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Quantized Harmonic Oscillator!
Classical Hamiltonian of a harmonic oscillator:
E = -mi®+ 1mex2 _ + —mw?x?
2 2 C2m 2

We can also express the state of the H.O. via a single complex variable:

where ¢ is a constant. In this case:

%“(t) = at)=c (x + ék(t))

2 . . i
¢ (X —iwx) = —iwc (x + —J'c)
w

o = —iwa(t)

X=—wx

1Cohen—Tannoudji C., Diu B., Laloe F. (2017) Mécanique quantique - Tome 3
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Quantized Harmonic Oscillator
This new variable can be used to express the energy of the H.O. as:
2

mw * *
E:F(lx o+ an’).

The quantization of the harmonic oscillator

The quantization of the H.O. proceeds by normalizing the hamiltonian with %‘" = & and

replacing & and a* by « — 4 and a* — 4t which are the annihilation and creation operators
with the following rules

alny =valn—1)  atln)=va+iln+1) [a,a*] =1l,

The procedure yields

B— % (a*a+aa*) . (1)
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Quantized Harmonic Oscillator
Note the corresponding relation between creation annihilation operators and position
momentum operators:

a = \/#_hw(mwfc—i—zp)

ey
Or

. ooy, a4

* = 2mw (a+a)

b (27)

Po= 2 i
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Quantized Harmonic Oscillator
Thus: A = [ 4 me’s

Heisenberg equations of motion

o - a2

In order to derive the wave function from the Schrodinger equation, we recall that
a|n) = +/n|n—1). Take |0) for an example:

1 )
al0)=0 = ——— (p—imw?)|0)=0
V' 2mhw
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Quantized Harmonic Oscillator

As 1po(x) = (x|0), where x is the position basis {|x)}, with (x|p]0) = 24, and
(x| 10) = xypo(x), we have

(E%—imwx) Po(x) = 0

1
1/4
mw 2
: x — o WX /Zh'
Yolx) ( nh)

We can also use the operator definition to derive the wavefunctions of the excited states
through

Palx) = (xln) = \% (x|at jn—1)
— W (—h(,?—x +mwx) Pu—1(x).
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Quantized Harmonic Oscillator

Computation of HO wave fct.

- SetQuantumAliases[]

Cur - SetQuantumAliases[]

;- ClearAll[y®, ¥1, q]

Definition of the ground state

v 401g 1 =1/ ()4 «Exp[-a? /2]

o
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)

= Ground state wave function

7~ Plot [¥0[q] » Conjugate[¢#0[al], {q, -3, 4}, PlotRange » All, Frame - True, Axes - FalseFrameLabel -+ {"4,", "|S.; | (dB) "}]
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= Compy higher ion using the operator differential operator Notabl

We apply for the creation operator the operator correspondence:
o

at |n) =yn+l |n+1)—> lldm*(q— 6_) yn=yn+lyn+l
q

11
- ¥llg ] = P (q+¥0[q] - D[¥O[a], a])

7z
ot
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Quantized Harmonic Oscillator
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Fock States

The eigenstates of the quantized harmonic oscillator Hamiltonian are:

Hn) = hw (ﬁ*ﬁ—k %) |n) = E, |n)

For the vacuum state |0),

R hw hw

Casimir}y

plates Vacuum

fluctuations
which yields the vacuum energy of a harmonic oscillator (this energy leads to the Casimir

force?).

2Casimir, Hendrick BG. “On the attraction between two perfectly conducting plates.” Proc. Kon. Ned. Akad. Wet.. Vol. 51. 1948.
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Effects Due to The Vacuum Energy

M. Planck’s “second theory” derives the zero-point energy3

Thermal energy
ho 1
u= —ehv/kT 1 + Eh’()

which marked the birth of the concept of zero-point energy. From that, Planck would have

obtained the correct spectral energy density
w0 — T =5800K
S t | d t 35 S\ - Rayleigh-Jeans
pectral energy density ol //, \\ — o
8mhv3/c®  4mhv® Sy
p(v) — :Ezo : !
/KT _ 1 = N
<10 lll
which would give the spectrum shown in the st/ —_
rlght flgu re. O oo W0 60 80 1000 1200 1400
v [THz]
3Planck, Max. “Uber die Begriindung des Gesetzes der schwarzen Strahlung.” Annalen der physik 342.4 (1912): 642-656.
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Quantization of the Electromagnetic Field

Recall the Maxwell Equations (no sources)
V xE= —at [Law of induction]
V-B= [No monopole]
V.-D= ( 0) [Gauss law (no charge)]
V xH= Ei,)—lt)(: %—? Jf) [Biot-Savart law (no current)|]

Introducing the vector potential A(7,t) in Coulomb gauge

(@ A= 0) B=VxA
VZAQ, ) - Clzafﬁ(?,t) —0 E——aA
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Quantization of the Electromagnetic Field

From classical electrodynamics (travelling wave)

ARt =Y %Ezacak(t)e_iwkt“%'? +c.c.
7 k

E#t) =) é’kEZaCak(t)e_i“’kH'iE’? +c.c.
k

k

1 o s
HFt) = — Y Sk pracq (peint+k7 | o ¢
k
Ho - W

Here «; is the classical component of vector potential. Define:

A 1/2
Ej* = (2;:‘];) vacuum field

where V is the spatial volume the plane wave occupies (periodic boundary conditions
k=ky=2mm/L).
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Quantization of the Electromagnetic Field

Quantization proceeds by identifying ay — 4, & — a*. Notice that
y ying k

— 1 T2 712\ 43
He=5 [ (ol B+ ol i) dr.

