Quantum Electrodynamics and Quantum Optics: Lecture 1

Fall 2024

Quantized Harmonic Oscillator¹

Classical Hamiltonian of a harmonic oscillator:

$$E = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}m\omega^2x^2 = \frac{1}{2}\frac{p^2}{m} + \frac{1}{2}m\omega^2x^2$$

We can also express the state of the H.O. via a single complex variable:

$$\alpha(t) = c \left(x(t) + \frac{i\dot{x}(t)}{\omega} \right)$$

where c is a constant. In this case:

$$\frac{\partial}{\partial t}\alpha(t) = \dot{\alpha}(t) = c\left(\dot{x} + \frac{i}{\omega}\ddot{x}(t)\right)$$

$$\ddot{x} = -\omega^{2}x \quad c\left(\dot{x} - i\omega x\right) = -i\omega c\left(x + \frac{i}{\omega}\dot{x}\right)$$

$$\partial_{t}\alpha = -i\omega\alpha(t)$$

¹Cohen-Tannoudji C., Diu B., Laloe F. (2017) Mécanique quantique - Tome 3

This new variable can be used to express the energy of the H.O. as:

$$E = \frac{m\omega^2}{4c^2} \left(\alpha^* \alpha + \alpha \alpha^* \right).$$

The quantization of the harmonic oscillator

The quantization of the H.O. proceeds by normalizing the hamiltonian with $\frac{\hbar\omega}{2}\equiv\frac{m\omega^2}{4c^2}$, and replacing α and α^* by $\alpha\to\hat{a}$ and $\alpha^*\to\hat{a}^\dagger$ which are the annihilation and creation operators with the following rules

$$\hat{a}\left|n\right\rangle = \sqrt{n}\left|n-1\right\rangle \qquad \hat{a}^{\dagger}\left|n\right\rangle = \sqrt{n+1}\left|n+1\right\rangle \qquad \left[\hat{a},\hat{a}^{\dagger}\right] = 1.$$

The procedure yields

$$\hat{H} = \frac{\hbar\omega}{2} \left(\hat{a}^{\dagger} \hat{a} + \hat{a} \hat{a}^{\dagger} \right). \tag{1}$$

Note the corresponding relation between creation annihilation operators and position momentum operators:

$$\hat{a} = \frac{1}{\sqrt{2m\hbar\omega}} \left(m\omega \hat{x} + i\hat{p} \right)$$

$$\hat{a}^{\dagger} = \frac{1}{\sqrt{2m\hbar\omega}} \left(m\omega \hat{x} - i\hat{p} \right)$$

Or

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} \left(\hat{a} + \hat{a}^{\dagger} \right)$$

$$\hat{p} = \sqrt{\frac{m\hbar\omega}{2}} \frac{\left(\hat{a} - \hat{a}^{\dagger} \right)}{i}$$

Thus:
$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2\hat{x}^2}{2}$$
,

Heisenberg equations of motion

$$\frac{d}{dt}\hat{x} = \frac{1}{i\hbar} \left[\hat{x}, \hat{H} \right] = \frac{\hat{p}}{m}$$

$$\frac{d}{dt}\hat{p} = \frac{1}{i\hbar} \left[\hat{p}, \hat{H} \right] = -m\omega^2 \hat{x}$$

In order to derive the wave function from the Schrödinger equation, we recall that $\hat{a} |n\rangle = \sqrt{n} |n-1\rangle$. Take $|0\rangle$ for an example:

$$\hat{a} |0\rangle = 0 \quad \Rightarrow \quad \frac{1}{\sqrt{2m\hbar\omega}} \left(\hat{p} - im\omega \hat{x} \right) |0\rangle = 0$$

As $\psi_0(x) = \langle x|0\rangle$, where x is the position basis $\{|x\rangle\}$, with $\langle x|\hat{p}|0\rangle = \frac{\hbar}{i}\frac{\partial}{\partial x}\psi_0$ and $\langle x|\hat{x}|0\rangle = x\psi_0(x)$, we have

$$\left(\frac{\hbar}{i}\frac{\partial}{\partial x} - im\omega x\right)\psi_0(x) = 0$$

$$\Rightarrow \psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-m\omega x^2/2\hbar}.$$

