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Classical explanation of normal mode splitting
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Quantum Optics of Resonators

Cavity Hamiltonian

Ĥ =
∑

ℏωk′ â
†
k′ âk′︸ ︷︷ ︸

cavity modes

+
∑

ℏωk b̂
†
k b̂k + ℏ

∑
k,k′

gk,k′(âk′ b̂
†
k + b̂kâ

†
k′)︸ ︷︷ ︸

coupling terms

Taking the continuity limit
∑

k |gk|2 =
∫
dωk|g(ωk)|2D(ωk), we define

the operators in the frequency domain [b̂(ω), b̂†(ω′)] = δ(ω − ω′), thus: !"#$

%&#

'

EOM of b̂k
d

dt
b̂k = −iωk b̂k − igkâ
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Forward and backward formal solutions

For t0 < t, meaning that the process is a forward noise input

b̂k = e−iωk(t−t0)b̂k(t0)− igk

∫ t

t0

e−iωk(t−t′)â(t′)dt′

We can also write the process backward with t1 > t as

b̂k = e−iωk(t−t1)b̂k(t1) + igk

∫ t1

t
e−iωk(t−t′)â(t′)dt′.
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Optical Resonators

How to derive

Going to the continuum
∑

k →
∫
dωkD(ωk), where D(ωk) is the density of states (DOS), we

can also derive from ˙̂a = − i
ℏ [â, Ĥsys]−

∑
k gk b̂k to (forward):

˙̂a =− iωâ− i
∑
k

gke
−iωk(t−t0)b̂k(t0)

−
∫ +∞

−∞
dωk|g(ωk)|2D(ωk)

∫ t

t0

e−iωk(t−t′)â(t′)dt′

Assuming |g(ωk)|2 = |g|2 (first Markov approximation).

Defining 2π|g|2D(ωk) = κ and âin = −i
∑

k gke
−iωk(t−t0)bk(t0).

Noting that
∫∞
−∞

dω
2π e

−iωt = δ(t) and
∫ t
t0
δ(t− t′)f(t′)dt′ = 1

2f(t).
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Forward and backward Quantum Langevin Equations

Quantum Langevin Equation (forward)

˙̂a = −iωâ− κ

2
â+

√
κâin

[âin(t), â
†
in(t

′)] = δ(t− t′)

One can repeat the same analysis, but now for the backward evolution, with
âout = −i

∑
k gke

−iωk(t−t1)bk(t1) and get:

Quantum Langevin Equation (backward)

˙̂a = −iωâ+
κ

2
â−

√
κâout

Fall 2024 Quantum Electrodynamics and Quantum Optics: Lecture 9 6 / 17



Input Output Relation1

Subtracting the forward and backward Langevin Equations yields:

Input-output Noise Relation

âout + âin =
√
κâ

Note that from the photon number point of view κ represents the energy decay:

d

dt
⟨n̂⟩ = d

dt
⟨â†â⟩ = −κ⟨â†â⟩+ ⟨â†inâin⟩

1Walls, D. F., Milburn, G. J. ”Quantum optics” (2007). Chapter 7
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Application : Transmission & Reflection

We can first write down the quantum Langevin equations

∂t

(
â
â†

)
=

(
−iωc − κ/2 0

0 iωc − κ/2

)(
â
â†

)
+
√
κ

(
âin
â†in

)

where â†(ω) = [â(ω)]† and solve in the Fourier domain

iω

(
â(ω)
â†(ω)

)
=

(
−iωc − κ/2 0

0 iωc − κ/2

)
︸ ︷︷ ︸

M̂

(
â
â†

)
+
√
κ

(
âin(ω)

â†in(ω)

)

⇒

(
â(ω)
â†(ω)

)
=

√
κ[−M̂ + iω1̂]−1

(
âin(ω)

â†in(ω)

)
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Application : Transmission & Reflection

Cavity transmission / reflection

âout(ω) =
κ/2 + i(ω − ωc)

κ/2− i(ω − ωc)
âin(ω)

T (ω) =
⟨âout(ω)⟩
⟨âin(ω)⟩

Here we plot the phase of the transmission.
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Separating intrinsic and external loss

The decay κ modeled is very general, the following showcases how to introduce intrinsic and
external losses into the equations as κ = κex + κin.

