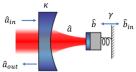
1 / 17

# Quantum Electrodynamics and Quantum Optics: Lecture 13

Fall 2024

# Ponderomotive squeezing<sup>1</sup>



System Hamiltonian
$$H = \hbar \omega_c \hat{a}^{\dagger} \hat{a} + \hbar \Omega_{\rm m} \hat{b}^{\dagger} \hat{b} + \frac{\hbar \omega_c}{L} x_{\rm zpf} \hat{a}^{\dagger} \hat{a} \left( \hat{b} + \hat{b}^{\dagger} \right)$$

Introducing position and momentum operators  $\hat{Q} = \frac{1}{2}(\hat{b} + \hat{b}^{\dagger}), \hat{P} = \frac{i}{2}(\hat{b} - \hat{b}^{\dagger}),$  and coupling constant  $g_0 = \frac{\omega_c}{L} x_{\rm zpf}$ , we get

$$H = \hbar \omega_c \hat{a}^{\dagger} \hat{a} + \hbar \Omega_{\rm m} \left[ \hat{P}^2 + \left( \hat{Q} + \frac{g_0}{\Omega_{\rm m}} \hat{a}^{\dagger} \hat{a} \right)^2 \right] - \frac{\hbar g_0^2}{\Omega_{\rm m}} (\hat{a}^{\dagger} \hat{a})^2.$$

To isolate the light field dynamics from the mechanics, we introduce polaron transformation  $\hat{s}=\exp\left(irac{g_0}{\Omega_m}\hat{a}^\dagger\hat{a}\hat{P}
ight)$  to transform our Hamiltonian using

$$e^{\hat{A}}\hat{B}e^{-\hat{A}}=\hat{B}+\left[\hat{A},\hat{B}\right]+\frac{1}{2!}\left[\hat{A},\left[\hat{A},\hat{B}\right]\right]+\ldots,$$

<sup>&</sup>lt;sup>1</sup>Quantum Optomechanics - Bowen - Chapter 4

# Ponderomotive squeezing

we get

$$\hat{s}^{\dagger}\hat{Q}\hat{s} = \hat{Q} - \frac{g_0}{\Omega_{\rm m}}\hat{a}^{\dagger}\hat{a}.$$

The polaron transformation cancels the displacement caused by radiation pressure by applying an opposite but equivalent displacement via the unitary operation. The Hamiltonian would thus transform into

$$\hat{H}' = \hat{\mathbf{s}}^{\dagger} \hat{H} \hat{\mathbf{s}} = \hbar \omega_c \hat{a}^{\dagger} \hat{a} + \hbar \Omega_{\mathrm{m}} \left( \hat{P}^2 + \hat{Q}^2 \right) - \frac{\hbar g_0^2}{\Omega_{\mathrm{m}}} (\hat{a}^{\dagger} \hat{a})^2.$$

We can now linearize it using  $\hat{a} \rightarrow \alpha + \delta \hat{a}$ , so that

$$(\hat{a}^{\dagger}\hat{a})^2 \rightarrow \alpha^4 + 2\alpha^3(\delta\hat{a}^{\dagger} + \delta\hat{a}) + 4\alpha^2\delta\hat{a}\delta\hat{a}^{\dagger} + \alpha^2(\delta\hat{a}^{\dagger 2} + \delta\hat{a}^2)$$

$$\frac{g_0^2}{\Omega_{\rm m}}\alpha^2(\delta\hat{a}^{\dagger 2} + \delta\hat{a}^2) \Leftrightarrow S(\xi) = \exp\left(\frac{1}{2}\xi^*\hat{a}^2 + \frac{1}{2}\xi\hat{a}^{\dagger 2}\right),\,$$

whose unitary evolution leads to a squeezing operator.

# Quantum Langevin Equations

We first move to an interaction frame where  $\omega_c$  is replaced by  $\Delta = \omega_c - \omega_L$  where  $\omega_L$  is the laser driving frequency. To include the dissipation and noise from the environment, we derive