We can also use the operator definition to derive the wavefunctions of the excited states through

$$\psi_n(x) = \langle x | n \rangle = \frac{1}{\sqrt{n}} \langle x | \hat{a}^{\dagger} | n - 1 \rangle$$
$$= \frac{1}{\sqrt{2nm\hbar\omega}} \left(-\hbar \frac{\partial}{\partial x} + m\omega x \right) \psi_{n-1}(x).$$

Computation of HO wave fct.

- Note: SetQuantumAliases[]
- Own SetQuantumAliases[]
- adeja ClearAll[ψ0, ψ1, q]

Definition of the ground state

 $\psi = \psi [q] = 1/(\pi)^{1/4} \star \exp[-q^2/2]$

$$O_{0}(r) = \frac{e^{-\frac{q^{2}}{2}}}{\pi^{1/4}}$$

- Ground state wave function
- $\text{Plot}[\psi0[q] \star \text{Conjugate}[\psi0[q]], \{q, -3, 4\}, \text{PlotRange} \rightarrow \text{All}, \text{Frame} \rightarrow \text{True}, \text{Axes} \rightarrow \text{FalseFrameLabel} \rightarrow \left\{ \text{``}\Delta_{p}\text{''}, \text{`''} | \text{S}_{11} | \text{`} (\text{dB}) \text{''} \right\}]$

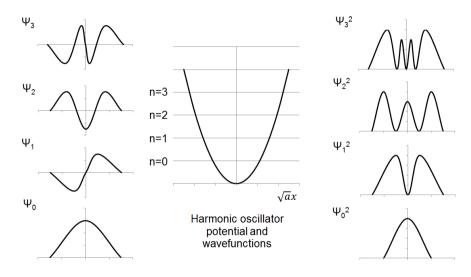
Compute next higher wave function using the operator differential operator correspondence. Notably.

We apply for the creation operator the operator correspondence:

$$a^{\dagger} \mid n \rangle = \sqrt{n+1} \mid n+1 \rangle \rightarrow 1/\sqrt{m*} \left(q - \frac{\delta}{\delta q}\right) \psi_{-} n = \sqrt{n+1} \psi_{-} n + 1$$

$$\label{eq:polynomial} \psi_1[q] = \frac{1}{\sqrt{1}} \star \frac{1}{\sqrt{2}} \star (\mathsf{q} \star \psi_0[\mathsf{q}] - \mathsf{D}[\psi_0[\mathsf{q}], \mathsf{q}])$$

$$O_{M}(\cdot) = \frac{\sqrt{2} e^{-\frac{q^2}{2}} e^{-\frac{q^2}{2}}}{\pi^{1/4}}$$



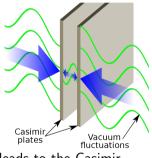
Fock States

The eigenstates of the quantized harmonic oscillator Hamiltonian are:

$$\hat{H}|n\rangle = \hbar\omega \left(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}\right)|n\rangle = E_n|n\rangle$$

For the vacuum state $|0\rangle$,

$$\hat{H}|0\rangle = \frac{\hbar\omega}{2}|0\rangle \quad \Rightarrow \quad E_0 = \frac{\hbar\omega}{2}$$



which yields the vacuum energy of a harmonic oscillator (this energy leads to the Casimir force²).

²Casimir, Hendrick BG. "On the attraction between two perfectly conducting plates." Proc. Kon. Ned. Akad. Wet.. Vol. 51. 1948.

