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Classical explanation of normal mode splitting

Photon number

Frequency @ [MHz])
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Quantum Optics of Resonators

Cavity Hamiltonian

H= Z hwk/&Tk/&k/ I Z hwki)};i)k ol hz gk,k’(&k'i);rc = Bk&Tk’)j

cavity modes bl couplig terms
by
Taking the continuity limit >, |gx|* = [ dwi|g(wk)|?D(wk), we define === -
the operators in the frequency domain [b(w), b (w')] = §(w — o), thus: e
K
EOM of by
d . .
&bk = —iwk.bk — igkd

Fall 2024 Quantum Electrodynamics and Quantum Optics: Lecture 9 3/17



Forward and backward formal solutions

e For ty < t, meaning that the process is a forward noise input
~ . ~ t . 1
bk = e_wk(t_to)bk(to) — igk/ e_lwk(t_t )d(t/)dt/

to

@ We can also write the process backward with ¢; >t as

~

. ~ tl . 7
b, = e rEp (1) + igy, / e~ q(¢")ar.
t
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Optical Resonators

How to derive

Going to the continuum Zk — fdka(wk) where D(wy) is the density of states (DOS), we
can also derive from a = —= [, Hyys] — S by to (forward):

& = —jwa — lz gke_iwk(t_to)i)k(to)
k

—+o0 i
—/ dwk|g(wk)|2D(wk)/ e~ (t=t) g (1) it

—0o0 to

@ Assuming |g(wg)|? = |g|? (first Markov approximation).
e Defining 27|g|?>D(wi) = & and ay, = —i Zk gre~wr(=t0)py (1),
o Noting that [*° 2e~iwt = §(¢) and ft — ) f(t)dt = Lf(2).
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Forward and backward Quantum Langevin Equations

Quantum Langevin Equation (forward)
. KR
o= —iwd - Za+ ki

[ain(t), &, ()] = 6(t — ')

One can repeat the same analysis, but now for the backward evolution, with
dout = —1 Zk gke_lwk(t_tl)bk(tl) and get:

Quantum Langevin Equation (backward)

X LA K, 2
G = —iwa + 50 VEGout
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Input Output Relation?

Subtracting the forward and backward Langevin Equations yields:

Input-output Noise Relation

Qout + Ain = \/ECL

Note that from the photon number point of view x represents the energy decay:

d d
Sy = Liata) = —wlata) + (ol a;
S (0) = 5(@a) = —n(@la) + (@l )

1Walls, D. F., Milburn, G. J. "Quantum optics” (2007). Chapter 7
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Application : Transmission & Reflection

We can first write down the quantum Langevin equations

i) =0 ) () )

where af(w) = [a(w)]" and solve in the Fourier domain

o falw)\ [ —iwe—k/2 0 a in(w)
" (&T(w)> - ( 0 iwe — /1/2) (&T) VE (&jn(w))

J/

N~

M

= (;T((‘;’J))) = VE[-M + iwl] ™ <Z}“EZ;>

m
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Application : Transmission & Reflection

Cavity transmission / reflection

_ K24 i(w—we)
K2 —i(w — we) in()
{Gout (w))
(in() A

Gout (W )

T(w) =

Here we plot the phase of the transmission.

1 T

o
o
T

o
T

Phase (7 )

[— phase response

!
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(wrw)li
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Separating intrinsic and external loss

The decay k modeled is very general, the following showcases how to introduce intrinsic and
external losses into the equations as kK = Kex + Kin

Modified Quantum Langevin Equation (forward)

A PPN ex+/€1nA
= a —

a = —ww 2 a+ \/H_exam + \/K?_mfm
[ain(t), al, ()] = 8(t — t')
[fi(®), fL(E)] = 6t —t')

Modified Cavity transmission / reflection

N o (K/ex_K'in)/Q'i‘i(w_wc)d w
aout(w) = (/'iex T K,in)/Q — i(w — wC) lIl( )
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Purcell Effect in Spontaneous Emission
H= Zhw a—i—@oz—i—hg(a a+é6-ah
+ ) hwbfbe + ) gr(abl + bral)
k

Approximate treatment yields the spontaneous decay rate

- 4 |P12|2w
° 7 3k 2heV

and the density of state p(w) of resonator is

X 27T|g|2p(w) X 27T|g|2FPurcell,0free space
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Purcell Effect in Spontaneous Emission
The Purcell factor expressed as the Quality factor (Q) and the Mode Volume of the cavity (V)

