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Quantized Harmonic Oscillator1

Classical Hamiltonian of a harmonic oscillator:

E =
1
2

mẋ2 +
1
2

mω2x2 =
1
2

p2

m
+

1
2

mω2x2

We can also express the state of the H.O. via a single complex variable:

α(t) = c

(
x(t) +

iẋ(t)
ω

)
where c is a constant. In this case:

∂

dt
α(t) = α̇(t) = c

(
ẋ +

i
ω

ẍ(t)
)

ẍ=−ω2x
= c (ẋ − iωx) = −iωc

(
x +

i
ω

ẋ
)

∂tα = −iωα(t)
1Cohen–Tannoudji C., Diu B., Laloe F. (2017) Mécanique quantique - Tome 3
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Quantized Harmonic Oscillator
This new variable can be used to express the energy of the H.O. as:

E =
mω2

4c2 (α∗α + αα∗) .

The quantization of the harmonic oscillator

The quantization of the H.O. proceeds by normalizing the hamiltonian with h̄ω
2 ≡ mω2

4c2 , and

replacing α and α∗ by α → â and α∗ → â† which are the annihilation and creation operators
with the following rules

â |n⟩ =
√

n |n − 1⟩ â† |n⟩ =
√

n + 1 |n + 1⟩
[
â, â†

]
= 1.

The procedure yields

Ĥ =
h̄ω

2

(
â†â + ââ†

)
. (1)
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Quantized Harmonic Oscillator
Note the corresponding relation between creation annihilation operators and position
momentum operators:

â =
1√

2mh̄ω

(
mωx̂ + ip̂

)
â† =

1√
2mh̄ω

(
mωx̂ − ip̂

)
Or

x̂ =

√
h̄

2mω

(
â + â†

)
p̂ =

√
mh̄ω

2

(
â − â†

)
i

with the commutation relation
[
x̂, p̂
]
= ih̄.Fall 2024 Quantum Electrodynamics and Quantum Optics: Lecture 1 4 / 20



Quantized Harmonic Oscillator

Thus: Ĥ = p̂2

2m + mω2x̂2

2 ,

Heisenberg equations of motion

d
dt

x̂ =
1
ih̄

[
x̂, Ĥ

]
=

p̂
m

d
dt

p̂ =
1
ih̄

[
p̂, Ĥ

]
= −mω2x̂

In order to derive the wave function from the Schrödinger equation, we recall that
â |n⟩ =

√
n |n − 1⟩. Take |0⟩ for an example:

â |0⟩ = 0 ⇒ 1√
2mh̄ω

(
p̂ − imωx̂

)
|0⟩ = 0
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Quantized Harmonic Oscillator
As ψ0(x) = ⟨x|0⟩, where x is the position basis {|x⟩}, with ⟨x| p̂ |0⟩ = h̄

i
∂
∂x ψ0 and

⟨x| x̂ |0⟩ = xψ0(x), we have(
h̄
i

∂

∂x
− imωx

)
ψ0(x) = 0

⇒ ψ0(x) =

(
mω

πh̄

)1/4

e−mωx2/2h̄.

We can also use the operator definition to derive the wavefunctions of the excited states
through

ψn(x) = ⟨x |n⟩ = 1√
n
⟨x| â† |n − 1⟩

=
1√

2nmh̄ω

(
−h̄

∂

∂x
+ mωx

)
ψn−1(x).
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Quantized Harmonic Oscillator
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Quantized Harmonic Oscillator
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Fock States

The eigenstates of the quantized harmonic oscillator Hamiltonian are:

Ĥ |n⟩ = h̄ω

(
â†â +

1
2

)
|n⟩ = En |n⟩

For the vacuum state |0⟩,

Ĥ |0⟩ = h̄ω

2
|0⟩ ⇒ E0 =

h̄ω

2

which yields the vacuum energy of a harmonic oscillator (this energy leads to the Casimir
force2).