Effects Due to The Vacuum Energy

M. Planck's "second theory" derives the zero-point energy³

Thermal energy

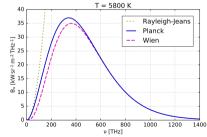
$$U = \frac{hv}{e^{hv/kT} - 1} + \frac{1}{2}hv$$

which marked the birth of the concept of zero-point energy. From that, Planck would have obtained the correct spectral energy density

Spectral energy density

$$\rho(v) = \frac{8\pi h v^3 / c^3}{e^{hv/kT} - 1} + \frac{4\pi h v^3}{c^3}$$

which would give the spectrum shown in the right figure.



³Planck, Max. "Über die Begründung des Gesetzes der schwarzen Strahlung." Annalen der physik 342.4 (1912): 642-656.

Recall the Maxwell Equations (no sources)

$$\vec{\nabla} \times \vec{E} = -\partial_t \vec{B}$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \cdot D = 0 (= \rho)$$

$$\vec{\nabla} \times \vec{H} = \frac{\partial \vec{D}}{\partial t} (= \frac{\partial \vec{D}}{\partial t} + J_f)$$

[Law of induction]

[No monopole]

[Gauss law (no charge)]

[Biot-Savart law (no current)]

Introducing the vector potential $\vec{A}(\vec{r},t)$ in Coulomb gauge

$$\left(ec{
abla}\cdot ec{A}=0
ight)$$

$$\nabla^2 \vec{A}(\vec{r}, t) - \frac{1}{c^2} \partial_t^2 \vec{A}(\vec{r}, t) = 0$$

$$\vec{B} = \vec{\nabla} \times \vec{A}$$

$$\vec{E} = -\partial_t \vec{A}$$

From classical electrodynamics (travelling wave)

$$\begin{split} A(\vec{r},t) &= \sum_{k} \frac{\vec{\epsilon}_{k}}{i\omega_{k}} E_{k}^{\text{vac}} \alpha_{k}(t) e^{-i\omega_{k}t + i\vec{k}\cdot\vec{r}} + c.c. \\ E(\vec{r},t) &= \sum_{k} \vec{\epsilon}_{k} E_{k}^{\text{vac}} \alpha_{k}(t) e^{-i\omega_{k}t + i\vec{k}\cdot\vec{r}} + c.c. \\ H(\vec{r},t) &= \frac{1}{\mu_{0}} \sum_{k} \frac{\vec{k} \times \vec{\epsilon}_{k}}{\omega_{k}} E_{k}^{\text{vac}} \alpha_{k}(t) e^{-i\omega_{k}t + i\vec{k}\cdot\vec{r}} + c.c. \end{split}$$

Here α_k is the classical component of vector potential. Define:

$$E_k^{
m vac} \equiv \left(\frac{\hbar \omega_k}{2 \varepsilon_0 V} \right)^{1/2}$$
 vacuum field

where V is the spatial volume the plane wave occupies (periodic boundary conditions $k = k_m = 2\pi m/L$).

Quantization proceeds by identifying $\alpha_k \to \hat{a}$, $\alpha_k^* \to \hat{a}^{\dagger}$. Notice that

$$H_k = \frac{1}{2} \int_V \left(\varepsilon_0 |\vec{E}_k|^2 + \mu_0 |\vec{H}_k|^2 \right) d^3 r.$$

In this case,

$$H_{k} = \frac{\hbar \omega_{k}}{2} \left(\alpha_{k} \alpha_{k}^{*} + \alpha_{k} \alpha_{k}^{*} \right)$$
 classically
$$\downarrow$$

$$\hat{H}_{k} = \frac{\hbar \omega_{k}}{2} \left(\hat{a}_{k} \hat{a}_{k}^{\dagger} + \hat{a}_{k} \hat{a}_{k}^{\dagger} \right)$$
 quantum mechanically

which does not give the correct quantized Hamiltonian.