### Quantum Langevin equations

$$egin{aligned} \dot{\hat{a}}(t) &= -\left(i\Delta + rac{\kappa}{2}
ight)\hat{a} - ig_0\hat{a}\left(\hat{b} + \hat{b}^\dagger
ight) + \sqrt{\kappa}\hat{a}_{\mathrm{in}}(t), \ \dot{\hat{b}}(t) &= -\left(i\Omega_{\mathrm{m}} + rac{\Gamma_{\mathrm{m}}}{2}
ight)\hat{b} - ig_0\hat{a}^\dagger\hat{a} + \sqrt{\Gamma_{\mathrm{m}}}\hat{b}_{\mathrm{in}}(t), \end{aligned}$$

where  $\Gamma_{\rm m}$  is the mechanical dissipation rate. Here we assume  $g_0 \ll \kappa$  in order to linearize the equations  $\hat{a} \to \alpha + \hat{a}$ . Introducing  $g = g_0 \sqrt{\alpha}$  and by going to the Fourier domain,

$$\begin{split} \hat{a}[\omega] &= \frac{\sqrt{\kappa} \hat{a}_{\text{in}} - ig(\hat{b}[\omega] + \hat{b}^{\dagger}[\omega])}{i(\Delta - \omega) + \kappa/2}, \\ \hat{b}[\omega] &= \frac{\sqrt{\Gamma_{\text{m}}} \hat{b}_{\text{in}}[\omega]}{i(\Omega_{\text{m}} - \omega) + \Gamma_{\text{m}}/2} - \frac{ig(\hat{a}[\omega] + \hat{a}^{\dagger}[\omega])}{i(\Omega_{\text{m}} - \omega) + \Gamma_{\text{m}}/2}. \end{split}$$

# Quantum Langevin Equations

The mechanical motion can be expressed as a response to the environmental noise and optical input fluctuations

$$\hat{b}[\omega] = \frac{\sqrt{\Gamma_m} \hat{b}_{\rm in}[\omega]}{i(\Omega'_{\rm m} - \omega) + \Gamma'/2} + \frac{ig}{i(\Delta - \omega) + \kappa/2} \frac{-\sqrt{\kappa} \hat{a}_{\rm in}[\omega]}{i(\Omega'_{\rm m} - \omega) + \Gamma'/2} + \frac{ig}{-i(\Delta - \omega) + \kappa/2} \frac{-\sqrt{\kappa} \hat{a}_{\rm in}^{\dagger}[\omega]}{i(\Omega'_{\rm m} - \omega) + \Gamma'/2}$$

### Optical spring and dynamical back-action

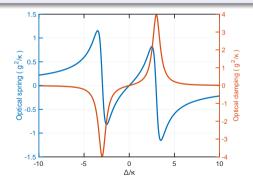
where 
$$\Omega_m' = \Omega_m + \delta \Omega_m$$
 and  $\Gamma' = \Gamma_m + \delta \Gamma_m$  with

$$\delta\Omega_{\rm m} = g^2 {\rm Im} \left[ \frac{1}{i(\Delta - \Omega_{\rm m}) + \kappa/2} - \frac{1}{-i(\Delta + \Omega_{\rm m}) + \kappa/2} \right]$$
$$\delta\Gamma_{\rm m} = 2g^2 {\rm Re} \left[ \frac{1}{i(\Delta - \Omega_{\rm m}) + \kappa/2} - \frac{1}{-i(\Delta + \Omega_{\rm m}) + \kappa/2} \right].$$

# Optical spring and dynamical back-action

## Optical spring and dynamical back-action

$$\delta\Omega_{\rm m} = g^2 {\rm Im} \left[ \frac{1}{i(\Delta - \Omega_{\rm m}) + \kappa/2} - \frac{1}{-i(\Delta + \Omega_{\rm m}) + \kappa/2} \right]$$
$$\delta\Gamma_{\rm m} = 2g^2 {\rm Re} \left[ \frac{1}{i(\Delta - \Omega_{\rm m}) + \kappa/2} - \frac{1}{-i(\Delta + \Omega_{\rm m}) + \kappa/2} \right].$$



# Quasi-static approximation<sup>2</sup>

Here we make a few approximations to simplify the derivation:

### Quasi-static approximation

- **1**  $\Delta = 0$ : the laser is tuned exactly to the optical cavity resonance frequency.
- 2  $\kappa \gg \Omega_m$ : Bad cavity limit.
- $\odot$   $\omega \ll \Omega_m$ : We are only interested in the quasi-static response, so the resonant response of the mechanical resonator does not play a role.

Under these assumptions together with the input output theorem  $\hat{a}_{\rm out} + \hat{a}_{\rm in} = \sqrt{\kappa} \hat{a}$ ,

$$i\Omega_{\rm m}\hat{b}[\omega] = \sqrt{\Gamma_{\rm m}}\hat{b}_{\rm in}[\omega] - \frac{2ig}{\sqrt{\kappa}}(\hat{a}_{\rm in}[\omega] + \hat{a}^{\dagger}_{\rm in}[\omega])$$
$$\hat{a}_{\rm out}[\omega] = \hat{a}_{\rm in}[\omega] - \frac{2ig}{\sqrt{\kappa}}(\hat{b}[\omega] + \hat{b}^{\dagger}[\omega]).$$

<sup>&</sup>lt;sup>2</sup>Safavi-Naeini, Amir H., et al. "Squeezed light from a silicon micromechanical resonator." Nature 500.7461 (2013): 185.

