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Ponderomotive squeezing1
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System Hamiltonian

H = h̄ωcâ†â + h̄Ωmb̂†b̂ +
h̄ωc

L
xzpfâ†â

(
b̂ + b̂†

)
Introducing position and momentum operators Q̂ = 1

2 (b̂ + b̂†), P̂ = i
2 (b̂ − b̂†), and coupling

constant g0 = ωc
L xzpf, we get

H = h̄ωcâ†â + h̄Ωm

[
P̂2 +

(
Q̂ +

g0

Ωm
â†â

)2
]
− h̄g2

0
Ωm

(â†â)2.

To isolate the light field dynamics from the mechanics, we introduce polaron transformation

ŝ = exp
(

i g0
Ωm

â†âP̂
)
to transform our Hamiltonian using

eÂB̂e−Â = B̂ +
[
Â, B̂

]
+

1
2!

[
Â,

[
Â, B̂

]]
+ . . . ,

1Quantum Optomechanics - Bowen - Chapter 4
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Ponderomotive squeezing
we get

ŝ†Q̂ŝ = Q̂ − g0

Ωm
â†â.

The polaron transformation cancels the displacement caused by radiation pressure by applying
an opposite but equivalent displacement via the unitary operation. The Hamiltonian would
thus transform into

Ĥ′ = ŝ†Ĥŝ = h̄ωcâ†â + h̄Ωm

(
P̂2 + Q̂2

)
− h̄g2

0
Ωm

(â†â)2.

We can now linearize it using â → α + δâ, so that

(â†â)2 → α4 + 2α3(δâ† + δâ) + 4α2δâδâ† + α2(δâ†2 + δâ2)

g2
0

Ωm
α2(δâ†2 + δâ2) ⇔ S(ξ) = exp

(
1
2

ξ∗â2 +
1
2

ξâ†2
)

,

whose unitary evolution leads to a squeezing operator.
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Quantum Langevin Equations
We first move to an interaction frame where ωc is replaced by ∆ = ωc − ωL where ωL is the
laser driving frequency. To include the dissipation and noise from the environment, we derive

Quantum Langevin equations

˙̂a(t) =−
(

i∆ +
κ

2

)
â − ig0â

(
b̂ + b̂†

)
+
√

κâin(t),

˙̂b(t) =−
(

iΩm +
Γm

2

)
b̂ − ig0â†â +

√
Γmb̂in(t),

where Γm is the mechanical dissipation rate. Here we assume g0 ≪ κ in order to linearize the
equations â → α + â. Introducing g = g0

√
α and by going to the Fourier domain,

â[ω] =

√
κâin − ig(b̂[ω] + b̂†[ω])

i(∆ − ω) + κ/2
,

b̂[ω] =

√
Γmb̂in[ω]

i(Ωm − ω) + Γm/2
− ig(â[ω] + â†[ω])

i(Ωm − ω) + Γm/2
.
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Quantum Langevin Equations
The mechanical motion can be expressed as a response to the environmental noise and optical
input fluctuations

b̂[ω] =

√
Γmb̂in[ω]

i(Ω′
m − ω) + Γ′/2

+
ig

i(∆ − ω) + κ/2
−
√

κâin[ω]

i(Ω′
m − ω) + Γ′/2

+
ig

−i(∆ − ω) + κ/2
−
√

κâ†
in[ω]

i(Ω′
m − ω) + Γ′/2

Optical spring and dynamical back-action

where Ω′
m = Ωm + δΩm and Γ′ = Γm + δΓm with

δΩm =g2Im
[

1
i(∆ − Ωm) + κ/2

− 1
−i(∆ + Ωm) + κ/2

]
δΓm =2g2Re

[
1

i(∆ − Ωm) + κ/2
− 1

−i(∆ + Ωm) + κ/2

]
.
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Optical spring and dynamical back-action

Optical spring and dynamical back-action

δΩm =g2Im
[

1
i(∆ − Ωm) + κ/2

− 1
−i(∆ + Ωm) + κ/2

]
δΓm =2g2Re

[
1

i(∆ − Ωm) + κ/2
− 1

−i(∆ + Ωm) + κ/2

]
.

-10 -5 0 5 10
-1.5

-1

-0.5

0

0.5

1

1.5

O
pt

ic
al

 s
pr

in
g 

( 
g

2

-4

-3

-2

-1

0

1

2

3

4

O
pt

ic
al

 d
am

pi
ng

 (
 g

2

Fall 2024 Quantum Electrodynamics and Quantum Optics: Lecture 13 7 / 17



Quasi-static approximation2

Here we make a few approximations to simplify the derivation:

Quasi-static approximation

1 ∆ = 0: the laser is tuned exactly to the optical cavity resonance frequency.

2 κ ≫ Ωm: Bad cavity limit.