Instead, quantization now proceeds by first replacing the fields with operators and applying the **symmetrization postulate**:

$$H_k = \frac{1}{2} \int_V \varepsilon_0 \vec{E} \cdot \vec{E}^* + \mu_0 \vec{H} \cdot \vec{H}^* = \frac{1}{2} \int_V \frac{\varepsilon_0}{2} \left(\vec{E} \cdot \vec{E}^* + \vec{E}^* \cdot \vec{E} \right) + \dots$$

This then yields

$$\hat{H}_k = \frac{1}{2} \int_V \frac{\varepsilon_0}{2} \left(\hat{E} \hat{E}^\dagger + \hat{E}^\dagger \hat{E} \right) + \frac{\mu_0}{2} \left(\hat{H} \hat{H}^\dagger + \hat{H}^\dagger \hat{H} \right)$$

inserting the field expressions leads to,

$$\hat{H} = \sum_k \hbar \omega_k \left(\hat{a}_k^\dagger \hat{a}_k + rac{1}{2}
ight)$$

Quantization inside a cavity⁴

Cavity field solution, assuming linearly polarized in the x-direction

$$E_x(z,t) = \sum_{k} \left(E_k \alpha_k e^{-i\omega_k t} - E_k \alpha_k^* e^{+i\omega_k t} \right) \sin(kz)$$

$$H_y(z,t) = -i\varepsilon_0 c \sum_{k} \left(E_k \alpha_k e^{-i\omega_k t} - E_k \alpha_k^* e^{+i\omega_k t} \right) \cos(kz)$$

where $E_k=\sqrt{rac{\hbar\omega_k}{arepsilon_0 V}}$ is the vacuum field (notice the subtle difference to the travelling wave $E_k^{
m vac}$).

With the same notation, the energy takes a particularly simple form

$$H_k = \int \frac{1}{2} \varepsilon_0 |\vec{E}|^2 + \frac{1}{2} \mu_0 |\vec{H}|^2 = \frac{\varepsilon_0}{2} \int dV \left(|\vec{E}|^2 + c^2 |\vec{B}|^2 \right)$$
$$= \int \frac{\hbar \omega_k}{2V} \left(2|\alpha_k|^2 \right) dV = \frac{\hbar \omega_k}{2} \left(\alpha_k \alpha_k^* + \alpha_k^* \alpha_k \right)$$

⁴derivation taken from "Quantum Mechanics Part III", Cohen-Tannoudji

Quantization inside a cavity

The quantization now proceeds by setting $\alpha_k \to \hat{a}_k$, $\alpha_k^* \to \hat{a}_k^{\dagger}$, we have

$$\hat{H}_k = \frac{\hbar \omega_k}{2} \left(\hat{a}_k^{\dagger} \hat{a}_k + \frac{1}{2} \right) = \hbar \omega_k \hat{a}_k^{\dagger} \hat{a}_k + \underbrace{\frac{\hbar \omega_k}{2}}_{\text{zero-point energy}}$$

As for the commutation relations between $E_i(\vec{r},t)$ and $H_k(\vec{r},t)$, we insert the operators:

$$\begin{split} \vec{E}(\vec{r},t) &= \sum_{k} \vec{\epsilon}_{k} E_{k}^{\mathrm{vac}} \hat{a}_{k} e^{-i\omega_{k}t + i\vec{k}\cdot\vec{r}} - c.c. \\ \vec{H}(\vec{r},t) &= \frac{1}{\mu_{0}} \sum_{k} \frac{\vec{k} \times \vec{\epsilon}_{k}}{\omega_{k}} E_{k}^{\mathrm{vac}} \hat{a}_{k} e^{-i\omega_{k}t + i\vec{k}\cdot\vec{r}} - c.c. \end{split}$$

and recall the commutation relations

$$\left[\hat{a}_{k,x},\hat{a}_{k',x'}\right] = \left[\hat{a}_{k,x}^{\dagger},\hat{a}_{k',x'}^{\dagger}\right] = 0 \quad \text{and} \quad \left[\hat{a}_{k,x},\hat{a}_{k',x'}^{\dagger}\right] = \delta_{k,k'}\delta_{x,x'},$$