Modified Quantum Langevin Equation (forward)

˙̂a = −iωâ− κex + κin
2

â+
√
κexâin +

√
κinf̂in

[âin(t), â
†
in(t

′)] = δ(t− t′)

[f̂in(t), f̂
†
in(t

′)] = δ(t− t′)

Modified Cavity transmission / reflection

âout(ω) =
(κex − κin)/2 + i(ω − ωc)

(κex + κin)/2− i(ω − ωc)
âin(ω)
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Purcell Effect in Spontaneous Emission

Ĥ =
∑

ℏω′
kâ

†â+
ℏω
2
σ̂z + ℏg(σ̂+â+ σ̂−â†)

+
∑

ℏωk b̂
†
k b̂k +

∑
k

gk(âb̂
†
k + b̂kâ

†)

Approximate treatment yields the spontaneous decay rate

Γc =
4

3κ

|P12|2ω
2ℏϵ0V

∝ 2π|g|2ρ(ω) ∝ 2π|g|2FPurcellρfree space

and the density of state ρ(ω) of resonator is

ρ(ω) =
1

π

κ/2

(ω − ωc)2 + (κ/2)2
1

V
.

!"#$

%&#

'

2

1
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Purcell Effect in Spontaneous Emission
The Purcell factor expressed as the Quality factor (Q) and the Mode Volume of the cavity (V)

Γc = Γ0 ·
3Q

4V
· λ3
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Purcell Effect in Spontaneous Emission

Notice that the Purcell effect is an effect that is due to the enhancement of the mode density.
The mode density can also be modified to inhibit spontaneous emission by trapping an
electron in a Penning trap with dimension comparable to the emission wavelength2. One can
compute the equations of motion3 for ⟨â†â⟩ and ⟨σz⟩:

d

dt
⟨â†â⟩ = −ig⟨σ+â− â†σ−⟩ − κ⟨â†â⟩+ κ nth︸︷︷︸

≈0

d

dt
⟨σz⟩ = −ig⟨σ+â− â†σ−⟩

Notice that the average of the operator ⟨σ+â− â†σ−⟩ has its equation of motion involving the
quantity ⟨â†σzâ⟩. In general, we get an infinite set of equations which may not be analytically
solvable, but can be considerably simplified if initially the atom is in the excited state and the
field inside the cavity is in the vacuum state.

2Gabrielse,Gerald,and Hans Dehmelt.“Observation of inhibited spontaneous emission.”Physical review letters 55.1 (1985): 67.
3Scully, M.O., Zubairy, M.S. ”Quantum optics” (1999). Chapter 9, Section 5
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Purcell Effect in Spontaneous Emission: Example4

4Goy,Ph,et al.‘Observation of cavity-enhanced single-atom spontaneous emission.”Phys. Rev. Lett. 50.24 (1983): 1903.
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Purcell Effect in Spontaneous Emission: Example5

5Peil, S., and G. Gabrielse. “Observing the quantum limit of an electron cyclotron: QND measurements of quantum jumps between Fock states.” Phys. Rev.
Lett. 83.7 (1999): 1287.
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Paper for this week
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Questions for the presenter

Describe the parameter diagram in Fig 1 and where is the system of the paper in this
diagram?

What is the requirement on the strong dispersive regime?

Formally describe how the dispersive Hamiltonian emerges in strong dispersive regime.

What regime is the qubit in, CPB or transmon?

What is QND measurement?

What’s the photon distribution of different states probed in the experiment?

How is the state of the cavity prepared?

Explain the experimental measurement scheme to retrieve Fig 3.

What determines the width of each photon number peak?
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