# Quasi-static approximation

Define measurement rate  $\Gamma_{meas} \equiv 4g^2/\kappa$ , we can rewrite

$$\hat{a}_{\text{out}}[\omega] = \hat{a}_{\text{in}} + \frac{2i\Gamma_{\text{meas}}}{\Omega_{\text{m}}}(\hat{a}_{\text{in}}[\omega] + \hat{a}^{\dagger}_{\text{in}}[\omega]) + \frac{\sqrt{\Gamma_{\text{m}}\gamma_{\text{meas}}}}{\Omega_{\text{m}}}(\hat{b}_{\text{in}}[\omega] + \hat{b}^{\dagger}_{\text{in}}[\omega]).$$

Ignoring thermal noise  $\Gamma_m=0$ , and dropping the terms of order  $(\Gamma_{meas}/\Omega_m)^2$ , we can calculate the output optical quadrature power spectral density

### Output optical quadrature

$$S_{X_{\theta}X_{\theta}}^{\text{out}} = \int_{-\infty}^{+\infty} d\omega' \left\langle \hat{X}_{\theta}^{\text{out}}[\omega] \hat{X}_{\theta}^{\text{out}}[\omega'] \right\rangle = 1 + \frac{4\Gamma_{\text{meas}}}{\Omega_{\text{m}}} \sin 2\theta,$$

where the quadrature operator is defined as  $\hat{X}_{\theta} = \hat{a}e^{-i\theta} + \hat{a}^{\dagger}e^{i\theta}$ . For  $\theta = -\pi/4$  we achieve the maximum squeezing with a noise floor strongly dependents on the ratio  $\Gamma_{\rm meas}/\Omega_{\rm m}$ .

# Quasi-static approximation

To include the effects from thermal noises, we assume the form of the correlators to be

### Thermal correlators

$$\begin{split} \left\langle \hat{b}_{\rm in}[\omega] \hat{b}_{\rm in}^{\dagger}[\omega'] \right\rangle = & (\overline{n}_{\rm th}[\omega] + 1) \delta(\omega + \omega'), \\ \left\langle \hat{b}_{\rm in}^{\dagger}[\omega] \hat{b}_{\rm in}[\omega'] \right\rangle = & \overline{n}_{\rm th}[\omega] \delta(\omega + \omega'), \end{split}$$

which leads to

$$S_{X_{ heta}X_{ heta}}^{ ext{out}} = 1 + rac{4\Gamma_{ ext{meas}}}{\Omega_{ ext{m}}}\sin 2 heta + rac{4\Gamma_{ ext{meas}}}{\Omega_{ ext{m}}}rac{\overline{n}_{ ext{th}}[\omega]}{Q_{ ext{m}}}(1-\cos 2 heta).$$

In this model there is no squeezing at  $\theta=-\pi/4$  and frequency  $\omega$  if  $\overline{n}_{th}[\omega]>Q_m$ , where  $Q_m$  is the mechanical quality factor. However some squeezing is always present, but is shifted to other quadratures and the amount of detectable squeezing is reduced at higher temperatures.

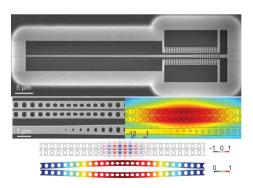
# Physical systems<sup>3</sup>

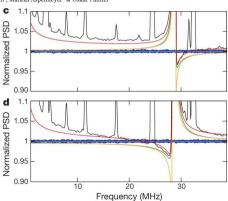


doi:10.1038/nature12307

### Squeezed light from a silicon micromechanical resonator

Amir H. Safavi-Naeini<sup>1,2</sup>\*, Simon Gröblacher<sup>1,2</sup>\*, Jeff T. Hill<sup>1,2</sup>\*, Jasper Chan<sup>1</sup>, Markus Aspelmeyer<sup>3</sup> & Oskar Painter<sup>1,2,4</sup>



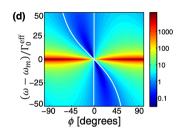


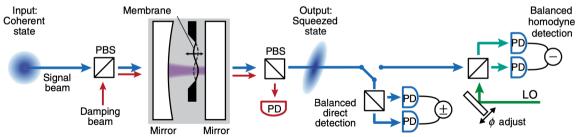
<sup>&</sup>lt;sup>3</sup>Safavi-Naeini, Amir H., et al. "Squeezed light from a silicon micromechanical resonator." Nature 500.7461 (2013): 185.