In this case,
Hy = % (oo + gy classically
3
N h
= % (ﬁkﬁz + ﬁ;ﬁ,t) quantum mechanically

which does not give the correct quantized Hamiltonian.
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Quantization of the Electromagnetic Field

Instead, quantization now proceeds by first replacing the fields with operators and applying the
symmetrization postulate:

1 - = — — ]_ 80 - = - -
Hy = = E-E* H-H*'==- | —(E-E*+E*-E
¢ 2/‘/80 THo z/v 2 (BB +EE)+
This then yields
L €0 (pat | ptp Ho (ryevt o frtes
Hk_z/v2 (BE' +EE) + : (AA" + )
inserting the field expressions leads to,

A a 1
H= ;hwk <a,tak + E)
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Quantization inside a cavity*

Cavity field solution, assuming linearly polarized in the x-direction

Ex(zt) =) <Ekocke_i“’kt — Ekocze“‘*’kt) sin(kz)
k

Hy(z,t) = —ieoc) (Ektxke_i“’kt — Ekzx};e““’kt) cos(kz)
K

where Ep = 4/ - hwk is the vacuum field (notice the subtle difference to the travelling wave EJ*°).

v

With the same notation, the energy takes a particularly simple form

Hy = /SO\E\Z 2y olH? = 0/dV<]E]2+c2U§|2>

hwk hw
dV = 2 (lele + IXkOCk)
4derivation taken from " Quantum Mechanics Part III", Cohen-Tannoudji
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Quantization inside a cavity
The quantization now proceeds by setting ax — dx, af — 61;2, we have

A hwk RN 1 A hwk
H, = — (a,tak + 5) = hwydf oy + -
~—~

zero-point energy

As for the commutation relations between E;(7,t) and Hi (7, t), we insert the operators:

E@#t) = ZEkEzaCﬁke_i“’kt“’?’? —c.c.
%

. 1 kxé o 2o
HFt) =—) KEyacqe—iont+kT _ ¢ ¢
Ho k Wi

and recall the commutation relations

A A At At A At
[ak,x, ak/,x/] = |:ak/x, ﬂk/,x/j| - 0 and |:ak,x, ak//x/i| - 5k,k/(sx’x/,
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Quantization inside a cavity

We can then derive

Commutation relations between electric and magnetic field

[Ef (7, 1), (7, t)} =0 = Ej, Hj can be measured simultaneously
[E](?I t)/ Hk(?lr t):| = —ihCZ ; ejkl%é‘(:‘}) (7 _ ?I)

= E"]-, Hk(#j) cannot be measured simultaneously

where i,j,k = x,y,z and €jxr is the Levi-Civita symbol which is antisymmetric in all the indices.
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Momentum of light

Recall the momentum for the transverse wave:
Breans = — Y 0 / E(7, 1) x By(7 )dV
k

applying symmetrization and inserting the operators,

Quantization of momentum

Ptrans =€ 2 lxklxk ol lxklxk]
()
A h_l? st o at] _ N7 ata
Ptrans =5 Z > |:ﬂkak -+ ﬂkﬂlk] = th aax —|— thﬂkﬂk
k k

which is a very intuitive result as Prans [11¢) = hikny |ni). The vacuum fluctuations are
canceled out by the opposite momentum.
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Quantization Procedure via Lagrangian Mechanics®

First, one needs to obtain the system’s Lagrangian as a function of generalised coordinates x;
and their time derivatives %;

£(x1,...,x;41,x1,...,x;1):T_V (2)

where T = %Zmi(xi)z is the system'’s kinetic energy, and V = V(x1,...,x,) - potential
energy. The system'’s equations of motion are then recovered as Euler-Lagrange equations:

d (oL oL
i (5) =5 ©
The next step is to introduce the conjugate momenta p; of the coordinates Xx;
oL
= — 4

and the Hamiltonian, by performing Legendre transform

H= chir’i - L (5)

5Cohen-Tannoudji C., Diu B., Laloe F. (2017) Mécanique quantique - Tome 3 - Complement Axyj
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Quantization Procedure via Lagrangian Mechanics

We now substitute the canonically conjugate coordinates x; and momenta p; with operators %;
and p;, imposing the canonical commutation relation

(%, 9] = iho; (6)
The Hamiltonian operator is then obtained from the symmetrised (e.g.

xipi = (x;p; + pix;i)/2) classical Hamiltonian:

H = Hoym (%1, ..., 20, p1, - Pn) (7)
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