3 ω ≪ Ωm: We are only interested in the quasi-static response, so the resonant response
of the mechanical resonator does not play a role.

Under these assumptions together with the input output theorem âout + âin =
√

κâ,

iΩmb̂[ω] =
√

Γmb̂in[ω]− 2ig√
κ
(âin[ω] + â†

in[ω])

âout[ω] =âin[ω]− 2ig√
κ
(b̂[ω] + b̂†[ω]).

2Safavi-Naeini, Amir H., et al. “Squeezed light from a silicon micromechanical resonator.” Nature 500.7461 (2013): 185.
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Quasi-static approximation

Define measurement rate Γmeas ≡ 4g2/κ, we can rewrite

âout[ω] = âin +
2iΓmeas

Ωm
(âin[ω] + â†

in[ω]) +

√
Γmγmeas

Ωm
(b̂in[ω] + b̂†

in[ω]).

Ignoring thermal noise Γm = 0, and dropping the terms of order (Γmeas/Ωm)2, we can
calculate the output optical quadrature power spectral density

Output optical quadrature

Sout
XθXθ

=
∫ +∞

−∞
dω′

〈
X̂out

θ [ω]X̂out
θ [ω′]

〉
= 1 +

4Γmeas

Ωm
sin 2θ,

where the quadrature operator is defined as X̂θ = âe−iθ + â†eiθ. For θ = −π/4 we achieve the
maximum squeezing with a noise floor strongly dependents on the ratio Γmeas/Ωm.
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Quasi-static approximation

To include the effects from thermal noises, we assume the form of the correlators to be

Thermal correlators 〈
b̂in[ω]b̂†

in[ω
′]
〉
=(nth[ω] + 1)δ(ω + ω′),〈

b̂†
in[ω]b̂in[ω

′]
〉
=nth[ω]δ(ω + ω′),

which leads to

Sout
XθXθ

= 1 +
4Γmeas

Ωm
sin 2θ +

4Γmeas

Ωm

nth[ω]

Qm
(1 − cos 2θ).

In this model there is no squeezing at θ = −π/4 and frequency ω if nth[ω] > Qm, where Qm
is the mechanical quality factor. However some squeezing is always present, but is shifted to
other quadratures and the amount of detectable squeezing is reduced at higher temperatures.
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Physical systems3

3Safavi-Naeini, Amir H., et al. “Squeezed light from a silicon micromechanical resonator.” Nature 500.7461 (2013): 185.
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Physical systems4

4Purdy, Thomas P., et al. “Strong optomechanical squeezing of light.” Physical Review X 3.3 (2013): 031012.
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Dynamics of mechanical resonator 5

Taking into account the dynamics of the mechanical resonator while keeping the bad-cavity
limit and resonant probing, we can derive the detected spectral density detected by the
homodyne as

Homodyne signal

Sθ
II[ω] =

1
2
+ 8Γ2

m|χ[ω]|2nQBA(nth + nQBA +
1
2
) sin2 θ

+ 2ΓmRe[χ[ω]]nQBA sin 2θ

where χ[ω] = ΩmΓm
(Ω2

m−ω2−iΓmω)
is the mechanical susceptibility. Here, we introduced the effective

optomechanical cooperativity Ceff[ω] ≡ C
(1−2iω/κ)2 and nQBA = |Ceff|, with C ≡ 4g2

κΓ being the

optomechanical cooperativity.

5Quantum Optomechanics - Bowen - Chapter 3,4
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Standard quantum limit6

The phase quadrature (θ = π
2 ) homodyne power spectral density is simply

Phase quadrature

Sphase[ω] =
1
2
+ 8Γm|Ceff|2|χ[ω]|2 + 4Γm|Ceff|SQ0Q0[ω]

=
1
2
+ 4Γm|Ceff|SQQ[ω]

6Clerk, Aashish A., et al. “Introduction to quantum noise, measurement, and amplification.” Reviews of Modern Physics 82.2 (2010): 1155.
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Standard quantum limit7

Phase quadrature

Sphase[ω] =
1
2
+ 8Γm|Ceff|2|χ[ω]|2 + 4Γm|Ceff|SQ0Q0[ω]

=
1
2
+ 4Γm|Ceff|SQQ[ω]

7Quantum Optomechanics - Bowen - Chapter 3
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Ponderomotive squeezing

Homodyne signal

Sθ
II[ω] =

1
2
+ 8Γ2

m|χ[ω]|2nQBA(nth + nQBA +
1
2
) sin2 θ

+ 2ΓmRe[χ[ω]]nQBA sin 2θ

Squeezing when the PSDs of different quadrature angles are probed89.

8Quantum Optomechanics - Bowen - Chapter 4

9Purdy, Thomas P., et al. “Strong optomechanical squeezing of light.” Physical Review X 3.3 (2013): 031012.
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