# Physical systems<sup>4</sup>

### **Strong Optomechanical Squeezing of Light**

T. P. Purdy,\* P.-L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA





 $<sup>^4</sup>$ Purdy, Thomas P., et al. "Strong optomechanical squeezing of light." Physical Review X 3.3 (2013): 031012.

# Dynamics of mechanical resonator <sup>5</sup>

Taking into account the dynamics of the mechanical resonator while keeping the bad-cavity limit and resonant probing, we can derive the detected spectral density detected by the homodyne as

### Homodyne signal

$$S_{II}^{\theta}[\omega] = \frac{1}{2} + 8\Gamma_{\text{m}}^{2}|\chi[\omega]|^{2}n_{\text{QBA}}(n_{\text{th}} + n_{\text{QBA}} + \frac{1}{2})\sin^{2}\theta + 2\Gamma_{\text{m}}\text{Re}[\chi[\omega]]n_{\text{OBA}}\sin 2\theta$$

where  $\chi[\omega]=\frac{\Omega_{\rm m}\Gamma_{\rm m}}{(\Omega_{\rm m}^2-\omega^2-i\Gamma_{\rm m}\omega)}$  is the mechanical susceptibility. Here, we introduced the effective optomechanical cooperativity  $C_{\rm eff}[\omega]\equiv\frac{C}{(1-2i\omega/\kappa)^2}$  and  $n_{\rm QBA}=|C_{\rm eff}|$ , with  $C\equiv\frac{4g^2}{\kappa\Gamma}$  being the optomechanical cooperativity.

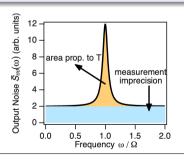
<sup>&</sup>lt;sup>5</sup>Quantum Optomechanics - Bowen - Chapter 3,4

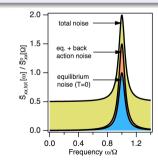
# Standard quantum limit<sup>6</sup>

The phase quadrature  $(\theta = \frac{\pi}{2})$  homodyne power spectral density is simply

### Phase quadrature

$$S_{
m phase}[\omega] = rac{1}{2} + 8\Gamma_{
m m}|C_{
m eff}|^2|\chi[\omega]|^2 + 4\Gamma_{
m m}|C_{
m eff}|S_{Q^0Q^0[\omega]}$$
  
=  $rac{1}{2} + 4\Gamma_{
m m}|C_{
m eff}|S_{QQ[\omega]}$ 



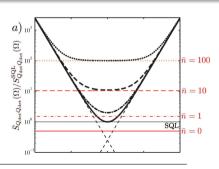


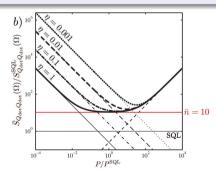
<sup>6</sup>Clerk, Aashish A., et al. "Introduction to quantum noise, measurement, and amplification." Reviews of Modern Physics 82.2 (2010): 1155. Quantum Electrodynamics and Quantum Optics: Lecture 13

# Standard quantum limit<sup>7</sup>

### Phase quadrature

$$\begin{split} S_{\text{phase}}[\omega] = & \frac{1}{2} + 8\Gamma_{\text{m}} |C_{\text{eff}}|^2 |\chi[\omega]|^2 + 4\Gamma_{\text{m}} |C_{\text{eff}}| S_{Q^0 Q^0[\omega]} \\ = & \frac{1}{2} + 4\Gamma_{\text{m}} |C_{\text{eff}}| S_{QQ[\omega]} \end{split}$$





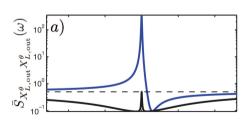
<sup>&</sup>lt;sup>7</sup>Quantum Optomechanics - Bowen - Chapter 3

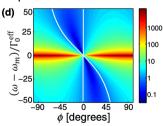
# Ponderomotive squeezing

### Homodyne signal

$$S_{II}^{\theta}[\omega] = \frac{1}{2} + 8\Gamma_{\text{m}}^{2}|\chi[\omega]|^{2}n_{\text{QBA}}(n_{\text{th}} + n_{\text{QBA}} + \frac{1}{2})\sin^{2}\theta + 2\Gamma_{\text{m}}\text{Re}[\chi[\omega]]n_{\text{QBA}}\sin 2\theta$$

Squeezing when the PSDs of different quadrature angles are probed<sup>89</sup>.





<sup>&</sup>lt;sup>8</sup>Quantum Optomechanics - Bowen - Chapter 4

<sup>&</sup>lt;sup>9</sup>Purdy, Thomas P., et al. "Strong optomechanical squeezing of light." Physical Review X 3.3 (2013): 031012.