2Casimir, Hendrick BG. “On the attraction between two perfectly conducting plates.” Proc. Kon. Ned. Akad. Wet.. Vol. 51. 1948.
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Effects Due to The Vacuum Energy
M. Planck’s “second theory” derives the zero-point energy3

Thermal energy

U =
hv

ehv/kT − 1
+

1
2

hv

which marked the birth of the concept of zero-point energy. From that, Planck would have
obtained the correct spectral energy density

Spectral energy density

ρ(v) =
8πhv3/c3

ehv/kT − 1
+

4πhv3

c3

which would give the spectrum shown in the
right figure.

3Planck, Max. “Über die Begründung des Gesetzes der schwarzen Strahlung.” Annalen der physik 342.4 (1912): 642-656.
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Quantization of the Electromagnetic Field

Recall the Maxwell Equations (no sources)

∇⃗ × E⃗ = −∂t⃗B [Law of induction]

∇⃗ · B⃗ = 0 [No monopole]

∇⃗ · D = 0(= ρ) [Gauss law (no charge)]

∇⃗ × H⃗ =
∂D⃗
∂t

(=
∂D⃗
∂t

+ Jf ) [Biot-Savart law (no current)]

Introducing the vector potential A⃗(⃗r, t) in Coulomb gauge

(
∇⃗ · A⃗ = 0

)
B⃗ = ∇⃗ × A⃗

∇2A⃗(⃗r, t)− 1
c2 ∂2

t A⃗(⃗r, t) = 0 E⃗ = −∂tA⃗
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Quantization of the Electromagnetic Field

From classical electrodynamics (travelling wave)

A(⃗r, t) = ∑
k

ϵ⃗k

iωk
Evac

k αk(t)e−iωkt+i⃗k·⃗r + c.c.

E(⃗r, t) = ∑
k

ϵ⃗kEvac
k αk(t)e−iωkt+i⃗k·⃗r + c.c.

H(⃗r, t) =
1
µ0

∑
k

k⃗ × ϵ⃗k

ωk
Evac

k αk(t)e−iωkt+i⃗k·⃗r + c.c.

Here αk is the classical component of vector potential. Define:

Evac
k ≡

(
h̄ωk

2ε0V

)1/2

vacuum field

where V is the spatial volume the plane wave occupies (periodic boundary conditions
k = km = 2πm/L).
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Quantization of the Electromagnetic Field

Quantization proceeds by identifying αk → â, α∗
k → â†. Notice that

Hk =
1
2

∫
V

(
ε0 |⃗Ek|2 + µ0|H⃗k|2

)
d3r.

In this case,

Hk =
h̄ωk

2
(
αkα∗

k + αkα∗
k
)

classically

⇓

Ĥk =
h̄ωk

2

(
âkâ†

k + âkâ†
k

)
quantum mechanically

which does not give the correct quantized Hamiltonian.
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Quantization of the Electromagnetic Field

Instead, quantization now proceeds by first replacing the fields with operators and applying the
symmetrization postulate:

Hk =
1
2

∫
V

ε 0⃗E · E⃗∗ + µ0H⃗ · H⃗∗ =
1
2

∫
V

ε0

2

(⃗
E · E⃗∗ + E⃗∗ · E⃗

)
+ . . .

This then yields

Ĥk =
1
2

∫
V

ε0

2

(
ÊÊ† + Ê†Ê

)
+

µ0

2

(
ĤĤ† + Ĥ†Ĥ

)
inserting the field expressions leads to,

Ĥ = ∑
k

h̄ωk

(
â†

k âk +
1
2

)
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Quantization inside a cavity4

Cavity field solution, assuming linearly polarized in the x-direction

Ex(z, t) = ∑
k

(
Ekαke−iωkt − Ekα∗

k e+iωkt
)

sin(kz)

Hy(z, t) = −iε0c ∑
k

(
Ekαke−iωkt − Ekα∗

k e+iωkt
)

cos(kz)

where Ek =
√

h̄ωk
ε0V is the vacuum field (notice the subtle difference to the travelling wave Evac

k ).