B10. S ission Probabilities at Radio Fre-
quencies. E. M. PurceLL, Harvard University.—For
nuclear ic moment itions at radio f i

the probability of spontaneous emission, computed from
A, = (8*/c*)hv(87u?/30?) sec.™,

is so small that this process is not effective in bringing a
spin system into thermal equilibrium with its surroundings.
At 300°K, for »=107 sec.”’, u=1 nuclear magneton, the
corresponding relaxation time would be 5X10% seconds!
However, for a system coupled to a resonant electrical
circuit, the factor 8m?/c® no longer gives correctly the
number of radiation oscillators per unit volume, in unit
frequency range, there being now one oscillator in the
frequency range »/Q associated with the circuit. The
spontaneous emission probability is thereby increased, and
the relaxation time reduced, by a factor f=23QN\/4xV,
where V is the volume of the resonator. If a is a dimension
characteristic of the circuit so that V~a?, and if § is the
skin-depth at frequency », f~A3/a. For a non-resonant
circuit f~\3/a?, and for a <§ it can be shown that f~23/as?.
If small metallic particles, of diameter 10~ cm are mixed
with a nuclear-magnetic medium at room temperature,
spontaneous emission should establish thermal equilibrium
in a time of the order of minutes, for »=107 sec.”.
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Purcell Effect in Spontaneous Emission

Notice that the Purcell effect is an effect that is due to the enhancement of the mode density.
The mode density can also be modified to inhibit spontaneous emission by trapping an
electron in a Penning trap with dimension comparable to the emission wavelength?. One can
compute the equations of motion® for (afa) and (o)

%<d*&> = —iglora—alo_) — k(aa) + k g
~0
d . PO
%<0Z> = —igloya—alo)

Notice that the average of the operator (o, G — a'o_) has its equation of motion involving the
quantity (afo.a). In general, we get an infinite set of equations which may not be analytically
solvable, but can be considerably simplified if initially the atom is in the excited state and the
field inside the cavity is in the vacuum state.

2Gabrielse,Gerald,and Hans Dehmelt. “Observation of inhibited spontaneous emission.” Physical review letters 55.1 (1985): 67.
3Scully, M.O., Zubairy, M.S. " Quantum optics” (1999). Chapter 9, Section 5
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Purcell Effect in Spontaneous Emission: Example*

VoLuME 50, NUMBER 24 PHYSICAL REVIEW LETTERS 13 June 1983

Observation of Cavity-Enhanced Single-Atom Spontaneous Emission

P. Goy, J. M. Raimond, M. Gross, and S. Haroche
Labovatoive de Physique de I'Ecole Novmale Supévieuve, F-75231 Payis Cedex 05, France
(Received 1 April 1983)
It has been observed that the spontaneous-emission lifetime of Rydberg atoms is short-
ened by a large ratio when these atoms ave crossing a high-@ superconducting cavity
tuned to resonance with a millimeter-wave transition between adjacent Rydberg states.
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Purcell Effect in Spontaneous Emission: Example®
'VOLUME 83, NUMBER 7 PHYSICAL REVIEW LETTERS 16 AuGusT 1999

Observing the Quantum Limit of an Electron Cyclotron: QND Measurements
of Quantum Jumps between Fock States

S. Peil and G. Gabrielse
Department of Physics, Harvard University,
Cambridge, Massachusetts 02138
(Received 18 March 1999)
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FIG. 1. (a) Energy levels of the one-electron cyclotron oscil- time (minutes) n

lator. (b) Electrodes of the cylindrical Penning trap cavity. FIG. 2. Quantum jumps between the lowest states of the one-

electron cyclotron oscillator decrease in frequency as the cavity
temperature is lowered.

5Peil, S., and G. Gabrielse. “Observing the quantum limit of an electron cyclotron: QND measurements of quantum jumps between Fock states.” Phys. Rev.

Quantum Electrodynamics and Quantum Optics: Lecture 9 15 / 17



Paper for this week

Vol 4451 February 2007 | doi:10.1038/nature05461 nature

LETTERS

Resolving photon number states in a superconducting
circuit

D. I Schuster'*, A. A. Houck'*, J. A. Schreier’, A. Wallraff'f, J. M. Gambetta', A. Blais'f, L. Frunzio’, J. Majer’,
B. Johnson', M. H. Devoret!, S. M. Girvin' & R. J. Schoelkopf'
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Questions for the presenter

@ Describe the parameter diagram in Fig 1 and where is the system of the paper in this
diagram?

What is the requirement on the strong dispersive regime?

Formally describe how the dispersive Hamiltonian emerges in strong dispersive regime.
What regime is the qubit in, CPB or transmon?

What is QND measurement?

What's the photon distribution of different states probed in the experiment?

How is the state of the cavity prepared?

Explain the experimental measurement scheme to retrieve Fig 3.

What determines the width of each photon number peak?
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