (4) viral mass(5)

(simplified compared to original Rockstar output)

```
1.0000 29882328 0.0000
0.9900 29584929 1.0000 29882328
                                             Most massive prog.
0.9900 29584930 1.0000 29882328
0.9900 29584932 1.0000 29882328
0.9900 29584934 1.0000 29882328
0.9900 29584935 1.0000 29882328
0.9800 29281236 0.9900 29584929
                                             Most massive prog.
0.9800 29281238 0.9900 29584929
0.9800 29281239 0.9900 29584929
0.9800 29281241 0.9900 29584929
0.9800 29281243 0.9900 29584930
```