With the same notation, the energy takes a particularly simple form

Hk =
∫ 1

2
ε0 |⃗E|2 +

1
2

µ0|H⃗|2 =
ε0

2

∫
dV
(
|⃗E|2 + c2 |⃗B|2

)
=
∫ h̄ωk

2V

(
2|αk|2

)
dV =

h̄ωk

2
(
αkα∗

k + α∗
k αk
)

4derivation taken from ”Quantum Mechanics Part III”, Cohen-Tannoudji
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Quantization inside a cavity
The quantization now proceeds by setting αk → âk, α∗

k → â†
k , we have

Ĥk =
h̄ωk

2

(
â†

k âk +
1
2

)
= h̄ωkâ†

k âk +
h̄ωk

2︸︷︷︸
zero-point energy

As for the commutation relations between Ej(⃗r, t) and Hk (⃗r, t), we insert the operators:

E⃗(⃗r, t) = ∑
k

ϵ⃗kEvac
k âke−iωkt+i⃗k·⃗r − c.c.

H⃗(⃗r, t) =
1
µ0

∑
k

k⃗ × ϵ⃗k

ωk
Evac

k âke−iωkt+i⃗k·⃗r − c.c.

and recall the commutation relations[
âk,x, âk′,x′

]
=
[
â†

k,x, â†
k′,x′

]
= 0 and

[
âk,x, â†

k′,x′

]
= δk,k′δx,x′ ,
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Quantization inside a cavity

We can then derive

Commutation relations between electric and magnetic field

[
Êj(⃗r, t), Ĥj(⃗r′, t)

]
= 0 ⇒ Êj, Ĥj can be measured simultaneously[

Êj(⃗r, t), Ĥk (⃗r′, t)
]
= −ih̄c2 ∑

l
ϵjkl

∂

∂l
δ(3) (⃗r − r⃗′)

⇒ Êj, Ĥk( ̸=j) cannot be measured simultaneously

where i, j, k = x, y, z and ϵjkl is the Levi-Civita symbol which is antisymmetric in all the indices.
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Momentum of light
Recall the momentum for the transverse wave:

P⃗trans = −∑
k

ε0

∫
E⃗k (⃗r, t)× B⃗k (⃗r, t)dV

applying symmetrization and inserting the operators,

Quantization of momentum

P⃗trans = ε0 ∑
k

ω

4
(

ε0ω
2h̄

) k⃗
[
α∗

k αk + αkα∗
k
]

P̂trans = ∑
k

h̄⃗k
2

[
â†

k âk + âkâ†
k

]
= ∑

k
h̄⃗k
(

â†
k âk +

1
2

)
= ∑

k
h̄⃗kâ†

k âk

which is a very intuitive result as P̂trans |nk⟩ = h̄⃗knk |nk⟩. The vacuum fluctuations are
canceled out by the opposite momentum.
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Quantization Procedure via Lagrangian Mechanics5

First, one needs to obtain the system’s Lagrangian as a function of generalised coordinates xi
and their time derivatives ẋi

L(x1, . . . , xn, ẋ1, . . . , ẋn) = T − V (2)

where T = 1
2 ∑ mi(ẋi)

2 is the system’s kinetic energy, and V = V(x1, . . . , xn) - potential
energy. The system’s equations of motion are then recovered as Euler-Lagrange equations:

d
dt

(
∂L
∂ẋi

)
=

∂L
∂xi

(3)

The next step is to introduce the conjugate momenta pi of the coordinates xi

pi ≡
∂L
∂ẋi

(4)

and the Hamiltonian, by performing Legendre transform

H = ∑
i

ẋipi −L (5)

5Cohen–Tannoudji C., Diu B., Laloe F. (2017) Mécanique quantique - Tome 3 - Complement AXVIII
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Quantization Procedure via Lagrangian Mechanics

We now substitute the canonically conjugate coordinates xi and momenta pi with operators x̂i
and p̂i, imposing the canonical commutation relation

[x̂i, p̂j] = ih̄δij (6)

The Hamiltonian operator is then obtained from the symmetrised (e.g.
xipi = (xipi + pixi)/2) classical Hamiltonian:

Ĥ = Hsym(x̂1, . . . , x̂n, p̂1, . . . , p̂n) (7)
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