Quantization inside a cavity

We can then derive

Commutation relations between electric and magnetic field

$$\begin{split} \left[\hat{E}_{j}(\vec{r},t),\hat{H}_{j}(\vec{r}',t)\right] &= 0 \quad \Rightarrow \hat{E}_{j},\hat{H}_{j} \text{ can be measured simultaneously} \\ \left[\hat{E}_{j}(\vec{r},t),\hat{H}_{k}(\vec{r}',t)\right] &= -i\hbar c^{2}\sum_{l}\epsilon_{jkl}\frac{\partial}{\partial l}\delta^{(3)}(\vec{r}-\vec{r}') \\ &\Rightarrow \hat{E}_{j},\hat{H}_{k(\neq j)} \text{ cannot be measured simultaneously} \end{split}$$

where i, j, k = x, y, z and ϵ_{jkl} is the Levi-Civita symbol which is antisymmetric in all the indices.

Momentum of light

Recall the momentum for the transverse wave:

$$\vec{P}_{\rm trans} = -\sum_{k} \varepsilon_0 \int \vec{E}_k(\vec{r}, t) \times \vec{B}_k(\vec{r}, t) dV$$

applying symmetrization and inserting the operators,

Quantization of momentum

$$ec{P}_{ ext{trans}} = arepsilon_0 \sum_k rac{\omega}{4\left(rac{arepsilon_0 \omega}{2\hbar}
ight)} ec{k} \left[lpha_k^* lpha_k + lpha_k lpha_k^*
ight]$$

$$\hat{P}_{\text{trans}} = \sum_{k} \frac{\hbar \vec{k}}{2} \left[\hat{a}_k^{\dagger} \hat{a}_k + \hat{a}_k \hat{a}_k^{\dagger} \right] = \sum_{k} \hbar \vec{k} \left(\hat{a}_k^{\dagger} \hat{a}_k + \frac{1}{2} \right) = \sum_{k} \hbar \vec{k} \hat{a}_k^{\dagger} \hat{a}_k$$

which is a very intuitive result as $\hat{P}_{\rm trans} |n_k\rangle = \hbar \vec{k} n_k |n_k\rangle$. The vacuum fluctuations are canceled out by the opposite momentum.

Quantization Procedure via Lagrangian Mechanics⁵

First, one needs to obtain the system's Lagrangian as a function of generalised coordinates x_i and their time derivatives \dot{x}_i

$$\mathcal{L}(x_1,\ldots,x_n,\dot{x}_1,\ldots,\dot{x}_n)=T-V \tag{2}$$

where $T = \frac{1}{2} \sum m_i(\dot{x}_i)^2$ is the system's kinetic energy, and $V = V(x_1, \dots, x_n)$ - potential energy. The system's equations of motion are then recovered as Euler-Lagrange equations:

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{x_i}} \right) = \frac{\partial \mathcal{L}}{\partial x_i} \tag{3}$$

The next step is to introduce the conjugate momenta p_i of the coordinates x_i

$$p_i \equiv \frac{\partial \mathcal{L}}{\partial \dot{x}_i} \tag{4}$$

and the Hamiltonian, by performing Legendre transform

$$H = \sum_{i} \dot{x}_{i} p_{i} - \mathcal{L} \tag{5}$$

⁵Cohen-Tannoudji C., Diu B., Laloe F. (2017) Mécanique quantique - Tome 3 - Complement AXVIII

Quantization Procedure via Lagrangian Mechanics

We now substitute the canonically conjugate coordinates x_i and momenta p_i with operators \hat{x}_i and \hat{p}_i , imposing the canonical commutation relation

$$[\hat{x}_i, \hat{p}_j] = i\hbar \delta_{ij} \tag{6}$$

The Hamiltonian operator is then obtained from the **symmetrised** (e.g. $x_i p_i = (x_i p_i + p_i x_i)/2$) classical Hamiltonian:

$$\hat{H} = H_{sym}(\hat{x}_1, \dots, \hat{x}_n, \hat{p}_1, \dots, \hat{p}_n)$$
(7)